
Chapter 12
Approaches of Self-optimising Systems
in Manufacturing

Fritz Klocke, Dirk Abel, Christian Hopmann, Thomas Auerbach,
Gunnar Keitzel, Matthias Reiter, Axel Reßmann, Sebastian Stemmler
and Drazen Veselovac

Abstract Within the Cluster of Excellence “Integrative Production Technology for
High-Wage Countries” one major focus is the research and development of self-
optimising systems for manufacturing processes. Self-optimising systems with their
ability to analyse data, to model processes and to take decisions offer an approach to
master processes without explicit control functions. After a brief introduction, two
approaches of self-optimising strategies are presented. The first example demon-
strates the autonomous generation of technology models for a milling operation.
Process knowledge is a key factor in manufacturing and is also an integral part of
the self-optimisation approach. In this context, process knowledge in a machine
readable format is required in order to provide the self-optimising manufacturing
systems a basis for decision making and optimisation strategies. The second
example shows a model based self-optimised injection moulding manufacturing
system. To compensate process fluctuations and guarantee a constant part quality
the manufactured products, the self-optimising approach uses a model, which
describes the pvT-behaviour and controls the injection process by a determination
of the process optimised trajectory of temperature and pressure in the mould.

F. Klocke � T. Auerbach (&) � G. Keitzel � D. Veselovac
Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen
University, Steinbachstr. 19, 52074 Aachen, Germany
e-mail: t.auerbach@wzl.rwth-aachen.de

D. Abel � M. Reiter � S. Stemmler
Institute for Automatic Control (IRT), RWTH Aachen, Steinbachstraße 54, Aachen, Germany
e-mail: s.stemmler@irt.rwth-aachen.de

C. Hopmann � A. Reßmann
Institute of Plastics Processing (IKV) RWTH Aachen University, Pontstr. 55, 52052 Aachen,
Germany
e-mail: zentrale@ikv.rwth-aachen.de

© The Author(s) 2015
C. Brecher (ed.), Advances in Production Technology,
Lecture Notes in Production Engineering, DOI 10.1007/978-3-319-12304-2_12

161



12.1 Self-optimising Systems in Manufacturing

The industrial production is caught between uncertainties and relative lacksof
precision (upper part of Fig. 12.1). Higher diversity of variants, smaller batch sizes,
higher quality standards and increasing material diversities are conflicting priorities
in the industrial production that have to be concerned in the future. The lower part
of Fig. 12.1 illustrates the vision of process optimisation using sensor and control
technologies to reduce variations in quality in contrast to conventional production
without optimisation strategies. Self-optimising systems are high level control
structures with abilities to analyse data, to model manufacturing processes and to
make decisions where deterministic control functions do not exist.

A general overview on self-optimisation including a precise definition is given
by Adelt et al. (2009). Approaches to integrate self-optimisation into technical
processes and systems are manifold. Klaffert (2007) presents a self-optimising
motor spindle that adjust its dynamic properties according to the respective
machining situation autonomously. Kahl (2013) transferred the self-optimisation
idea to the design process of mechatronic systems in order to improve the man-
ageability of the complete development process.

To achieve the visionary scenario of production, research activities within the
Cluster of Excellence focus on the development of self-optimising manufacturing
systems. Therefore, a generic framework has been defined in the first development
phase, compare Thombansen et al. (2012). In Fig. 12.2 the basic structure of the
model-based self-optimisation approach and its modules are shown. The approach
is structured in two parts: The “Model-based optimisation system (MO-System)”
and the “Information processing Sensor and Actuator system (ISA-System)”.
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The MO-System is the upper layer of the self-optimisation and implies the
determination of optimal operating points and the self-optimisation strategies. The
input parameters of the MO-system are the production plants external objectives; the
output parameters of the MO-system are internal objectives and optimised control
parameters for the ISA-system. The ISA-system is a real-time control loop with
intelligent data analysis, sensors and actuators. The most challenging tasks for an
implementation of the self-optimisation systems are on the one hand the identification
of appropriate model-based optimisation strategies and on the other hand the pro-
vision of required data from the process provided by the used sensors. Most of the
nowadays used sensor systems are not able to fulfil these requirements, as the data
they provide are not directly usable as an input parameter for the above described
system. Consequently, new sensor and monitoring systems have to be developed for
the acquisition of real process data. Further challenges for establishing self-optimi-
sation systems in production focuses also on social-technical aspects. It has to be
addressed, how humans are able to interact with the self-optimising systems and how
transparency at any state of the process can be ensured. In the following two chapters
implementation examples are shown. The first example demonstrates the autono-
mous generation of technology models and the generation of technology knowledge,
which is the core requirement of self-optimising systems. In the second example an
established model of the pvT-behaviour in injection moulding is used to calculate the
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optimised pvT-trajectory of the holding-pressure phase. This empowers the system to
react to environmental disturbances as temperature fluctuations and ensure constant
qualities of the moulded parts.

12.2 Autonomous Generation of Technological Models

Self-optimisation requires a resilient knowledge basis in order to realise the objective-
oriented evaluation and controlled adaptation of system behaviour. Transferred to
manufacturing processes, this knowledge basis should include an appropriate
description of the relevant cause-effect relationships as these represent the response
behaviour of themanufacturing process.According toKlocke et al. (2012), cause-effect
relationships can be modelled in four different ways: physical, physical-empirical,
empirical and heuristic. The first two assume that relations can be completely or partly
described by natural or physical laws. In case of physical-empirical models missing
information is provided by measurements or observations of the analysed manufac-
turing process. This procedure is applicable if all physical relations are unknown. In this
case, the cause-effect relationships can be modelled on the basis of empirical data. In
contrast to that, heuristic models are derived from expert knowledge.

Since process models are an important prerequisite for the self-optimisation
system, effective procedures for the identification of useable process models have to
be developed. In this context, an innovative approach has been developed for the
manufacturing process milling within the Cluster of Excellence. This development
enables a standard machine tool to determine physical-empirical or empirical
models for a given parameter space autonomously. This implemented system is
illustrated in Fig. 12.3.
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Figure 12.3 shows the connection of an external information technology system
(IT-system) to the machine tool. The IT-system fulfils two main functions. On the
one hand, it operates as superior control system in order to realize the aspired sys-
tem autonomy. On the other hand, the IT-system ensures the communication to the
operator. Based on these two main functions, the following system modules have
been designed and developed:

• An interactive human machine interface,
• a planning and organization procedure milling tests,
• an automated execution of milling tests and
• the automated modelling and evaluation of the conducted trials.

These system modules are described below.

12.2.1 Interactive Human Machine Interface

The communication to the operator is an important aspect. On the one hand, the
autonomous system requires information of the used machine tool, the work piece,
the cutting tool and the modelling task for its own configuration and documentation.
Meta information on the test conditions are directly linked to the test results in order
to enable a reuse of the obtained data and information. On the other hand, relevant
system actions and the obtained test results need to be reported to the operator.
Thus, a sufficient system transparency can be ensured, which ensures the accep-
tance of the autonomous system by the operator.

An interactive configuration wizard is developed for the first communication
part. Interactive means in this context, that the input is checked for plausibility and
the operator is alerted in case of incorrect entries. The technological limits of the
machine tool and cutting tool are compared to the value ranges of the investigated
parameters. Thus, it is not possible to define for example a cutting speed that will
exceed the maximum spindle speed. Another example for the plausibility check is
the comparison of entry data with technologically sensible limits. This supports the
documentation process by identifying possible input errors such as a helix angle
larger than 90°.

The second communication part is realised via a display window on an installed
screen at the machine tool. This display is updated continuously while the auton-
omous system is running. It shows the planned test program, current actions like
data transmission, test execution or model coefficient determination, as well as
status messages such as “monitoring is active” or “disturbances occur”. The
illustrated information assists the operator to understand the behaviour and the
decisions of the autonomous system.
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12.2.2 Planning and Organisation of Milling Tests

As a first step, the planning and organisation module is responsible for the automated
definition of test points. Test points are a suitable combination of feeds and speeds for
a given test material. For this purpose, design-of-experiments methods are integrated
into the autonomous system. Based on these methods the system determines
appropriate parameter constellations which are investigated in milling tests.

When all test points are defined, the milling tests need to be distributed over the
given work piece. This organisational step is required in order to define the starting
positions of the tool during the automated testing phase. Figure 12.4 shows the
approach to solve this distribution task.

Each milling test can be described as a rectangle with a certain width and height
corresponding to the geometrical dimensions of the cut. Similarly, the lateral area of
the work piece can be described by rectangular shapes. Based on this the so-called
bin packing algorithms can be used to distribute the rectangles over a work piece,
Dyckhoff (1990). On the upper right side of Fig. 12.4 an exemplary distribution
result is illustrated. It shows a bin packing algorithm applied to rectangles which are
pre-sorted according to their heights. Each of the rectangles and therewith the
position of each milling test is thus clearly defined.

Before the planning and organisation phase can be completed the distribution
result must be transferred to a machinable sequence of cuts which can be performed
automatically. This includes not only the milling tests but also cuts which are
needed to remove material and to clean the work piece. Cleaning cuts are necessary
in order to avoid collision and to ensure accessibility to the next test cut. The
determination of the whole cutting sequence is achieved by digitising the rectangles

Distribution of the milling tests in presorted order

ae

ap

height

width

y

z
x

Each test represented as rectangle

ap - Depth of cut
ae - Width of cut

First cut area Slot milling & material to 
enable a stable cut

Bar

Legend

Slot milling

Other tests

Boundary of the 
remaining part

Unused
material

Binary arrays for digitalisation of the results
Position of cuts Clearing up areas Remaining part

Fig. 12.4 Rectangle distribution

166 F. Klocke et al.



distribution. For that purpose, binary matrices with a defined grid size are used. The
result of this process is also presented in Fig. 12.4.

12.2.3 Automated Execution of Milling Tests

The automation sequence uses a conventional line milling strategy for the execution
of the milling trials. Because of this simple process kinematic the milling tests can
be easily standardised and adapted to different cutting conditions. Furthermore, the
starting and endpoint are clearly defined. This leads to a tool path, which can be
easily implemented in a parameterised NC program.

Based on the standardised test procedure an automation sequence has been
developed, which contains all steps such as the execution of milling operations, data
acquisition as well as data analysis and processing. After each milling test the
process relevant characteristic values are available and stored in a data base.

A further step focused on the implementation of an appropriate communication
interface between the machine tool and the external IT-system. Via the commu-
nication interface several actions are realised. These are:

• Triggering: For a controlled process it is necessary to synchronise actions
between machine tool and external IT-system. Trigger functions are used to
announce that a sub system is ready.

• Data transmission: Values for process relevant parameter such as spindle
speeds, feed velocities and tool centre point position need to be transferred from
the external IT-system to the machine control. Therefore, a 16-bit data trans-
mission has been installed.

• Error messaging: In the event of errors, the sub system needs to inform all
involved systems. This can be another subsystem or the machine tool controller
itself. For this purpose, programmable logic controller (PLC) variables of the
machine tool are used. Each error type is assigned to another PLC variable.

12.2.4 Modelling and Evaluation

After the execution of all machining trials, the autonomous system determines the
empirical model coefficients for an arbitrary number of predefined model functions.
For this purpose, a generic optimisation algorithm is integrated. Based on the
coefficient of determination R2 as target function, the generic algorithm evaluates
iteratively various constellations of model coefficients until the desired model
accuracy is achieved. According to Auerbach et al. (2011) the coefficient of
determination is a suitable error measure to compare different models with each
other. After the determination of the optimised coefficients by a genetic algorithm,
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the best model is selected by the autonomous system. This is presented to the
operator via the visualisation interface.

For the identification of possible model functions, a black-box modelling
approach with a symbolic regression has been applied. Symbolic regression allows
the approximation of a given data set with the help of mathematical expressions.
Thus, it is possible to identify surrogate functions which represent the cause-effect
relationships of the investigated machining process. The suitability of the model
function with regard to the technological correctness and its complexity has to be
evaluated by the technology expert.

12.3 Self-optimised Injection Moulding

In injection moulding the transfer characteristics of the conventional machine
control to the process variables can vary by external influences and changed
boundary conditions (Fig. 12.5). The conventional injection moulding machine
control bases on machine variables. Thus, identical courses of machine variables
lead to different process variables in different production cycles. These additional
disturbances result in a fluctuating part quality. To increase the process reproduc-
ibility the concept of self-optimising injection moulding should compensate
occurring process variations.

Fluctuating ambient temperature or varying material properties are systematic
disturbances and can affect the product quality heavily. This includes the changes in
the heat balance of the injection mould. Fluctuations in the heat balance of the mould
occur for example by a non-identical repetitive process such as after changing
machine parameters. Therefore, an autonomous parameter adaption has to com-
pensate fluctuations, i.e. in the heat balance of the mould. In contrast to the machine
variables process variables provide detailed information about the processes during
the injection and holding pressure phase. The cavity pressure path over time for
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example correlates with various quality variables such as the part weight, the part
precision, the warpage and the shrinkage, the morphology and sink marks.

Due to the presence of disturbances acting on the injection moulding process, an
exclusive control of machine variables does not guarantee an ideal reproducibility
of the process and thus constant part properties. Using the pvT-behaviour as a
model to map process variables to quality variables, the course of cavity pressure
can be adjusted to the actual path of melt temperature. Based on this context, the
concept for the self-optimising injection moulding process is derived.

The pvT-behaviour represents the material based interactions between pressure
and temperature in the mould of a plastic. It depicts the relationship between
pressure, temperature and specific volume and thus allows a description of the link
between the curves of cavity pressure, melt temperature and the resulting part
properties in injection moulding.

The aim of the self-optimising injection moulding process is to ensure a constant
quality of the moulded parts by realising an identical process course in the
pvT-diagram (Fig. 12.6). The first requirement is to always achieve an identical,
specified specific volume when reaching the 1-bar line (D) in every production
cycle. This ensures a constant shrinkage in every cycle. Based on this requirement,
the second requirement is to achieve an isochoric process course (C–D), which is
characterised by the constant realisation of the given specific volume during the
entire pressure phase. Due to the limits of machine the isobaric process control
(B–C) is preceded the isochoric process control. Before, the injection and com-
pression phase (A–B) is conventionally controlled by machine values.

At the Institute of Plastics Processing (IKV) a concept for a self-optimising
injection moulding machine is being developed. The concept of self-optimising at
injection moulding is divided in the MO-System using a model, which is based on
the material behaviour, and ISA-Systems, which includes the determination of the
melt temperature and a cavity pressure controller (Fig. 12.7).

Based on the conventional injection moulding process the cavity pressure is
measured by piezoelectric pressure sensors. The melt temperature is approximated
based on the melt temperature in the screw and the mould temperature using the
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cooling calculation or directly measured by IR-Sensors (Menges et al. 1980). After
determination of the temperature and pressure in the cavity the working point and
the optimised trajectory of the pressure can be calculated based on the material
specific pvT-behaviour. A Model Predictive Controller (MPC) realises the pressure
trajectory autonomously. Using the cavity pressure controller allows to compensate
the pressure variations in the cavity. This reduces the natural process variations.
Furthermore, the adjustment of the cavity pressure trajectory to the measured
temperature in the mould results in the compensation of temperature fluctuations.

To simulate temperature fluctuations the cooling units of the mould are turned
off in an experiment after 15 cycles. The temperature path in the mould and the
weight of the moulded part is observed using the conventional injection moulding
process and the self-optimised concept (Fig. 12.8). Compared to the conventional
processing the weight reduction can massively be reduced by using the self-opti-
mised processing concept.

To realise a pvT-optimised injection moulding process the user-friendly imple-
mentation of a cavity pressure control is fundamental. The cooperation of the Institute
of Plastics Processing (IKV) and the Institute of Automatic Control (IRT) focuses on
the autonomous adaption of the cavity pressure control on boundary conditions to
simplify the configuration of the cavity pressure controller. Therefore, a dynamic
model for a MPC is developed for the injection moulding process (Fig. 12.9).
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The model describes the correlation of the pressure in the screw (Ps) and the
cavity pressure (Pcav). Therefore, the system is modelled with two vessels and a
valve (Hopmann et al. 2013). To adapt the physical motivated model to the time
invariant measurements a time variant parameterisation of the valve is used.

The model is parameterised during an identification cycle. Therefore, a pro-
duction cycle with a constant screw pressure is realised (Fig. 12.10). Convention-
ally the screw pressure is controlled in injection moulding. In the current
configuration a simple PID-controller is used to realise the constant screw pressure.
The difference of the screw pressure to the cavity pressure is measured to detect the
mass flow between the vessels over the time. Based on the acquired data a char-
acteristic map is created.
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Beforehand, the acquired data cannot be calculated and thus an easy parame-
terisation is necessary. The advantages of identification process are varied. A con-
stant screw pressure is feasible and can be incorporated into real-life workflow. The
current concept of the self-optimisation injection moulding should be extended by
cross-cycle optimisations to counteract disturbances such as viscosity fluctuations.
The combination of online control and cross-cycle optimisation is necessary to
compensate the heat household fluctuations after changing machine parameters.
The compensation of the thermal fluctuations can be accomplished by the use of the
previous concept of self-optimising injection moulding machine.

12.4 Summary and Outlook

The examples of implementation demonstrate the step wise development towards
the vision of self-optimised manufacturing systems. The autonomous generation of
technology models highlights the machine-human interaction approach of auto-
mated modelling as the human has a leading and control function in the context of
the optimisation system. As by today automated systems are not able to capture all
boundary conditions, exceptions and environmental impacts, the machine operator
determines the limits and interacts in non-deterministic situations as a decision
maker and handles exceptional situations. The automated modelling system enables
the development of models by providing an integrated environment for experi-
mental planning by design-of-experiments, deterministic processing of experiments
and establishment of machine readable models.

The example of self-optimised injection moulding applies the already known
pvT-model for the optimisation of quality features as the specific volume of the
moulded parts. The implementation of the model towards a self-optimised pro-
duction system describes the step-wise procedure to reach optimisation by physi-
cally describing the process behaviour and subsequent empirical parameter
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identification. The result of the optimisation process is a robust process being
automatically adapted to temperature fluctuation in the environment. Based on the
described work an automated identification process should be possible and further
research is conducted on this.
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