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Abstract. The image processing nowadays is a field in development, many im-
age filtering algorithms are tested every day; however, the main hurdles to 
overcome are the difficulty of implementation or the time response in a general 
purpose processors. When the amount of data is too big, a specific hardware ac-
celerator is required because a software implementation or a generic processor 
is not fast enough to respond in real time. In this paper optimal hardware im-
plementation is proposed for extracting edges and noise reduction of an image 
in real time. Furthermore, the hardware configuration is flexible with the ability 
to select between power and area optimization or speed and performance. The 
results of algorithms implementation are reported. 
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1 Introduction 

One of the main study fields of signal processing is image processing. With the cur-
rent technology available to capture digital images, it is easy to get a good image 
quality, nevertheless the problem now is obtaining useful information about the image 
contents as a detection of objects, persons, is to get relevant information in the  
images. 

There are many techniques to filter images and to extract information. However, 
the algorithms are commonly implemented in software, but the hardware is not opti-
mized to get the best performance while the process is being executed, resulting in 
high power consumption per image processed. Much time is required in order to ob-
tain the transformation per image, and when the frames are back to back, many sys-
tems are not capable of giving the required throughput for real time processing. 

This paper proposes hardware architecture with specific acceleration in order to 
obtain filtered images in real time, with minimal power consumption, allowing data 
streaming with the ability to process one image after another. 
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2 The Convolution Filter 

The convolution is one of the most common operations used in image processing, but 
also one the most demanding computations, when an image is processed. The convo-
lution is an image transformation, in which it is necessary to calculate each of the 
pixels in the array in order to form a new image based on the source pixel and its 
neighborhood. When the kernel size increases, the complexity increases as well. 

When the convolution filter is applied, a new smooth, fuzzy or blurry image is ob-
tained, it is possible to obtain edge detection. The convolution filter is also called 
convolution kernel because there exists a singular matrix to obtain different image 
transformation [1, 2]. 
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Where K represents a kernel matrix. 
















=

+++−+

+−

+−−−−

1,1,11,1

1,,1,

1,1,11,1

nmnmnm

nmnmnm

nmnmnm

ppp

ppp

ppp

P  

Where pixel P{m,n} and its 8-neighbors are represented in matrix P. 
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In order to obtain the pixel array of the target image, equation (1) must be calcu-
lated for each source pixel [3]. 

Since image filtering is realized by means of a linear function that performs the 
convolution function C[m,n]. A given transformation is applied with a fixed kernel 
K[d,d] of d size to each pixel P[m,n] of a given image I[x,y], with a pixel array of x 
rows and y columns. The C transformation of equation (3) must be done for each 
pixel that belongs to each image to be filtered. This case allows the design of a fixed 
kernel architecture and a mechanism to handle consecutive images as an infinite data 
stream. 
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3 Architecture of the Hardware Accelerator 

The architecture is composed of a data feeder, a data collector, the buffer storage, the 
control unit, and the image convolution machine [4]. Before the operation starts, the 
configuration parameters are written into the control unit registers, enabling the con-
trol unit to wait for the start signal. After a start signal is received, each clock period, 
while exist valid data in the input port, many image rows are stored in each buffer as 
the size of the kernel matrix. When all buffers are full, the control unit proceeds to fill 
the calculation matrix and the first partial results are obtained. After the Kernel size 
clock cycles for each consecutive clock cycle, one resulting pixel is delivered by the 
accumulator pipeline as an output pixel. The full picture of the hardware architecture 
is shown in Fig. 1. Each part is explained in detail below. 

 

Fig. 1. Architecture of the hardware accelerator 

3.1 Data Buffer 

The data streaming comes from the source image, each row from top to bottom and 
each pixel from left to right in each line. In order to calculate the target pixel the 
transformation matrix and the source pixel with its neighbors is required. The amount 
of concentric neighbors is directly proportional to the size of the kernel. Therefore, as 
many buffers as kernel size are required, with at least as much capacity as elements in 
row for each buffer. It is important to have a semicircular feedback line at the output 
of each buffer to hold data to feed the next buffer. 
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3.2 Image Convolution Machine 

The image convolution machine is composed of the kernel matrix [5], the computing 
matrix, and the accumulation pipeline [6]. The kernel matrix has the coefficients of 
the filter for each image [7]. The computing matrix is formed by a network of multip-
liers and accumulators as the arithmetic part of the transformation [8]. The accumula-
tion pipeline contains the registers to store the initial values, partial accumulations and 
the final result. It is important to note that the system is able to deliver an output pixel 
for each clock period and its latency is the magnitude of the kernel size. Fig 2 a) 
shows the organization of the functional units, as well as the array of multipliers and 
accumulators, and the enough registers to store partial results for next iterations. Fig 2 
b) shows the pixel matrix of an example image and one characteristic kernel. Fig 2 c) 
shows the contents of the buffer, when the first pixel is completely calculated and the 
second and third is partially accumulated for a matrix kernel of size 3. 

 

Fig. 2. Process steps for convolution filter. a) Functional units for multiplication, accumulation 
and partial results. b) Kernel and image computing representation. c) Pixel arrangement in 
buffers and matrix. 

3.3 The Control Unit 

The control unit is responsible for maintaining the correct functionality in time and 
order of each module in the accelerator. This module is composed of a finite state 
machine, counters, and comparators that help to drive the control lines of the entire 
system. The finite state machine is composed of 5 states: the state "IDLE" is the idle 
state and is the default state when the system comes out of reset, and when a new 
image is loaded into the input port. The state "BUFFER" is responsible for the proper 
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functionality of the buffers during the process of data streaming storage. The "WAIT" 
state is reached in case the data streaming is interrupted, paused or the data feeder 
system indicates that data are invalid. The functionality of the image convolution 
machine is performed while the system is in "STREAM" state. When an image is 
fully processed, the "STOP" state is reached and the system is cleaned to be ready for 
process the following image. Fig 3 shows the state diagram of the Finite State Ma-
chine (FSM). 

 

Fig. 3. Finite State Machine (FSM) 

4 Implementation 

The logic utilization of the FPGA Altera Stratix V with part number 
5SGSMD5K2F40C2 is shown in Table 1. 

Table 1. FPGA logic utilization 

FPGA Components % Utilization Component Utilization 
Logic utilization ALMs 1 % 1981 / 172,600 
Total registers 1 %  2712 / 172,600 
Pins 24 % 206 / 864 
Block memory bits 9 % 3,670,016 / 41,246,720 
DSP block 18-bit elements 1 % 6 / 1590 

 
For each image size, the processing time is linear. 
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The processing time for any image is calculated by the equation (2) where K is 
Kernel size, R is the image rows, L is the length and F is the operation frequency. The 
operation frequency range is 303.4 MHz for 85° C and 318.37 MHz for 0° C. 
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5 Results 

The image convolution with different kernels matrix were tested and the original im-
ages are shown in Table 2. Each original image has 1024x720 pixels and the time to 
process each image is the same: 2.44 ms [9].  

Table 2. Original Images 
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In order to implement an edge detection kernel, it is necessary that the sum of all 
matrix elements results is zero, with at least two elements different from zero. Table 3 
shows different levels of detection. 

Table 3. Edge detection effect 
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Table 4 shows an image with sharpened enhancement, and low and high blur ef-
fect. Almost all random kernel matrixes produce some level of sharp or blur image 
transformation [10]. 

Table 4. Sharpen and blur effects 
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6 Conclusions 

In the output images it is easier to see the relevant information and the hardware cost 
is the same as for each of the different transformations.  

The power consumption, utilized area, and the time spent on the process of filter-
ing in the hardware accelerator is less expensive than software processing, allowing 
image filtering in real time. 

This work includes the design, implementation, and verification of the hardware 
accelerator. All code is parameterized, enabling the data bus reconfiguration and the 
kernel size in a short period of time. 

In the implementation, the slowest and most expensive hardware module was the 
division, but the solution is to include a 2-step pipeline in order to achieve improved 
performance and higher operation clock frequency. 

Another characteristic is that it is possible to route the accelerator several times in 
the same FPGA with the same or a different kernel array, taking advantage of the 
parallel structure, performing the same process on different images, different 
processes to the same image, or both. The only restriction is the maximum memory 
available in the device. 
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