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Abstract. In this work, we study the influence of locally stationary segments as
preprocess stage to separate stationary and non-stationary segments. To this, we
compare three different segmentation approaches, namely i)cumulative variance
based segmentation, ii)PCA based segmentation, and iii)HMM based segmenta-
tion. Results are measured as the true and false detection probabilities, and also as
the ratio between the real and estimated number of segments. Finally, to achieve
the separation, we use the Analytic Stationary Subspace Analysis (ASSA) and re-
sults are measured as the correlation between the true and the estimated stationary
sources. In this case, we also compare against the best possible ASSA solution.
Results show that inclusion of locally stationary segments could enhance or at
least achieve optimal estimation of stationary sources.

1 Introduction

Stationary separation methods from linearly mixed signals are usually required in mul-
tiple pattern recognition and digital signal analysis applications like biomedical signal
processing, Neurocomputing, and mechanical vibration monitoring systems. Indeed,
non–stationary nature of signals certainly affects the extraction of informative compo-
nents [10]. Therefore, the filtering task commonly assumes a separation model holding
some stochastic constraints, so that the more stationary as possible component is ex-
tracted. For example, Authors in [2] develop a fast constrained least squares (LS) algo-
rithm that minimizes the Kullback-Leibler divergence to search for stochastic changes.
Nevertheless, the LS includes a smoothness condition that expels detection of fast and
abrupt local non–stationary changes. Another important aspect of the separation filter-
ing task is the computational burden. To illustrate, stationary source separation from
single channel data can be carried out combining empirical mode decomposition and
independent component analysis methods [7]. But, intrinsic mode functions demand
high computational cost becoming exacerbated with large signals.

Mainly, the use of subspace methods during the separation task allows emphasiz-
ing those stationary structures hidden in the underlying random processes. Thus, the
analytic stationary subspace analysis is discussed in [1,6] that divides the input non–
stationary data into a fixed number of data segments to compute the windowed mean
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and covariance matrixes. Although the subspace analysis helps revealing the signal tem-
poral evolution, it assumes local stationarity, but evenly distributed along time; this as-
sumption is mostly not realistic.

Here, we propose to improve techniques of multivariate stochastic segmentation by
detecting in advance local stationary time series segments. Testing for locally station-
ary is carried out using estimators of mean and covariance. Validation of the proposed
approach is accomplished on synthetic data holding time series that are generated as lin-
ear superposition of stationary and non–stationary sources. Results show that dynamic
segmentation serves as an input basis for multivariate decomposition achieving similar
results to those obtained with a large number of equally sized segments

2 Methods

2.1 Multivariate Signal Separation Filtering Task

Let matrix Xs∈RNc×Nt denote a multichannel stationary time-series, measured by Nc

sensors at Nt time samples. We assume input data to be corrupted by an observed non-
stationary multichannel signal Xn∈RNc×Nt , so that the measured observation of linearly
mixing signals is given by X=Xs+Xn. The problem of separability is, by definition, to
determine conditions on Xs and Xn such that an estimate of the desired signal ̂Xs can
be obtained, from filtered X, to a given level of accuracy. Consequently, observed time-
series X can be model as a linear superposition of stationary sources Ss∈RNs×Nt and
non-stationary sources Sn∈RNn×Nt , where Ns and Nn respectively denote the number of
stationary and non-stationary sources as follows [1]:

X = AS = [As An]

[
Ss

Sn

]
(1)

The problem of separability is, by definition, to determine conditions on Xs and Xn

such that an estimate of the desired signal ̂Xs can be obtained, from filtered X, to
a given degree of accuracy. Consequently, observed time-series X can be modeled
as a linear superposition of stationary sources Ss∈RNs×Nt and non-stationary sources
Sn∈RNn×Nt , where Ns and Nn respectively denote the number of stationary and non-
stationary sources as follows A−1=B=[Bs�Bn�]�, where Ss=BsX, and Sn=Bn X.

Thus, by splitting the Nt time samples into p segments, that is, splitting the time–
series X into the set {Πi :∀i∈p} epochs, each one with mean μi∈RNc×1 and covariance
matrix Σi∈RNc×Nc , we consider the time series to be stationary in the weak sense iff the
corresponding values of epoch mean and covariance equal to the average: ui=ū , and
Σi=Σ̄, where ū=E {ui :∀p} and Σ̄=E {Σi :∀p} are the average epoch mean and covari-
ance matrix, respectively. Notation E {·} stands for the expectation operator.

The above explained task can be expressed as the following optimization problem:

min
Bs

tr
(
BsSBs�); s.t. BsΣ̄Bs� = INc , (2)

where INc is an identity matrix. Reformulation of the optimization problem in terms of
the Kullback-Leibler divergence provides the following estimation of Ξ [3]:

Ξ = E

{
uiui

� + 2ΣiΣ
−1Σi

}
− ūū� − 2Σ̄,
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Here, the optimization task in Eq. (2) is represented by the generalized eigenvalue
problem: ΞΦ=λΣ̄Φ, where solution is given by a set of λ j∈R,φ j∈RNc×1 :∀ j∈Nc gener-
alized eigenvalues and Σ̄-orthonormal eigenvectors, where the stationary projection Bs

is given by the Ns eigenvectors with smallest eigenvalues, Bs=[φ1, . . . ,φNs ]
�, and the

non-stationary projection is the remaining eigenvectors.

2.2 Stochastic Multichannel Segmentation

Provided a time series data X, the p-segmentation procedure consists of searching
a partition set having p non-overlapping segments with similar stochastic dynamics,
{Πi :∀∈p} where each i-th segment Πi ⊆ X[ai, bi] goes from the sample ai to bi, being
a1=1 and bp=Nt. Consequently, the p−th segment is selected when an introduced sim-
ilarity measure overcomes a given threshold, ζ∈R+. That is, stochastic segmentation
implies detection of state changes produce by abrupt changes in the observed multi-
channel recordings. To this end, we consider the following known similarity measures:

i) Cumulative variance-based similarity: This is variance-based proximity measure
between sliding overlapping segments and the mean ensemble, defined as [4]:

E

{
‖πk − μi‖2 : ∀k∈τi

} ⎧⎪⎪⎨⎪⎪⎩
< ζ, there is no change,

≥ ζ, there is change,

where the support τi=[ai, bi] and μi=E {πk : ∀k ∈ τi} , πk∈RNc×1 is the k−th column
of Πi, and notation ‖ · ‖ stands for the Euclidean distance.

ii) PCA-based similarity: This measure computes the homogeneity between the seg-
ment covariance matrix Vk∈RNc×Nc and the mean covariance V=E {Vk :∀k∈τi} . As
in [5], we make use of the PCA eigenvectors as E

{
tr
(
Û�ÛkÛ�k Û

)}
/q, where Û

and Ûk∈RNc×q are the truncated eigenvector matrices of V and Vk, respectively.
The segmentation procedure using both, cumulative variance and PCA based sim-
ilarity measures is depicted in Algorithm 1:

Algorithm 1. Sliding Window Cost-based Segmentation

For input time series X ∈ R
Nc×Nt , initialize cost based model f (Πi) with N0 time samples,

initial segment a1 = 1, b1 = N0, i = 1 and set cost threshold value ζ ∈ R+
while bi < Nt do

Add k new time samples to the i−th segment and compute the required function parameters,
i.e. mean vector for cumulative variance-based similarity and/or updated covariance matrix
for PCA-based approach.
if f (Πi) < ζ then

bi = bi + k
else

Increment segment counter i = i + 1, update segment boundaries ai = bi−1 + 1 and
bi = bi−1 + N0.

end if
end while
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iii) Hidden Markov Models (HMM) based segmentation: Another measure that uses
the posterior probability of a time sample vector πk belonging to a given state [11].
Thus, assuming an HMM of length Nt, a state space dimension w∈N and the set
of hidden state variables

{
z1, . . . , zNt

}
, the full true posterior of the model gives as a

result the transition probability matrix Ω=P (zk |zk−1) , with Ω∈Rw×w. Each matrix
element

{
ωi, j∈Ω :∀ j, i=1, . . . ,w

}
describes the probability of transition from the

i−th to the j−th state within the time interval k − 1 and k, respectively.
So, to detect abrupt changes in the observed recordings, the most probable a-
posterior state at each sample time k is chosen using Viterbi decoding algorithm [9]:

uk = arg max
∀i∈w
{P (zk=i|X)} (3)

Therefore, a detected change in the state time course vector, u={uk :k=1, . . . ,Nt},
provides the single i−th data segmentΠi.

3 Experimental Set-Up

Dataset Description and Performance Measure: According to the model in Eq. (1),
all observed time series are generated as linear superposition of simulated stationary and
non–stationary sources, using the Stationary Subspace Analysis toolbox [8], publicly
available. Stationary sources are generated from the normal distribution Xs ∼ N (0, I),
where I∈RNs×Ns is an identity matrix. Non–stationary sources are generated and corre-
lated with the stationary sources in each segment as: Xn

i =ci Xs
i +Yn

i , where Yn
i is created

from a normal distribution Yn
i ∼ N (μi,Σi). Additionally μi∈RNn×1 and Σi∈RNn×Nn are

the randomly selected mean vectors and covariance matrices at each epoch, and ci∈R is
the canonical correlation among stationary and non–stationary sources. All necessary
parameters for data generation are randomly selected. Experiments are carried out over
500 multivariate time series and signal length is selected within the interval [750, 2500]
samples. The number of epochs ranges from 10 to 20 and the number of stationary and
non–stationary sources range from 5 to 12 sources. The additional parameters, as mini-
mum and maximum canonical correlation, source scaling, and others are selected from
a normal distribution with zero mean and unitary standard deviation. Fig. 1 shows an
example of randomly generated sources with 46 segments.

(a) Stationary Source. (b) Non–Stationary Source.

Fig. 1. Examples of one generated stationary and non-stationary real-valued time series
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(b) 16 to 20 epochs signals

Fig. 2. Boxplots of average canonical angle estimated ranging the number of epochs for all the
proposed approaches

To evaluate the performance of ASSA under the proposed segmentation algorithms,
we carry out the smallest canonical angle between the true non–stationary mixing sub-
space An and the estimated stationary projection subspace Bs, that is, 90 − θ(B̂s�, An).
The smallest canonical angle becomes zero for the perfect demixing case, so that the
stationary projection is orthogonal to the non–stationary subspace. Also, in order to
establish the influence on ASSA performance because of the dynamical segmentation,
we carry out multivariate decomposition by fixing the optimal number of stationary
and non-stationary sources. For testing, we compare against 50 equally sized epochs,
where the segmentation parameters are tuned as follows: in the first case, the threshold
is fixed (variance-based similarity) as the average variance of the multichannel data,
ζσ=E

{
σ2

i ;∀i=1, . . . ,Nc

}
, whereσ2

i is the variance of the i−th channel along the time. In
the second case (PCA based similarity), the threshold is empirically fixed as ζU=0.005,
while the number of principal components is set to q=4. In the last case (HMM-based
segmentation), the embedding dimension space state is set to w=10 since this value is
the minimum number of epochs to be found over the dataset. During calculation of the
achieved performance, we consider separately signals comprising 10 to 15 epochs and
16 to 20 epochs, as explained before. As seen in Fig. 2(a) and Fig. 2(b) showing the ob-
tained average canonical angle obtained, PCA and HMM-based segmentation methods
achieve comparable values of canonical angle to the ones reached by the best ASSA
solution that demands on a large amount of equally sized epochs. In fact, the angle dif-
ference does not exceed, on average, 3 - 5 degrees for either segmentation approach. In
contrast, the cumulative variance based segmentation achieves in average low angles,
but when signals get higher number of epochs. Yet, the performance of this approach
also shows high variance. Fig. 3(a) shows an example of the first channel of a time se-
ries, while Fig. 3(b) and Fig. 3(c) show the estimated similarity values of the cumulative
variance and PCA based methods. In case of the HMM based segmentation, Fig. 3(d)
shows the state in each time-sample. It can be seen that PCA based segmentation is able
to find more proper segments accordingly to the time-series. In addition, all segmenta-
tion approaches are evaluated in terms of true and false detection probabilities (pd and
p f , respectively), as well as the ratio between the number of the obtained epochs to the
number of epochs as follows:
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(a) Time–series example. (b) Sum of variances achieved cost function.

(c) PCA similarity based cost function.
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(d) States transition of data samples.

Fig. 3. Segmentation results on simulated time series example, red lines indicate the threshold
value

Table 1. Estimated performance of considered segmentation methods

pd

p Var PCA HMM
10 to 15 0.79 ± 0.36 0.48 ± 0.15 0.82 ± 0.19
16 to 20 0.84 ± 0.33 0.41 ± 0.14 0.86 ± 0.17

pf
10 to 15 0.64 ± 0.11 0.67 ± 0.067 0.57 ± 0.051
16 to 20 0.63 ± 0.11 0.71 ± 0.068 0.56 ± 0.038

re
10 to 15 18 ± 10 1 ± 0.19 2.6 ± 1.4
16 to 20 19 ± 10 0.92 ± 0.16 3 ± 1.4

pd = ND/(ND + NM), p f = NF/(ND + NF ), re = Ne/(N̂e)

where ND are the true starting samples, NF the number of false starting samples (incor-
rectly labeled time-simple as the starting sample), NM is the number of missing starting
samples, and N̂e is estimate of the number of true segments, Ne.

Table 1 shows the average performance obtained by the three considered segmen-
tation methods. Accordingly, the HMM-based segmentation gets the highest true de-
tection probability and lowest false detection probability. As regards the cumulative
variance approach, it achieves high segmentation performance, but, at the expense of
a high number of segments obtained (high ratio), which is computationally expensive;
Thus, the larger the amount of epochs – the higher the number of covariance matrices.

4 Discussion and Conclusion Remarks

In the current paper, we improve the quality of multivariate algorithms for stationary
and non-stationary source separation by introducing a segmentation stage detecting in-
tervals holding local stationarity. Experiments are carried out over simulated numer-
ical random signals with multiple number of segments, stationary and non–stationary
sources as well as random parameterizations of the data generator. As a concrete method
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of multivariate projection, we use the analytic stationary subspace analysis assuming
the weak–sense stationary conditions upon a given multichannel time series. However,
such kind of projections require equally-sized data segments for estimating model pa-
rameters, which in real time-series is an unpractical assumption. Instead, we propose
an alternative methodology that provides an optimal number of non equally-sized seg-
ments.

We compare three local stationarity segmentation approaches as preprocess to the
multivariate projection, and also we compare against a high number of equally sized
segments, which in theory, may achieve the best possible results for the used separation
procedure. The segmentation approaches are: i)segmentation based on cumulative vari-
ance over sliding windows, ii)PCA based segmentation, and iii)HMM based segmenta-
tion. The first case assumes changes in the temporal evolution of the variance computed
in short segments of the signal. However, this approach is highly sensitive to small
changes in the signal dynamics, yielding a high number of segments, reflected in the ra-
tio (see Table 1). To overcome this problem, the second approach includes a better esti-
mation of the signal variance, by computing recursively, over short segments, the eigen-
values and eigenvectors of the input data. Such introduced variance estimation improves
segmentation results, which are reflected in lower average canonical angles and a lower
ratio. Nevertheless, results are highly dependant on the threshold, that is empirically set.
For the HMM based segmentation, only the state embedding dimension is required prior
to the segmentation, which has an inverse relation with the computational burden of the
approach. We set that dimension as 10 based on prior data knowledge. Results show
better performance than the other approaches, according to the canonical angle (last
columns of Figures 2(a) and 2(b)), and it also achieves the highest values of pd and low-
est values of p f (Table 1). The main issue of this approach is the computational burden,
that, even it is out of the scope of the paper, may pose a high restriction to implement in
real time
environments. In this work, we compare several approaches for locally stationarity seg-
mentation. This segmentation is used as a preprocess stage to separate stationary and
non-stationary sources. Results show that dynamic multivariate segmentation is able to
enhance or at least achieve optimal decomposition. Additionally, the internal temporal
dynamic evolution is taken into consideration altogether with the weak-sense stationary
definitions. Thus, by setting more proper parameters an optimal dynamic segmentation
can be found and directly influence ASSA estimations. As future work, we propose
to research dynamic thresholding using the non-stationary degree of the data such that
higher non-stationary segments are to be penalized stronger than low non-stationary
segments. Additionally, we will aim to test the proposed dynamic segmentation with
ASSA separation in real data such as electroencephalographic signals where stimuli-
based segments are to be found.
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