Painless URI Dereferencing Using the DataTank

Pieter Colpaert™), Ruben Verborgh, Erik Mannens, and Rik Van de Walle

Department of Electronics and Information Systems, Multimedia Lab,
Ghent University - iMinds, Gaston Crommenlaan 8 Bus 201,
9050 Ledeberg, Ghent, Belgium
pieter@irail.be, {ruben.verborgh,erik.mannens}@ugent.be

Abstract. If we want a broad adoption of Linked Data, the barrier to
conform to the Linked Data principles need to be as low as possible. One
of the Linked Data principles is that URIs should be dereferenceable.
This demonstrator shows how to set up The DataTank and configure a
Linked Data repository, such as a turtle file or SPARQL endpoint, in
it. Different content-types are acceptable and the response in the right
format is generated.

Keywords: Linked data - Semantic web + Dereferencing + Linked data
fragments

1 Introduction

Following the trend towards Open Data, Linked Data and the Semantic Web,
more and more organizations are publishing their data to the Web. The academic
world and standardization bodies have defined various frameworks and principles
in order to do so: e.g., the Linked Data (LD) principles [2], hypermedia and
REST principles [3], Linked Data Fragments (LDF) principles [6] or the RDF
framework®. In our lab at Ghent University we are involved in projects on Linked
Data which request often to do the same over and over again, adhering to the
same set of principles. In this paper we are introducing tdt/triples, a project
which takes away the pain of having to implement these principles for publishing
data over and over again.

First we are going to describe how the perfect triple looks like according to
principles. In the related work, we are discussing what projects already take care
of these principles and why we believe tdt/triples will be a great benefit to a lot
of tools. In the next section, we introduce the tdt/triples project. Next, the live
demo is described and, finally, a conclusion is formulated.

2 The Perfect Triple

For each concept identifier within a triple — a fact described using RDF — a
URI is used. In the design issues with Linked Data? Tim Berners-Lee, inventor

! A primer on RDF: http://www.w3.org/TR/rdfl1-concepts/.
2 http://www.w3.org/DesignIssues/Linked Data.html
© Springer International Publishing Switzerland 2014

V. Presutti et al. (Eds.): ESWC Satellite Events 2014, LNCS 8798, pp. 304-309, 2014.
DOT: 10.1007/978-3-319-11955-7_39


http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/DesignIssues/LinkedData.html

Painless URI Dereferencing Using the DataTank 305

of the World-Wide Web, introduces dereferencing: “When someone looks up a
URI, provide useful information”. According to the W3C’s note on dereferencing
HTTP URIs?, the act of retrieving a representation of a resource identified by
a URI is known as dereferencing that URI. This way, user agents can retrieve
facts about the concept the URI is identifying.

Different kinds of user agents are surfing the Web. For a URI about a certain
government service, a user agent may be for example looking for news facts.
The user agent is going to prefer an application/rss+xzml representation over
a text/html representation. The server which serves the representations of the
URI may also have its preferences: it may prefer to send text/html over applica-
tion/rss+xml as the latter has for instance a slow implementation on the server.
The HTTP protocol supports this content negotiation using its Accept head-
ers. RDF also has different serializations in which triples can be defined. Using
content negotiation, different representations of the data should be provided.

These URISs also need to be discoverable. Using DCAT, a W3C vocabulary to
describe data catalogs, and VoID, the W3C Vocabulary of Interlinked Datasets,
dataset can be made discoverable.

LDF [6] makes the Web of Data Web-scale by allowing clients to query
datasets. A basic LDF server has to provide 3 things: data that corresponds
to a basic triple pattern, meta-data that consists of the (approximate) total
triple count and controls that lead to all other fragments of the same dataset.

The perfect triple is a triple whom’s URIs are dereferenced through the
HTTP protocol. According to REST principles, the responses to requests towards
these URIs have to be cacheable. Furthermore, different serializations and repre-
sentations of the data have to be provided through content negotiation in order
to make the data easy to consume for all machines. Hypermedia controls are
needed when dereferencing the URI which provide affordances to the URIs in
the triple. Finally, meta-data has to be provided in order to query the data
according to the LDF principles and meta-data about the the dataset needs to
be given using the DCAT and VoID ontologies.

3 Related Work

Pubby* is a Java project written by Richard Cyganiak and Chris Bizer in
order to dereference URIs in a triple store with a SPARQL endpoint that sup-
ports DESCRIBE queries. It supports content negotiation® and it follows the
REST and hypermedia principles. Pubby does not provide meta-data through
the hypermedia interface using DCAT or VoID. Known limitations are that it
only supports SPARQL endpoints which support DESCRIBE, multiple datasets
may not work as expected and hash URIs are not supported. Furthermore, the
visualization of the triples in the HTML representation are not extensible®.

3 http://www.w3.0org/2001/tag/doc/httpRange-14,/2007-05-31 /HttpRange- 14

* http://wifo5-03.informatik.uni-mannheim.de/pubby/

® https://github.com/cygri/pubby/blob/master /src/main /java/de/fuberlin /wiwiss,/
pubby/negotiation/Content TypeNegotiator.java

5 https://github.com/cygri/pubby /issues,/20


http://www.w3.org/2001/tag/doc/httpRange-14/2007-05-31/HttpRange-14
http://wifo5-03.informatik.uni-mannheim.de/pubby/
https://github.com/cygri/pubby/blob/master/src/main/java/de/fuberlin/wiwiss/pubby/negotiation/ContentTypeNegotiator.java
https://github.com/cygri/pubby/blob/master/src/main/java/de/fuberlin/wiwiss/pubby/negotiation/ContentTypeNegotiator.java
https://github.com/cygri/pubby/issues/20

306 P. Colpaert et al.

Amongst all limitations, only supporting SPARQL endpoints is a problem as for
instance ontologies are commonly written by hand in a turtle file and uploaded
on a server without triple store, or some data are not stored in a triple store at
all and needs to be accessed in another way.

Triplify” [1] is a light-weight Data Publication platform. It is a small plugin
for Web applications, which reveals the semantic structures encoded in relational
databases. Triplify is focused on converting unstructured data from Web appli-
cations, stored in a relational database, to RDF. While the project also lowers
the barrier for adoption of the Linked Data technology, it does not provide any
solution to dereferncing new URIs.

Virtuoso®, a triple store built by OpenLink, provides optional URI derefer-
encing on top of their triple store software. In a document?, they describe their
implementation details exposing RDF data and bridging the “Linked Data Web”
and the traditional “Document Web”. While it is an interesting project, it only
works on top of Virtuoso.

Another project is the DBpedia viewer [4] and is used by the, at the time
of writing, beta version of DBpedia live. The main drawback for reusing this
project, is that the code!? is written specifically for DBpedia’s Virtuoso instance.

4 Demo

For this demonstrator, we have chosen a URI namespace, http://triples.demo.
thedatatank.com/, further referred to with the prefix triples:. On this namespace,
it is our goal to provide a hypermedia interface which dereferences URIs defined
in an RDF file. For public transit stop points, we want two LDP!! containers: one
describing the stoppoints of the Belgian railway company NMBS, triples: NMBS
and one describing the stoppoints of the Dutch railway company NS, triples:NS.
In these containers, the locations and names of these stop points are given.

The tdt/triples’? project can be installed over tdt/core® instance. After
installation using the composer'* command on a (apache, mysql, PHP5.4+)
stack, the instance can be configured using the API at the relative path
Japi/triples. POSTing a new resource to this collection can be done by pro-
viding the type of the reader and its parameters. Self-documentation on the
sources and their parameters can be found in the discovery document, which in
this case can be found at triples:discovery.

In the beginning of our example project, our turtle file is small and only con-
tains two transit agencies. In order to dereference the URIs in it, we configure The

7 http://triplify.org/
8 http://virtuoso.openlinksw.com/
9 http://virtuoso.openlinksw.com /whitepapers/deploying%20linked %20data.htm]l
10 https://github.com/lukovnikov/dbpedia-vad-i18n
"1 The Linked Data Platform (LDP) is a vocabulary to describe read-write Linked Data
resources based on HTTP access: http://www.w3.org/TR/ldp/.
2 http://github.com/tdt/triples
3 http://github.com/tdt /core
14 A dependency manager for PHP: http://getcomposer.org.


http://triples.demo.thedatatank.com/
http://triples.demo.thedatatank.com/
http://triples.demo.thedatatank.com/NMBS
http://triples.demo.thedatatank.com/NS
http://triples.demo.thedatatank.com/discovery
http://triplify.org/
http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/whitepapers/deploying%20linked%20data.html
https://github.com/lukovnikov/dbpedia-vad-i18n
http://www.w3.org/TR/ldp/
http://github.com/tdt/triples
http://github.com/tdt/core
http://getcomposer.org

Painless URI Dereferencing Using the DataTank 307

DataTank to dereference our file by POSTing its location to triples:api/triples,
thus, no need to set up a triple store and SPARQL endpoint. The turtle file
used in this demo can be found at triples:demo.ttl. When going to the spe-
cific URIs, only the triples mentioning this URI as a subject are returned and
visualized. The visualization within the HTML uses a javascript library called
rdf2html'®. It is an extensible library which creates a certain type of visualiza-
tion for an, or a couple of, ontologies. Through content-negotiation, the same
data can be requested through different formats: text/html, application/json,
application/ld+json, application/rdf+zml, text/turtle. ..

A basic LDF server has to be able to solve triple patterns. The DataTank
solves this using this template: { URT} ?subject={ subject} &predicate={predicate}
&object={ object}. This way, we have also introduced URIs for triples and triple
patterns. By dereferencing these, we can provide more information: the answer
to the triple pattern can be given, but also the (approximation of the) count,
provenance and extra hypermedia handles can be given. The basic LDF server
is advertised in the data catalog feed on the server accessible at triples:api/dcat.

When in the course of the project, a triple store is set up, an extra source
can be configured on /api/triples. This new SPARQL endpoint source can work
in parallel to the turtle file, until the turtle file is not needed any longer.

5 Getting Started

tdt/triples is an extension of tdt/core. Both repositories are available at github.
com. The only requirement is a standard Apache — MySQL — PHP stack. Com-
poser'®, a dependency manager for PHP, can be used in order to set up The
DataTank on your namespace. First, fill out app/config/database.php after down-
loading tdt/core. Next, run composer require tdt/triples followed by a com-
poser install. If all goes well, your namespace should now return an empty The
DataTank.

By using the interface at api/admin you can configure tdt/core resources.
At the time of writing, supported sources are: a CSV file, a SHP file, an XML
file, a JSON file, an XLS file, a JSON-LD file, an N3 file, a SPARQL endpoint
and custom written PHP code to fetch and transform data. With the added
tdt/triples functionalities, you can now configure extra sources at api/triples.
Posting Listing 1 to api/triples will result in all the configured file’s triples to
be added to your namespace. The result, with this particular file, can be seen at
for example triples: NMBS, which will now return the relevant triples, including
VoID, Hydra!'” and DCAT metadata.

!5 http://github.com/tdt/rdf2html

16 http://getcomposer.org

17 A vocabulary to describe hypermedia APIs used by LDF: http://www.hydra-cg.
com/.


http://triples.demo.thedatatank.com/demo.ttl
http://triples.demo.thedatatank.com/api/dcat
http://github.com/tdt/rdf2html
http://getcomposer.org
http://www.hydra-cg.com/
http://www.hydra-cg.com/

308 P. Colpaert et al.

type:"Turtle",
uri: "http://triples.demo.thedatatank.com/demo.ttl"

Listing 1. An example of a tdt/triples source configuration.

Up to date documentation can be found at http://docs.thedatatank.com.

6 Conclusion

This demonstrator introduces tdt/triples, a new project which lowers the bar to
start dereferencing URIs on a certain namespace. Several principles to publish
data on the Web were discussed and applied to the project, amongst others: the
Linked Data principles, the hypermedia and REST principles and the Linked
Data Fragments principles. The readers or visitors of the demonstrator are able
to set up tdt/triples and can add their RDF file or SPARQL endpoint to the
configuration. They are able to see an automatically generated representation
requested through content-negotiation, see the rdf2html view and follow links.
All processing is done on the fly: when the file or store changes, the URI repre-
sentation does too.

We hope that tdt/triples and rdf2html will get a broad uptake amongst
ontology maintainers, dataset owners and other people that have to dereference
URIs as part of their Linked Data project. Future work lies in enabling the
read/write Web within ¢dt/triples using distributed versioning techniques. This
work has already started in our lab with R&Whbase [5]: distributed version control
for triples.

Acknowledgments. We would like to thank Jan Vansteenlandt and Michiel
Vancoillie of the Open Knowledge Foundation Belgium for the close collaboration on
the implementation of tdt/triples. The research activities described in this paper were
funded by Ghent University, iMinds, the Flemish department of Economics, Science
and Innovation (EWI), the Institute for the Promotion of Innovation by Science and
Technology in Flanders (IWT) and the European Union.

References

1. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-
weight linked data publication from relational databases. In: Proceedings of the
18th international conference on World Wide Web, pp. 621-630. ACM (2009)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semant.
Web Inf. Syst. 5(3), 1-22 (2009)

3. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. (TOIT) 2(2), 115-150 (2002)

4. Lukovnikov, D., Kontokostas, D., Stadler, C., Hellmann, S., Lehmann, J.: DBpedia
viewer - An integrative interface for DBpedia leveraging the DBpedia service eco
system. In: Proceedings of the 7th Workshop on Linked Data on the Web (2014)


http://docs.thedatatank.com

Painless URI Dereferencing Using the DataTank 309

5. Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, S., Mannens, E., Van de
Walle, R.: R&Whbase: Git for triples. In: Proceedings of the 6th Workshop on Linked
Data on the Web (2013)

6. Verborgh, R., Vander Sande, M., Colpaert, P., Mannens, E., Van de Walle, R.: Web-
scale querying through linked data fragments. In: Proceedings of the 7th Workshop
on Linked Data on the Web (2014)



	Painless URI Dereferencing Using the DataTank
	1 Introduction
	2 The Perfect Triple
	3 Related Work
	4 Demo
	5 Getting Started
	6 Conclusion
	References


