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Abstract. Contextual classification considers the information about a
sample’s neighborhood to improve standard pixel-based classification ap-
proaches. In this work, we evaluated four different Markovian models
for Optimum-Path Forest contextual classification considering land use
recognition in remote sensing data. Some insights about the situations
in which each of them should be applied are stated, as well as the idea
behind them is explained.
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1 Introduction

In pixel-based classification standards, we often classify samples according to
their attributes (feature vector), but no information about the relationship be-
tween them is employed to the decision-making process. Besides, researchers have
reported that such approaches frequently have salt-and-pepper and other unde-
sirable artifacts associated to the classification results [2,16]. The main short-
coming is that we normally assume the samples are identically and independent
distributed, such that their labels are not influenced by the neighborhood.

Several studies have proposed to employ contextual classification in order to
reduce such effects, as well as to improve the classification results. The easiest
way to perform contextual classification is to apply a mode filter over the label
map generated by a pixel-based classifier as a post-processing step, for instance.
A more robust manner to integrate contextual information is to use stochastic
models based on the Markov Random Fields (MRF) theory, being a suitable rep-
resentation of the prior knowledge by means of probability distributions. One of
the most used Markov formulations is the well-known Potts Model [4], which can
be defined by local conditional density functions computed over a finite neigh-
borhood. In addition, several extensions of it have been proposed considering
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a continuous distribution of the neighbouring pixels, such as the so-called Gen-
eralized Isotropic Multi-Level Logistic (GIMLL) [6], which incorporates pixel
similarity in a softer way than Isotropic Multi-Level Logistic (IMLL) [8].

Later on, Nakamura et al. [9] proposed a contextual version of the Optimum-
Path Forest [12,11] (OPF) classifier in order to improve näıve OPF results over
grey matter and white matter classification in magnetic resonance images of
the human brain. In that work, the authors have added contextual information
extending the feature vector of each sample with a local energy function com-
puted by Potts model to design the OPF-MRF. In the same direction, Osaku et
al. [10] proposed an evolutionary-based framework to optimize a parameter that
controls the amount of contextual information used by Potts model during the
OPF-MRF classification process.

The OPF classifier has been widely used for several applications, and it has
obtained very promising results, being comparable to the ones achieved by SVM,
but much faster for training. Since OPF is a recently developed technique, there
are just few works that address its formulation in contextual-based classification
scenarios. As such, this paper proposes to extend the works of Nakamura et
al. [9] and Osaku et al. [10] by providing a comparison between different MRF
models for contextual classification, such as the Potts model, GIMLL with L1
(GIMLL-L1) and L2 (GIMLL-L2) norms, as well as the GMRFmodel. Therefore,
we aim to provide a better understanding regarding MRF models applied for
classification purposes, being the results validated over remote sensing image
classification. The remainder of this paper is organized as follows: Section 2
presents a brief review about MRF models and the OPF-MRF formulation.
Section 3 states the methodology employed in this work, and Section 4 presents
the experiments. Finally, Section 5 discusses the conclusions and future works.

2 Theoretical Background

2.1 Markov Random Fields

Markov Random Fields are probabilistic models that can be used to integrate
both spatial and contextual information in image classification problems. Such
models are based on the idea that a pixel has a high probability to belong to
the same class of its neighbors.

Let Ω be a bidimensional lattice that defines a set of image’s pixels, M be a
Markov random field, and lij be the value of a possible occurrence of the random
field L, such that lij ∈ L. We can also define a neighborhood system ηij centred
at pixel (i, j) as being the set of elements in which the distance from this central
element is less than some σ > 0. This notion of neighborhood system is very
important for MRF-based approaches, since a Markov random field defined over
a lattice can be seen as a set of random variables such that the probability of
one variable, constrained to all variables that fall in its field, is the same as the
probability of the same variable restricted to a small subset of elements.
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We have that L = {lij|(i, j) ∈ Ω} is a MRF defined over Ω if L holds the
following properties for a given conditional probability p with respect to a certain
pixel, as well as for the probability P for an image classification task:

– p(li,j |{lk,z, (k, z) ∈ Ω\(i, j)}) = p(li,j |{lkz, (k, z) ∈ ηij}), ∀(i, j) ∈ Ω; and
– P (L) > 0, ∀l ∈ ξ, where ξ stands for the set of all possible realizations of L.

Therefore, this statement means all realizations of a given random field can
be observed.

In other words, L stands for the set of all possible labels for an image classifica-
tion task.

One of the most widely used Markov models is the well-known Potts Model [4],
which arose from the statistic physics to generalize the Ising model for multiple
discrete energies [14,15]. In the context of image processing and pattern recog-
nition, such model has been widely employed as a prior knowledge to hold the
smoothness assumption, since the pixels that fall in the same neighborhood are
likely to have the same label.

Given a neighborhood system ηij , we can define the local conditional proba-
bility of Potts Model as follows:

p(lij = m|ηij , β) = exp{β Uij(m)}
K∑

k=1

exp{β Uij(k)}
, (1)

in which Uij(k) stands for the number of pixels in ηij that are from label k,
K denotes the number of labels, β is a parameter that models the spatial de-
pendence among neighbouring pixels, and m ∈ M means the observed label at
central pixel (i, j). It is important to shed light over that high values of β lead
to a high spatial dependence among pixels, and β = 0 means we have no spatial
dependence, i.e., we have a traditional classification.

The Generalized Isotropic Multi-Level Logistic is an extension of the Potts
model, being defined over a continuous distribution of a given pixel’s neighbor-
hood. The idea is just to modify Uij from Equation 1 as follows:

Uij(m) =
∑

t∈ηij

[1− 2e−(m−t)2 ]. (2)

The reader can observe that the contribution of this energy function is given by
the L2 norm. Thus, it is common to call this model as GIMLL-L2. We can still
refer to another GIMLL version, which employs now a L1 norm, which is called
GIMLL-L1:

Uij(m) =
∑

t∈ηij

[1− 2e(−|m−t|)]. (3)

Finally, another model that has been widely used is the Gaussian MRF, whose
local conditional probabilities are given by [6]:
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p(lij = m|xij , ηij , β, μ, σ
2) =

1√
2πσ2

e

− 1
2σ2

⎡
⎢⎣xij−μ−

∑

t∈ηij

β(t− μ)

⎤
⎥⎦

2

, (4)

in which μ and σ2 stand for the mean and variance estimated from the image
label map, respectively, and xij stands for the sample at (i, j) position in the
image.

2.2 Optimum-Path Forest-Based Pattern Classification

The OPF classifier models the problem of pattern recognition as a graph parti-
tion task into optimum-path trees (OPTs), which represent clusters in an unsu-
pervised fashion, as well as classes in a supervised version. The partition process
is ruled through a competition process between some key samples (prototypes),
which are previously chosen [12,11]. According to a path-cost function defined
by user, such prototypes compete among themselves in order to conquer the
remaining samples, and thus generating the OPTs. This procedure is addressed
in the training step, being the test phase in charge of adding each test sample
to the generated optimum-path forest (collection of OPTS), and thus verifying
the training sample that has conquered it using the same above idea. The label
of the winning training sample is then assigned to that test node.

The works of Nakamura et al. [9] and Osaku et al. [10] proposed the OPF-
MRF, which exploits the contextual information by means of a lattice-based
neighborhood model. The proposed contextual-based OPF learning algorithm
can be divided in three phases: (i) a pixel-wise classification is performed by
traditional OPF to generate the initial label map (classified image), (ii) further,
the local probability given by Markov model (Equation 1) is maximized over
the previous label map using the well-known Iterated Conditional Modes (ICM)
algorithm [1], and thus generating a new label map, which is finally (iii) classified
using standard OPF again in order to generate an updated label map. The
process is iterated from step (ii) to (iii) until a convergence criterion is reached.
Basically, the idea of OPF-MRF is to iteratively maximize a local probability
density function followed by the minimization of the path-cost function for all
dataset samples.

3 Methodology

In this section, we described the methodology used to assess the OPF-MRF
effectiveness using four different Markov models over the task of land use image
classification in remote sensing data. We employed one image obtained from
CBERS-2B satellite covering the area of Itatinga, SP-Brazil, and another image
obtained from Ikonos-2 MS covering the area of Duque de Caxias, RJ-Brazil.
Figure 1 displays these images, as well as their respective ground truth versions.
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(a) (b) (c) (d)

Fig. 1. Satellite images used in the experiments: covering the area of Itatinga, SP -
Brazil by (a) CBERS-2B CCD (20m) sensor (R2G3B4) and (b) Ikonos-2 MS sensor
(R4G3B2). The CBERS-2B and Ikonos-2 MS images have 526 × 492 and 258 × 250
pixels, respectively. Notice that Ikonos-2 MS image were obtained through a fusion
process between the corresponding images from MS (4m) and PAN (1m) sensors using
the pan-sharpening method. The final image has a spatial resolution of 1m. Labeled
images used in the experiments: (c) and (d) refer to the images displayed in (a) and
(b), respectively.

The experiments have been conducted as follows: for each satellite image, we
have employed 5% of the samples (pixels) to compose the training set, and the
remaining 95% samples to compose the test set1. In addition, we estimated the
β parameter (Equation 1) using an exhaustive search (BF - Brute Force) within
the range [0, βmax] with steps of 0.1, in which βmax = ln(1 +

√
K) [15] (critical

value). This approach has been employed to simulate an “optimal” reference
(baseline) for the recognition rate using different β values. Thus, the β value that
maximized the recognition rate over the test set has been used. This strategy
was applied for Potts, GIMLL-L1, GIMLL-L2 and GMRF Markov models. As
we have used 10 iterations for OPF-MRF, we computed the mean accuracy for
each of them over a cross-validation procedure with 5 runnings using the β value
found by BF.

4 Experiments

In this section, we discussed the experimental results using the methodology
described in Section 3. In order to evaluate the behaviour of OPF-MRF under
different Markov models, we compared four models in the context of land use
image classification using two satellites with very different spatial resolutions.
Figure 2 displays the classified images using OPF and OPF-MRF classifiers.

Clearly, it is possible to observe that OPF-MRF has been more accurate
than näıve OPF for both images, since the latter results present salt-and-pepper
effects in some regions of the images (bottom left and middle regions in CBERS-
2B image, and up left and bottom left in Ikonos-2 image). Such regions have

1 Notice that such values have been empirically set. In regard to OPF implementation,
we have used the LibOPF [13] package.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 2. CBERS-2B classified image considering traditional OPF in (a), and OPF-MRF
with GIMLL-L1 (b), GIMLL-L2 (c), GMRF (d) and Potts (e) models. Ikonos-2 clas-
sified image considering traditional OPF in (f), and OPF-MRF with GIMLL-L1 (g),
GIMLL-L2 (h), GMRF (i) and Potts (j) models.

been smoothed by all Markov models considering OPF-MRF, since contextual
information has been used. However, it seems difficult to realize whether there are
differences between the four Markov Models. In order to answer that question,
Figure 3 displays the mean accuracy curve over the iterations for OPF-MRF.
As aforementioned, we used the best results obtained from the β values that
maximized the OPF-MRF recognition rate for Potts, GIMLL-L1, GIMLL-L2
and GMRF models. Notice the accuracy stated in iteration #0 stands for the
original OPF classification, i.e., the one that does not consider the contextual
information.

From Figure 3, it is possible to observe three important information: (i) OPF-
MRF using all models clearly improved OPF for both images (the recognition
rates at iteration #1 are better than the recognition rates at iteration #0),
(ii) OPF-MRF has converged over the iterations for all models, and (iii) Potts
model has outperformed GIMLL-L1, GIMLL-L2 and GMRF models for both
images. The first two statements have been also observed by Nakamura et al. [9]
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(a) (b)

Fig. 3. Mean accuracy curves obtained over the iterations through cross-validation for
(a) CBERS-2B and (b) Ikonos-2 MS images

and Osaku et al. [10], being the main contribution of this paper to evaluate
whether there is a significant improvement regarding other Markovian models
for contextual-based OPF classification.

One reason behind the best results obtained by Potts model concerns with
the fact that it has been proposed to model situations when the particles of a
given random field assume discrete values. In the OPF-MRF formulation, each
element (sample) assumes a discrete state represented by its label (a natural
number within [1, 2, . . . ,K]), thus been favoured by this model. The remaining
models, i.e., GIMLL-L1, GMLL-L2 and GMRF, are more adequate to handle
situations in which the variables assume continuous values.

5 Conclusions

In this paper, we have addressed the influence of different Markovian models for
contextual-based classification by means of Optimum-Path Forest in the task
of automatic land use image classification in two satellite images. We have ob-
served that Potts model works better for both images, since it has been designed
to handle situations in which the variables assume only discrete values, instead
of GIMLL-L1, GIMLL-L2 and GMRF models, that assume a continuous dis-
tributions of the variables. For future works, we intend to employ automatic
approaches to find out β values for GIMLL-L1 and GIMLL-L2 approaches.
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