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Abstract. Computer assistance has the potential for increasing safety
and accuracy during retinal laser treatment using the slit-lamp. In this
context, intra-operative retinal mapping is a fundamental requirement to
overlay relevant pre-operative information for surgeons. Retinal mapping
using the slit-lamp is a challenging task, due to disturbances such as
lens distortions, occlusions and glare. Such disturbances have a negative
impact on the duration of the mapping procedure, consequently affecting
its acceptance in clinical practice. To cope with these visual tracking
interruptions, we propose a fast retina map relocalization strategy based
on template-matching, using local binary patterns, which are suitable
for the retina’s texture. We perform extensive experiments to show the
superior accuracy and computational efficiency of the proposed approach
in comparison with feature-based methods.

1 Introduction

The slit-lamp biomicroscope is the most commonly used device for laser treat-
ment of sight-threatening diseases, such as diabetic retinopathy and retinal vein
occlusions. These pathologies generate large areas of retinal ischemia, triggering
the proliferation of abnormal neovascularization, consequently leading to bleed-
ing and retinal detachment. Laser treatment can prevent blindness by destroying
ischemic areas. In this context, computer assistance can aid surgeons by over-
laying relevant information intra-operatively, such as pre-operative plans and
images (i.e. fundus or angiographic images), thus improving surgery safety and
efficiency. Toward this purpose, the creation of an accurate intra-operative retina
map is required. In the literature, similar methods for intra-operative view ex-
pansion and mapping have been proposed in the domains of minimally invasive
surgery [14], confocal endomicroscopy [2,12], vitreo-retinal surgery [11] and fun-
dus imaging [4]. In the domain of slit-lamp imaging, the pioneer work reported
in [1] has proven the feasibility of an intra-operative retina mapping system.

Intra-operative retinal mapping using the slit-lamp is a challenging task. Dis-
turbances such as occlusions, glare and patient motion often affect visual track-
ing, slowing the mapping process and limiting the size of the retina map. Thus,
techniques for recovering from tracking loss are essential for reducing the dura-
tion of the mapping procedure. In all previously cited methods, feature detection
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Fig. 1. (Left) The prototype slit-lamp device with information augmentation. (Right)
The retinal mapping method - Using direct visual tracking, a retina map is built on-
the-fly by registering adjacent templates. The retina mosaic is the result of the blending
of multiple overlapping templates, whose centers are indicated by yellow squares.

and matching is used for relocalization purposes. However, retinal images ac-
quired by the slit-lamp are very rich with texture, with less salient features than
alternative imaging modalities (e.g. the fundus camera). Consequently, feature-
based relocalization yields poor results, even when computationally expensive
bootstrapping techniques [11] are used.

Focusing on this limitation, we have developed a fast relocalization method
for intra-operative retinal mapping based on local binary patterns (LBP). In-
spired in direct visual SLAM techniques [8] and recently proposed approaches
for online site retargeting for optical biopsy [15], we perform relocalization by
matching the current retina view against the retina map using an image similar-
ity function based on the LBP. The LBP has the advantage of translating local
texture information into a very compact code with relative illumination invari-
ance, which allows us to perform template matching at much faster rates than
similarity measures such as the normalized cross correlation or mutual infor-
mation. An extensive experimental analysis reveals that the proposed template-
matching approach is significantly more accurate and computationally efficient
than feature-based approaches.

This paper is organized as follows. In the next section, we briefly describe the
framework for retinal mapping and introduce the relocalization method based
on the LBP. In Section 3, we present the extensive experiments conducted on
our dataset for evaluating the practical value of the proposed strategy. Our
conclusion and future work can be found in Section 4.

2 Methods

Our framework for visual tracking and mosaicking of the retina is inspired in
[11]. A schematic overview is given in Figure 1. During the exam, only a small
section of the retina is visible. A threshold is applied to every image acquired
by the camera coupled to the biomicroscope to extract the visible part of the
retina. As the human retina absorbs most of the blue spector of light, a pixel
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Fig. 2. The proposed template-based relocalization method. The map to camera trans-
formation Mmc is approximated as the position of the template on the retina map
which produces the highest score L(I∗, T ). The relocalization error evaluated in the
experimental section is shown in detail on the right.

is considered valid if r − 0.7g > 0, where r and g are the its red and green
intensities. To initialize the mapping method, a reference image of the retina is
selected. The center of this reference represents the origin of the map.

The retina map is composed of several overlapping templates T. They are
evenly spaced on a grid, with significant overlap between adjacent templates.
They are illustrated in Figure 1 as T0, T1, .... During the mapping procedure,
the template closest to the current view of the retina is tracked using the direct
tracking method described in [13]. Due to the large overlap area between tem-
plates, the current focus of the tracker can be easily switched to a more suitable
template, closer to the current position in the mosaic. The transformation Mmc,
which maps pixel positions on the retina map onto the current retina view, is
updated at every frame. For tracking the retina, we define Mmc as a rotation
and translation model. As the operator explores the retina, additional templates
are incorporated as the distance between the current visible part of the retina
and the map origin increases. More details on the mapping framework can be
found in [11] or in the supplementary material.

Due to frequent occlusions and degradations, tracking confidence can drop
below a minimum threshold and tracking is deemed lost. To re-initialize tracking
and continue the map expansion, we propose the fast LBP-based relocalization
method described next.

2.1 Map Relocalization Using an LBP-Based Similarity Score

The relocalization problem consists in estimating the transformation Mmc to re-
initialize tracking and continue the map expansion. Since patients are placed on
a head rest, this transformation can be reduced to a simple translation for relo-
calization purposes. The most common approach to re-initialize Mmc is through
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Fig. 3. Labeling process for the creation of an LBP image. Each input pixel is assigned
a code C(T (x)) �→ {A,B,C,D}. The code indicates the position of the brighest pixel
among the input pixel and its 3 immediate lower right neighbors. The resulting labeled
image is shown in the far right.

feature detection and matching. In [11], Mmc is estimated by SURF feature
matching, using a combination of FLANN and RANSAC. Feature-based meth-
ods work well when a sufficient number of features is available. However, stable
features can only be found in areas close to the optic nerve bundle, which makes
relocalization impossible in the retinal periphery.

Inspired by template-based SLAM relocalization techniques [8], we solve the
relocalization problem by matching the current image with the templates in the
retina map. Taking advantage of the large overlap between adjacent templates,
the transformation Mmc is approximated as the position of the template on the
retina map which produces the highest similarity score in comparison with the
current retina view. The proposed matching procedure is illustrated in Figure 2.
First, a template-sized patch I∗ centered on the visible part of the current frame
is extracted. The matching process consists in evaluating the similarity between
every pair I∗ and Ti, where i ∈ [0, N ] and N represents the number of templates
in the retina map at a given time.

Several image similarity measures can be used for template matching. Since
illumination conditions can vary significantly, robust functions such as the nor-
malized cross correlation (NCC) [8] and mutual information [6] are preferred.
However, these similarity functions are computationally expensive and their cal-
culation for a large number of templates is too slow for our purposes. To circum-
vent this issue, we have developed a fast approach for template matching using
Local Binary Patterns.

LBP is essentially a compact texture descriptor, which encodes the relative
intensity difference between neighboring pixels. Several LBP codes have been
proposed in the literature [10]. In our work, we adopt the compact four-bit code
used in [7,15]. The idea is illustrated in Figure 3. For a given image T, a code
C(T (x)) �→ {A,B,C,D} is assigned for every pixel x. Each code indicates the
position of the brightest pixel among x and its 3 immediate lower right neighbors.
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Fig. 4. Relocalization error of all four methods in a given retina video sequence. One
can clearly notice the superior performance of template-based over feature detection
and matching methods.

The LBP-based similarity L between a pair of images I and T is measured as
the number of pixels with matching labels:

L(I, T ) =
∑

x

[
C(I(x)) ∧ C(T (x))

]
(1)

where ∧ represents a label comparison, i. e., C(I(x)) ∧ C(T (x)) = 1 if I(x) has
the same label as T (x), and 0 otherwise.

Another aspect of the LBP-based similarity L is the scale of the input images.
We chose to downsample images by a factor α = 0.5 to ‘lock’ on a specific pattern
frequency. However, experiments have shown that the discriminability of L is not
affected for values of α within a reasonable range (α ∈ [0.3, 0.9]).

3 Experiments

The proposed relocalization method was tested on a large database of videos
recorded from several human patients using the device illustrated in Figure 1.
The objective of the experiments is to show the superior performance of the
template-based relocalization compared to similar feature-based relocalization
methods used in the literature. We also highlight the advantages of the proposed
LBP-based similarity score in terms of computational efficiency compared to
similarity measures such as the NCC. The resulting mosaic size was fixed at
560x620 so that it could contain the whole area explored by the surgeon in
each video. All methods were implemented using OpenCV and parallelized using
OpenMP. The system ran on an Intel i5 3.2GHz computer with 8GBytes of RAM.
All tracking parameters and system settings remained constant throughout the
experiments. Some resulting videos can be found through this link.

3.1 Comparative Tests

To show the superior accuracy of the proposed LBP-based matching method
over feature-based approaches, we perform a comparative study between several

https://www.dropbox.com/sh/d7y8u4ajgym1n1e/AADBcr-k1bko7v8m5ZdWk6cxa?lst
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Fig. 5. A ‘heat map’ shows the template for which the score L is the highest. Colors
with highest temperature (closest to violet) indicate the highest similarity scores. Notice
the high accuracy of the current view position on the mosaic (blue rectangle) estimated
using the proposed template matching approach.

template-based and feature-based strategies. For a performance comparison, we
execute the relocalization step at every frame, in parallel with retinal mapping.
This experiment is conducted on sequences where tracking is never lost, so we
can focus solely on the relocalization performance evaluation.

Since ground-truth is not available in our dataset, we use the tracked transfor-
mation Mmc as reference for measuring the relocalization error ε in every frame.
The error ε is computed as the mean of the absolute Euclidean distance between
the four corners of the estimated and true positions of the current frame on

the retina map (i.e. |ε1|+|ε2|+|ε3|+|ε4|
4 ). An illustration of the relocalization error

can be found in Figure 2. To compare the proposed template-based approach to
previously used feature-based methods, we tested SIFT [9] and SURF [3] feature
detectors and descriptors. Due to the nature of slit-lamp retinal images, more
specialized feature descriptors such as [5] did not provide sufficiently good re-
sults. Alternatively, we compared NCC and LBP-based similarity measures for
template-based relocalization using the matching framework described in Sec-
tion 2. Due to the excessive computational complexity, we left out similarity
functions such as mutual information.

The relocalization error results for a given video sequence are plotted in Figure
4. Videos are provided as supplementary material to illustrate this experiment.
A visual analysis clearly indicates the superior accuracy of template-based relo-
calization strategies. More specifically, the average and standard deviation relo-
calization error using SIFT and SURF are 8.65±22.14 pixels and 36.33±40.66,
respectively. In comparison, the relocalization error using NCC and the proposed
LBP-based matching strategy are 5.21±2.11 and 5.39±3.81 pixels, 37% smaller
than the best performance using a feature-based approach. From the plot, it is
also clear that the only period where feature-based methods have comparable
performance (from [0,25]s) is when the optical nerve is visible. This is due to
the fact that the optical nerve offers more stable features (such as blood ves-
sel crossings, etc) compared to other parts of the retina. On the other hand,
template-based methods display considerably more consistent results through-
out the entire sequence.
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Fig. 6. A comparison between the execution speed as a function of the number of
templates in the retina mosaic. The superior computational efficiency of the proposed
LBP-based matching method is noticeable when the number of templates in the retina
map increases.

3.2 Discriminability and Computational Effort

Another important aspect of relocalization is the template matching discrim-
inability. In other words, the LBP-based similarity function in Equation (1)
should yield the highest score for the template most similar to the current frame.
To illustrate this aspect of the proposed method, we plotted in Figure 5 the LBP
similarity scores during mapping for several videos in our database. The similar-
ity scores are shown in the form of a “heat map”. Next to each mosaic in Figure
5, the centers of every template on the retina map are displayed with a specific
color corresponding to the LBP similarity score. Colors with higher temperatures
indicate high similarity scores. As in the previous experiment, relocalization is
performed at every frame. A visual inspection of Figure 5 shows a gradual de-
crease in the LBP similarity as we move farther away from the correct match,
indicating that the LBP-based similarity function is sufficiently discriminative
for relocalization purposes.

Another key aspect of our proposed method is speed. Figure 6 shows a plot of
execution time in a video sequence. During the retina exploration, the number
of templates in the retina map gradually increases. The plot shows that the
NCC-based relocalization speed quickly decreases as the video progresses and
more templates are added to the mosaic. That is due to the fact that the NCC
computation is considerably more expensive than the LBP-based similarity score.
Furthermore, contrary to the NCC, each template’s LBP codes can be pre-
computed as soon as it is added to the mosaic, which allows us to greatly reduce
the similarity calculation effort at run time.

4 Conclusion

In this paper, we proposed a fast relocalization method for retinal mapping using
the slit-lamp device. The key element in the proposed method is the local bi-
nary pattern code used for matching retinal images. The LBP code is sufficiently
discriminative to provide accurate relocalization results and faster to compute
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than illumination invariant similarity measures such as the NCC. Using the pro-
posed template-based map relocalization strategy, tracking is quickly restored in
case of occlusions or degradations, allowing the creation of wide retina maps in a
straightforward manner. Experiments conducted on a large database of recorded
human patient videos have shown the superior accuracy and computational ef-
ficiency of the proposed method, compared to similar feature-based approaches
used in the literature. Our current work focuses on improving the LBP code for
increasing matching discriminability. We are also exploring unsupervised ensem-
ble classification techniques to further increase the relocalization accuracy and
computational efficiency.

References
1. Asmuth, J., et al.: Mosaicking and enhancement of slit lamp biomicroscopic fundus

images. British Journal of Ophthalmology (2001)
2. Atasoy, S., Noonan, D.P., Benhimane, S., Navab, N., Yang, G.Z.: A global ap-

proach for automatic fibroscopic video mosaicing in minimally invasive diagnosis.
In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I.
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