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Abstract. This paper develops a novel way for offline handwritten signature 
characterization using a complex networks approach in order to apply for signa-
ture verification and identification process. Complex networks can be  
considered among the areas of graph theory and statistical mechanics. They are 
suitable for shape recognition due to their properties as invariance to rotation, 
scale, thickness and noise. Offline signatures images were pre-processed to ob-
tain a skeletonized version. This is represented as an adjacency matrix where 
there are applied degree descriptors and dynamic evolution property of complex 
networks in order to generate the feature vector of offline signatures. We used a 
database composed of 960 offline signatures groups; every group corresponds 
to one person with 24 genuine and 30 forged signatures. We obtained a true rate 
of 85.12% for identification and 76.11% for verification. With our proposal it is 
demonstrated that complex networks provide a promising methodology for the 
process of identification and verification of offline handwritten signatures and it 
could be used in applications like document validation. 

Keywords: complex networks, pattern recognition, offline handwritten signa-
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1 Introduction 

The properties of complex networks are suitable to solve shape analysis problems, and 
they are used in other applications like social networks, internet, genetic and so on 
[12]. Nevertheless, despite the existence of many signature identification and verifica-
tion techniques, there is no evidence in the literature of application of complex net-
works for signature characterization [16].  

The contribution of this paper is referring to the use of complex network theory for 
offline handwritten signature characterization. First, we preprocessed signature im-
ages using Pavlidis thinning algorithm [1][3], in order to obtain a skeletonized repre-
sentation of the signature. Second, an adjacency matrix structure is used for complex 
network representation and is applied the connectivity and evolution properties for 
features extraction, resulting a 26-dimensional feature vector. Third, these feature 
vectors constitute the input to the comparison process where we are using a multilayer 
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perceptron neural network [4][6]. The proposed method makes an efficient offline 
signature characterization showing a good degree of robustness for information, noise 
tolerant and invariant to scale and rotation.  

2 Complex Networks 

A complex network refers to a graph with no trivial properties compared with simple 
graphs, as well as it has a considerable number of nodes and edges.  

There are two theoretical models of complex networks such as Erdös-Rényi, scale-
free, random models. In this paper we used Watts-Strogatz network model which 
presents a small-world property. It means the graph nodes can be accessed from other 
nodes in a short number of edges and it has high number of three-size loops, i.e. if a 
vertex ݅ is connected to a vertex ݆ and this is connected with a vertex ݇ then is quite 
likely ݅ and ݇ are connected —high clustering coefficient [12]. 

The dynamic model network of Watts-Strogatz was simulated using thresholds in 
order to remake the network connections. The off-line signature is represented by a 
network structure through different growth stages. The study of its dynamic properties 
—where measurements were obtained from its evolution based on number of con-
nected components— will produce a set of descriptors which will be used for its anal-
ysis and then for the classification process. 

2.1 Connectivity Measurements on Complex Networks 

The degree of a node is the number of edges incident to the node. When we have a 
directed graph we can refer to in-degree —number of incoming link— and out-degree 
—number of outgoing links. If the network is undirected then we simply called degree.  

The average degree of a network is simply the average of each degree node of the 
whole network. In terms of the adjacency matrix ܣ, the degree ݇௜ of a node ݅ is given 
by ݇ூ ൌ ෍ ௜௝ேܣ

௝ୀଵ  ݇ఓ ൌ 1ܰ ෍ ௜௝ேܣ
௝ୀଵ  

 ݇఑ ൌ max ݇ூ (1) 

where ܰ is the number of vertex in the network. Also, the maximum degree ݇఑ and the 
average ݇ఓ of the network were defined as 

2.2 Dynamic Evolution on Complex Networks 

Another important property in complex networks is their dynamic evolution which 
affects its structural properties. As a consequence, the measurements in complex net-
works are time functions, i.e. two networks obtained at different times from an original 
network are represented with different characteristics. Although most time the complex 
network dynamic evolution we can see only in the nature, we can get the patterns of its 
evolution from its evidence and represent it as a mathematical model. This allows a 
more suitable characterization to analyze and classification. 



582 C.A. Beltrán and R. Juárez  

 

3 Offline Signature Characterization Using Complex Networks 

3.1 Off-Line Image Signature Database 

A set of image signature have been requested to 4NSigComp2010 commission. This 
contest is about off-line signature verification and it was organized by Grupo de 
Procesado Digital de Señales (GDPS) of Universidad de las Palmas de Gran 
Canaria [13]. This public database termed GPDS960Signature contains 960 groups of 
signatures, where each group belongs to particular person. Each person has 24 
genuine signatures and 30 forged signatures.  

3.2 Signature Skeletonization 

As first step, it is necessary to preprocess the signature image in order to obtain a 
more appropriate representation for feature extraction process. The objective of 
signature skeletonization should be recovering the movement track of pen tip. To 
extract the signature skeleton we had used the Pavlidis thinning algorithm, where 
Skeletal pixels are computed by thinning binary images obtained by simple threshold 
logic and iterations [1][2][14]. 

3.3 Degree Descriptors of Complex Network Signature 

In this section, we describe the process of signature characterization focused on 
complex network [15]. Let ܵ the signature trace represented as a set of points, where ܵ ൌ  ሾݏଵ, ,ଶݏ … , ௜ݏ ேሿ andݏ ൌ ሾݔ௜,  ௜ሿ whose components are numeric values thatݕ
represent coordinates at point ݅ from contour. Now, in order to apply complex 
network theory to this problem, we create the equivalence of ܵ as a representation of 
graph ܩ ൌ ,ܸۦ   ,Each pixel of the skeleton is represented as a node of the network .ۧܧ
i.e.  ܵ ൌ ܸ. A set of edges ܧ connect each pair of vertex establishing, in this way, the 
network ܧ is calculated using Euclidean distance  ݀൫ݏ௜, ௝൯ݏ ൌ  ඥሺݔ௜ ൅ ௜ሻଶݕ ൅ ሺݔ௜ െ  . ௜ሻଶݕ

Therefore, the matrix is represented by adjacency matrix with weight ܹ and ܰ ൈ ܰ 
dimension, where: ݓ௜௝ ൌ ܹ൫ൣݓ, ௝൧൯ݓ ൌ  ݀൫ݏ௜,   . ௝൯ݏ

An advantage of this method is its tolerant properties to scale and rotation of the 
signature image. Fig. 1 shows the process for signature image normalization, in which 
it show the properties scale and rotation invariant. For that reason, the ܹ matrix is 
normalized into ሾ0,1ሿ 

 
Fig. 1. Scale and rotation invariance representation, as a property of complex networks 
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3.4 Dynamic Evolution on Complex Networks 

The use of concepts and underlying research tools in complex networks provide 
relevant information for the characterization of signatures. In this sense, given a 
specific transformation, the characterization of ܵ can be represented as a feature 
vector obtained from different values of  ௜ܶ  with a transformation operation ߜ, that 
redefines the number of connections in the graph. This operation is represented as ܣ ൌ ೔ሺ்ߜ  ௜ܹሻ, and it is applied to each element of the unweighted matrix W. ்ܣ೔ ൌ ೔ሺ்ߜ  ௜ܹሻ ൌ w׊ א W ൜ܽ௜௝ ൌ 1 ݅ݏ ௜௝ݓ ൒ ௜ܶܽ௜௝ ൌ 0 ݅ݏ ௜௝ݓ ൏ ௜ܶ  (2) 

In other words, the characterization is performed using several transformations ߜ 
where the threshold ௜ܶ  is regularly increased at a rate of ௜ܶ௡௖ . Hence, given a set ܶ, an 
element ௜ܶ א  ܶ  is defined by a function ݂: ܶ ՜ ܶ  

This approach allows a characterization that describes a list of transient 
characteristics of the dynamic evolution of the network, as shown in Fig. 2. 

 

 
 (a)                   (b)                           (c) 

Fig. 2. Signature dynamic evolution represented on a network for the threshold ࢒ࢀ: (a) ࢒ࢀ ൌ૙. ૚; (b) ࢒ࢀ ൌ ૙. ૚૞ and (c) ࢒ࢀ ൌ ૙. ૛ 

Therefore, once we obtained the networks from dynamic evolution, the proposed 
feature vector is the concatenation of all degree descriptors from each network. This 
descriptors were calculated using adjacency matrix ܣ which is modified by ߜ opera-
tor, for instance, for ௟ܶ  threshold we extracted the average (݇ఓ) and maximum degree 
(݇఑), presented in previous section. Finally, degree normalization is required, which is 
computed using the following equation. ݇׊௜ ൌ ݇௜ܰ

 (3) 

This normalization was developed in order to reduce the influence of the quantity of 
the network nodes in descriptors computation. Therefore, after consider the network 
transformation for a ௟ܶ  threshold, the feature vector denoted by ߮ is calculated as the 
concatenation of average (݇ఓ) and maximum degree (݇఑) for each stage of the net-
work evolution and thus we get the characterization proposed  ߮ ൌ ሾ ݇ఓሺ ଴ܶሻ, ݇఑ሺ ଴ܶሻ, ݇ఓሺ ଵܶሻ, ݇఑ሺ ଵܶሻ, … , ݇ఓ൫ ொܶ൯, ݇఑ሺ ொܶሻሿ (4) 

The off-line signature characterization process is summarized in the following  
algorithm: 
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4 Results 

To evaluate the performance of the feature vector proposed, we used a classification 
model in order to measure the similarity of features in the GDPS960 signature data-
base. Experiments were performed using scale, rotation, noise and thickness variation. 
For that, we used a Multilayer Perceptron Neural Network —MLP— as machine 
learning and leave-one-out cross-validation to validate the model. 

We conducted two types of experiments. The first was to measure the verification 
effectiveness of the algorithm and the second for identification. For verification, we 
defined two classes: one for genuine signatures and the other for forged signatures. 
For identification, we defined 960 classes, each class for a person, and each of them 
has only genuine signature of a person. 

4.1 Verification Results 

The efficiency histogram is shown on Fig. 3 which has high capability for discrimina-
tion between two persons. We had obtained rates up 98% and an average of 76% for 
verification. 
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demonstrates its effectiveness. For identification process, we can see in Table 2 an 
average accuracy of 85.5% as overall result.  

Finally, in this paper we presented an effective approach for offline handwritten 
signature characterization, for verification and identification processes, for which it 
has been applied the novelty complex networks approach. 

7 Future Research 

Complex networks have many properties that can be used as feature vector. This work 
allows to looking for new properties to represents signature shape. Also, we can ex-
tends the scope of research to mix complex networks approach with some online 
handwritten verification techniques in order to improve the accuracy of signature 
recognition. 
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