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Abstract. The widespread adoption of Information Technology systems and
their capability to trace data about process executions has made available In-
formation Technology data for the analysis of process executions. Meanwhile,
at business level, static and procedural knowledge, which can be exploited to
analyze and reason on data, is often available. In this paper we aim at provid-
ing an approach that, combining static and procedural aspects, business and data
levels and exploiting semantic-based techniques allows business analysts to in-
fer knowledge and use it to analyze system executions. The proposed solution
has been implemented using current scalable Semantic Web technologies, that
offer the possibility to keep the advantages of semantic-based reasoning with
non-trivial quantities of data.

1 Introduction

The last decades have witnessed a rapid and widespread adoption of Information Tech-
nology (IT) to support business activities in all phases, governing the execution of busi-
ness processes and the processing and storage of related documents. This, together with
knowledge at the business level, gives the potential to leverage IT techniques to analyze
business procedures, thus bringing several remarkable advantages, as for example to al-
low business analysts to observe and analyze process executions; to identify bottlenecks
and opportunities of improvement of processes; to identify discrepancies between the
way processes have been designed, and the way they are really executed.

In fact, a variety of Business Intelligence tools have been proposed, even by major
vendors, that aim at supporting Business Activity Monitoring (BAM), and hence the
activities above, to different extent; examples are Engineering’s eBAM,! Microsoft’s
BAM suite in BizTalk,?> Oracle’s BAM.? However, all these approaches mainly focus,
besides data, on the only procedural knowledge. The knowledge related to the static
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aspects of the domain (e.g., concerning documental or organizational aspects), gener-
ally representable as domain ontologies, is not taken into account, thus precluding the
capability to reason on and analyze execution data from a business domain perspective.

On the contrary, existing approaches for the semantic monitoring and analysis of
processes usually separately focus on model or execution aspects. Several works, in-
cluding [1,2,3,4,5,6,7], enrich process models with semantic knowledge either for spec-
ifying the execution semantics of models or for denoting the meaning of their elements.
Only few attempts have been made to combine the static and the procedural model at
the business layer with execution data (e.g., [8]). In these works, however, business
knowledge is mainly exploited to provide domain-independent solutions to automate
the reconciliation between the business and data layers, rather than to support analysis.
In this paper we focus on enabling business analysts to perform useful analysis on pro-
cess execution data, covering both static and procedural dimensions as well as business
and data levels. Our contribution is twofold: (i) by extending our previous work [6,9]
combining static and procedural dimensions, we define a semantic model for combin-
ing static, procedural and data knowledge, which enables semantic reasoning and allows
analysts to query asserted and inferred knowledge to bring execution data analysis at
business level; and (ii) we propose an implementation of the approach on top of current
Semantic Web technologies — namely triplestores — that aims at coping with the large
quantities of data and the high data rates typical of real application scenarios.

The paper is organized as follows. In Section 2 we present the problem through an
example scenario, which is then used, in Section 3, to introduce the orthogonal dimen-
sions we tackle and the high level idea of the proposed approach. In Section 4 we de-
scribe the integrated model and its components from a conceptual point of view, while
Section 5 and Section 6 report about implementation and evaluation on a project use
case, respectively. Finally, Section 7 presents related works and Section 8 concludes.

2 Scenario

In this section we present an application scenario for the proposed approach. It will
be used throughout the paper to clarify the concepts and the motivation behind the
work. The example has been taken from an industrial case study related to the Public
Administration field in the context of the ProMo project for the collaborative model-
ing, monitoring and analysis of business processes. Figure 1 shows the process model
(represented in the BPMN [10] notation) describing the Italian birth management pro-
cedure, that aims at recording citizens’ birth data. Data have to be stored both in the
municipality registry and in the central national registry (SAIA) — since newborns are
Italian citizens who live in a given municipality — as well as in the national welfare sys-
tem repository (APSS) — as newborns are users of the welfare system. For instance, the
newborn can be first registered in the welfare repository and then in the registry systems
or viceversa, according to the parents’ choice. This, in turn, requires the coordination
of several actors, as well as the generation of some crucial data that will become part of
the personal data of the newborn — e.g. his/her ID, the Fiscal Code (FC).

In scenarios like this one, which are applied on a large scale and with high public
costs, it is important to be able to analyze the actual executions of the procedures or to
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Fig. 1. Birth Management Process
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realize what-if analyses for maintenance purposes. This means understanding how pro-
cedures perform; how many, when and where failures and bottlenecks occur; whether
executions deviate from the model. Examples of queries related to the birth manage-
ment procedure that business analysts could be interested to answer are:

Q.1 the average time per process execution spent by the municipality of Trento;

Q.2 the total number of Registration Request documents filled from January, 1st, 2014;

Q.3 the percentage of times in which the flow followed is the one which passes first
through the APSS pool and then through the Municipality one;

Q.4 the number of cases and the average time spent by each public office involved in
the birth management procedure for executing optional activities (i.e., activities
which, taken a path on the model, can be either executed or not);

Finding an answer to this kind of questions poses three interesting challenges.

Challenge 1. Combining Three Different Dimensions. Scenarios in which a procedure
is carried out in a specific domain, as the one described above, are very common in prac-
tice. They are usually characterized by three main dimensions that need to be taken into
account per se and in combination in order to be able to analyse the scenario: a procedu-
ral dimension, a dimension describing the specific domain of interest and an execution
dimension. The procedural dimension is defined by the process model describing the
carried out procedure. For example, such a dimension is required for detecting in Q.3
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whether the execution flow passes first through the APSS pool and then through the mu-
nicipality pool or viceversa. Knowledge about the domain of interest, i.e., the domain
in which the procedure is carried out, makes it possible, for example, to identify in Q.2
what are Registration Request documents. Finally, the execution dimension, i.e., the ac-
tual execution data both in terms of the procedural execution trace and of produced data
is required for example for retrieving in Q.1 the actual execution time.

Challenge 2. Semantic Reasoning. In many cases and especially in complex scenarios,
data explicitly asserted in collected execution traces and in process and domain models
represent only part of the information that is globally available about a process. In these
cases, semantic reasoning enabled on top of the three orthogonal components makes
it possible to query not only asserted but also inferrable information. For example, in
query Q.4 semantic reasoning allows both making explicit the semantics of public of-
fices, as well as reasoning about paths in the process model to detect optional activities
(which are situated on alternative paths between two directly connected gateways).

Challenge 3. Scalability. Scenarios characterizing complex organizations, as, for ex-
ample, Public Administrations (PAs), tend to deal with massive data. PAs usually have
huge and complicated procedures with several variants and exceptions, which relate to
as much huge and structured domains (e.g., in all PA domains the document classifica-
tion is usually very intricate). In this kind of scenarios a huge quantity of data is usually
produced at a very high rate. For example, in Italy there are about 500000 newborns
per year with, on average, a birth per minute.* It means that, at least 500000 (one per
minute) execution traces of the birth management procedure are produced per year and
have to be readily managed and analyzed. This demands for a scalable system able to
manage this huge quantity of data in a reasonable time, so as to (i) process and store
execution data with a high throughput; and (ii) provide a prompt answer, which also
takes into account procedures not yet completed, to queries involving this data.

3 An Integrated View

Analysts dealing with situations like those characterizing complex organizations usu-

ally need to face the problem of combining and reconciling knowledge and information

related to different orthogonal dimensions, the business and the data as well as the static

and the dynamic one. Figure 2 depicts these layers and dimensions:

— At business level, knowledge describes the domain of interest (e.g., the company’s
documents, organization and procedures) and pertains to two dimensions:

D.1 the procedural knowledge (P), usually represented using business process

models that offer a view on the steps carried out to realize specific objectives;

D.2 the (static) domain knowledge (K), which describes aspects of the domain

such as the organization structure (e.g., role hierarchy), the data structures

(e.g., document organization) and the relations among these and other domain

entities; these aspects are usually described in terms of ontological knowledge.

— At data level, the data stored by information systems provide information on the
actual executions of business procedures, leading to our third dimension:

4 Data by the Italian statistical office for year 2011
(http://www.istat.it/it/archivio/74300).
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D.3 the IT data, i.e., the execution traces (T) collected by IT systems that describe
the sequence of events and the data related to a process execution.
Concerning IT data, we focus on knowledge integration and exploitation assuming
that heterogeneous data have already been reconciled and collected into execution
traces. A preprocessing step to collect IT data into execution traces (e.g., [11])
and to align traces with the business layer (e.g., semantic-based [8] or structural
approaches [12]) can be realized by exploiting existing approaches in the literature.

In order to improve on state-of-the-art approaches, which do not allow analysts to in-
vestigate these three dimensions together, we propose to combine the knowledge related
to the domain described at business level K, the one related to the procedural aspects P
and the data captured by IT systems T, into a semantic solution and take advantage of
it for inferencing and querying purposes.

The first step towards the integration is combining the two types of business knowl-
edge: the static (K) and the procedural (P) one. Intuitively, combining K and P, means
enriching the process diagram components with the semantic knowledge [6,9] and
viceversa, i.e., adding a procedural view to the static knowledge. For instance, in the
example of the birth management procedure, a role APSS, semantically characterized
as a Public Office role by the taxonomy of roles shown in the excerpt of domain
ontology of Figure 3, can be associated to the APSS pool of the process in Figure 1.

The second step consists of combining the business and the data layers, i.e., K and P
with T. Assuming to have (i) an execution trace that collects all the events and the asso-
ciated data and performers related to a single execution , and (ii) an alignment of these
components with the business knowledge, combining the business and the data layers
intuitively means instantiating the business level components with the corresponding
set of execution data. For example, an event “Fiscal Code Generation” in an execution
trace, according to the alignment between data and business, could be an instance of the
activity labeled with “Generate FC Municipality” enriched with its domain semantics.
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4 A Comprehensive Model for Process Execution Analysis

To be exploited for query purposes, the three types of knowledge (K, P and T) described
in Section 2 need to be expressed in a unique language and plugged into an integrated
system. In this section we present the conceptual model used for the integration. To
this purpose, three ontologies were formalized — a BPMN Ontology, a Domain Ontol-
ogy and a Trace Ontology — and a three-level architectural model was built on top of
them. Purpose of the Domain Ontology is to provide a formal description of the static
aspects of the domain (K), while the BPMN Ontology and the Trace Ontology provide
a formalization of a metamodel of the procedural (P) and data (T) aspects, respectively.

Figure 4 shows how the three ontologies are used to formalize and combine the
three starting ingredients (P, K and T) along with the three levels. Specifically, at the
Metamodel level, which deals with all types of knowledge encompassing process model
scenarios (i.e., the core parts of the Trace Ontology, Domain Ontology and BPMN On-
tology), K is formalized as an extension of the core Domain Ontology. At the Process
Model level, which deals with knowledge specific to a process model, the integration of
P and K is formalized. Finally, at the Trace level, focusing on the execution traces, T
and its relationships with P and K are formalized.

In the following we discuss in more details each of the three ontologies (Section 4.1)
and then describe their integration into the three-level architectural model (Section 4.2).

4.1 Component Description

BPMN Ontology. The BPMN Ontology (BPMNO) formalizes the structure of a busi-
ness process model diagram (BPD). It is a formalization of the BPMN standard as
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described in Annex B of the BPMN specification 1.0 [13] enriched with the main com-
ponents of BPMN2.0 [10], and consists of a set of axioms that describe the BPMN
elements and the way in which they can be combined for the construction of BPDs.’
A detailed description is provided in [6,9]. We remark that the BPMNO provides a for-
malization of the structural part of BPDs, describing which are the basic elements of a
BPD and how they are (can be) connected. The BPMNO is not intended to model the
dynamic behavior of BPDs (that is, how the flow proceeds within a process).

Domain Ontology. The Domain Ontology, which is in charge of providing a formal-
ization of the static aspects of the domain of interest, is composed of an upper-level part
—the Core Domain Ontology — that describes the high level concepts and is independent
from the specific domain, and, for each domain, of a domain-dependent extension.

Goal of the Core Domain Ontology (reported in Figure 5) is offering a framework
for the definition of the key entities and relationships characterizing the domain of a
business process. Its central entity is the activity, which can constitute the building
block of a process, i.e., a process is composed of a non-empty set of activities. An
activity is usually performed by an executor with a specific role, which, in turn, can be
classified in a hierarchy of roles (e.g., in the case of complex organizations) and can
produce in output data objects (e.g., a document), which are collections of data. Data
in data objects are organized in data structures, which, in turn, can be further structured
in other data structures and so on, so that, only at the end of the chain, a value can be
associated to a simple data (e.g., a non-decomposable field of a document).

The domain-dependent extension specializes classes and properties of the Core Do-
main Ontology for a specific domain of interest, as shown in Figure 3 for the birth
management scenario. In this example, the activity of type Generate card performed
by the Municipality role could have as output a Card data object. The Address
is one of the data reported in the data object. However, Address could be, in turn, a
data structure organized in Street, Number, City, Nation. Also City can be further
structured (e.g., in terms of CityName and ZIPCode) and so on up to reach simple data.

It is worth pointing out that the Core Domain Ontology defines and emphasizes the
relationship between activities and simple data, i.e., how an activity manipulates (cre-

> The BPMN 1.0 ontology enriched with some of the new main elements of BPMN2.0 can be
found at https://shell-static. fbk.eu/resources/
ontologies/bpmn2 ontology.owl
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ates, updates, displays) a simple data. To this end, a unique semantics is associated
to each simple data nested in a specific chain of data structures and on each manipu-
lation property defined between manipulating activities and data fields. For example,
Card.Address.City.ZIPCode is a simple data on which it is possible to explicitly
define the activity manipulations. Moreover, simple data of different data objects can be
mapped one to another (via property mapped to, see Figure 5) to indicate that they hold
the same value, thus providing useful knowledge to perform reasoning. For example,
the data on the card emitted by the municipality corresponds to the data reported by the
citizen on the registration request module, thus RegistrationRequest.NewBorn.
CityCode and Card.Address.City.ZIPCode are mapped one to another.

Trace Ontology. The Trace Ontology ontology has finally been designed to specifically
address the aspects related to the execution, providing a metamodel representation of
the knowledge that can be collected and traced by IT systems (i.e., knowledge in terms
of instances) and stored in execution traces. It also has a core part — the Core Trace
Ontology — whose key entity is the Trace. A trace is composed of Traceable Process El-
ements, which can be either Traceable Flow Objects and Traceable Data Objects. The
first are (instances of) events traced by IT systems that can have both a start and an end
time intervals and an actual Performer. The latter are (instances of) data structures col-
lecting sets of data. The core part of the Trace Ontology (the Core Trace Ontology) can
then be enriched and structured according to the specific types of information collected
by IT systems and analyzed in a particular scenario. For example, properties defining
the provenance of data or events of the execution trace (e.g., the IT system they come
from), could need to be stored, and hence the Trace Ontology extended accordingly.

4.2 A Three-Level Architectural Model

Starting from the components previously described, a three-level architectural model
has been built to combine the three dimensions K, P and T. Figure 4 depicts such a
model, which extends our previous work [6,9] that only accounts for K and P.

The first level (Metamodel level) contains the three ontologies mentioned in the pre-
vious subsection, i.e., the initial building blocks of the integrated model: the BPMN
Ontology, the Domain Ontology, representing an ontological formalization of the do-
main knowledge, and the Trace Ontology. Referring to the examples shown (within
parenthesis) in Figure 4, classes Task, Activity and Traceable Flow Object are
representative of the contents of the BPMN Ontology, Domain Ontology and Trace On-
tology respectively, and all of them lie in the Metamodel level.

The second level (Process Model level) contains an integrated description of a single
process model diagram in terms of domain and procedural aspects. Such an integrated
model can be looked in two different ways. On one side (and similarly to the approach
in [6,9]), a process diagram and the elements it contains are instances of the corre-
sponding semantic classes in the Domain Ontology and BPMN Ontology. On the other
side (and differently from [6,9]), a process model diagram and its elements are model
components which, though still inheriting their domain semantics from a Domain On-
tology, act as classes that are instantiated by process execution traces. In this view, a
more agile and specific semantics than the heavy one given by the BPMN notation, can
be provided by these classes to the execution traces (e.g., there is no need to constraint
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the event corresponding to an activity execution to have at most an outgoing sequence
flow). For example, in the birth management process, the BPMN activity labeled with
“Generate FC Municipality” (e.g., the diagram element with id “BPD activity 12”) is
an instance of the Domain Ontology class Generate FC by Municipality and of
the BPMN Ontology class Task (see the examples in Figure 4). However, the same
element is also a class instantiated by the actual executions (in the trace level) of the
“Generate FC Municipality” activity, that, by exploiting subsumption relations, inher-
its the characteristics of Traceable Flow Object from the Trace Ontology and of
Generate FC by Municipality in the Domain Ontology. To represent these two per-
spectives on process model elements, we decided to model them both as individuals of
an Abox Ontology (as modelling is at instance level) that instantiates the Domain On-
tology and the BPMN Ontology, and as classes of a Thox Ontology (as modelling is at
the terminological level) that specializes the Domain Ontology and the Trace Ontology;
a special associated to relation links corresponding elements in the two ontologies.®

Finally, a third level (Trace level) is devoted to store the execution traces. An ex-
ecution trace is actually an instance of the process model diagram class of the Thox
Ontology that is, as described above, a subclass of the Domain Ontology class specify-
ing the process domain semantics and of the Trace class of the Trace Ontology. For
example, an execution trace of the birth management process will be an instance of the
Tbox Ontology class inheriting from the Domain Ontology Birth Management class
and the Trace Ontology Trace class, the latter related to properties typical of execution
traces. Events and data structures in the execution trace are managed similarly.

By looking at the examples in Figure 4 we can get an overall clarifying view of
the three levels and their relationships. For instance, the trace event “Fiscal Code Gen-
eration” is represented as an instance of the Thox Ontology class corresponding to the
BPMN diagram element “BPD activity 12”. This class, which extends the Trace Ontol-
ogyclass Traceable Flow Object and the Domain Ontology class Generate FC by
Municipality,isassociated to the correspondinginstance (“BPD activity 12”) in the
Abox Ontology. The latter, in turn, is an instance of classes Task of the BPMN Ontology
and Generate FC by Municipality of the Domain Ontology.

5 Architectural Solution

In this section we propose an architecture for the runtime collection of information at
the various dimensions (P, K, T), its integration according to the comprehensive model
of Section 4 and its unified querying to support business analysts needs.

The two major challenges at the architectural level are to cope with the huge quan-
tity of collected trace data and their fast rate of arrival on the one hand, and to allow
analysts to query also for implicit knowledge in collected data on the other hand, which
requires some kind of reasoning support in the system (respectively, challenges 3 and 2
of Section 2). To address these challenges, we investigate the use of Semantic Web tech-
nologies in the form of triplestores. Triplestores are repositories for RDF data, possibly

® Despite the described scenario and the technological solution adopted would allow the use of
punning, i.e., treating classes as instances of meta-classes, we chose to have separate entities
for classes and instances, in order to keep the solution in line with the traditional conceptual
distinction between classes and instances.
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organized into named graphs, with support for reasoning with different semantics (e.g.,
RDFS, OWL 2 RL and OWL 2 QL) and querying via the standard SPARQL query lan-
guage and protocol [14]. Triplestore solutions have been widely investigated in recent
years as a means to manage huge quantities of data, and several triplestore implemen-
tations have become mature products (e.g., OWLIM’ and Virtuoso®, to name a few), so
they represent a natural choice for implementing our model.

In the rest of the section we detail, referring to Figure 6 for a general overview, how
data is organized, populated and queried in our architecture using triplestores, while in
the next section we present some results pointing out the potential of the solution.

5.1 Data Organization

The most efficient way to support SPARQL querying is to place all data in a central
triplestore, materializing all the inferrable triples so that no reasoning has to be done
at query time. We thus exclude federated queries over multiple triplestores as well as
backward-chaining reasoning approaches (e.g., based on query rewriting), as they both
introduce additional delay that is unacceptable for complex analytical queries.

The central triplestore has to store the process model data (the 7hox Ontology and
Abox Ontology of Figure 4, which in turn encompasses both the procedural knowledge
P and the static knowledge K) and all the completed/running execution traces collected
so far (the IT data T). To better organize this information we store it in different named
graphs: one for the process model and one for each trace (see Figure 6). This solution
allows for the use of SPARQL constructs related to named graphs (FROM and USING
clauses and graph management operations) to more easily select and manipulate traces.

5.2 Data Population

Process model data is produced at design time and can be stored once per all, while
a trace update operation must occur every time a new piece of information about a
running process is captured. Each trace update operation requires either the creation or
the modification of the named graph of the trace. While these modifications are often
monotonic (i.e., only new data is added), for the sake of generality we consider them
as non-monotonic. In particular, non-monotonicity may arise when only a subset of
process activities are observed and recorded in a trace (e.g., only e-mail exchanges are

"http://www.ontotext .com/owlim
8 http://virtuoso.openlinksw.com/
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recorded among human activities). In these cases, missing information could be auto-
matically reconstructed in an approximate way based on known data. This could imply
the possibility of a revisitation of reconstructed information as new data is observed.

An obvious solution to populate the central triplestore would be to directly access
and modify it with collected data, relying on its reasoning capabilities for inferring
implicit triples. This approach is however inefficient, as it overloads a single system
with querying and reasoning tasks, the latter being particularly expensive due to the
need to retract inferred triples that are no longer valid after a non-monotonic update.
A Dbetter solution can be devised by considering that traces are largely independent one
to each other, as they describe different and unrelated instances of documents, process
activities and other execution events. This means that no meaningful knowledge can
be inferred by combining two different traces,” and thus inference over traces can be
computed by processing each trace in isolation (together with the process model) and
merging all the inferred triples that have been separately computed.

The trace independence assumption leads naturally to the processing scheme shown
in Figure 6. When the system is first started, the process model (PM) is read and the
inference machinery of a temporary inferencing triplestore is employed to augment it
with inferred triples (PM”), producing an augmented process model that is stored once
per all in the central triplestore. Whenever a trace update operation is triggered, the
trace data (T) is fed into another temporary inferencing triplestore together with the
TBox definitions of the augmented process model, producing an augmented trace con-
taining inferred triples (T”). The augmented trace is then extracted from the inferencing
triplestore, filtered to remove triples of the augmented process model (as already stored)
and triples that are not needed by queries!? (for efficiency reasons), and finally stored
in a trace-specific named graph in the central triplestore.

A first benefit of the described scheme is a clear separation of reasoning and query-
ing through the use of separate triplestores, which can be chosen and optimized based
on each particular task. To that respect, in our implementation we use OWLIM-Lite for
both tasks, configuring OWL 2 RL inference and no persistence when used as an infer-
encing triplestore, and disabling inference and increasing index sizes when using it as
the central triplestore. A second and more important benefit, however, is the possibility
to parallelize trace update operations using multiple worker threads and/or machines,
thus enabling massive scalability. The only ‘bottleneck’ is represented by the storage of
processed data in the central triplestore, but this operation is very efficient as it does not
involve any reasoning or inference retraction.

5.3 Data Querying

As shown in Figure 6, SPARQL queries by business analysts are targeted at the central
repository, where they are evaluated against the integrated knowledge base built and

% We refer here to inference at the ABox level (the trace data) based on the OWL 2 semantics.
The limited overlapping in terms of instances (e.g., documents) among traces means that lit-
tle or nothing about an instance in a trace can be inferred in OWL 2 exploiting knowledge
about unrelated instances in other traces. This does not exclude, however, the possibility to
“infer’ useful knowledge by comparing or aggregating trace data in a non-OWL setting, a task
supported by the querying facilities of our approach.

10 In detail, we drop unnecessary x owl : sameAs x and x rdf: type owl restriction bnode triples.
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augmented with inferred triples as previously described. As an example, Listing 1 re-
ports the formulation in SPARQL of query Q.4, whose results are shown in Table 1. In
general, we found analytical queries to greatly benefit from SPARQL 1.1 aggregates,
but SPARQL support for managing dates and other temporal information (e.g., for com-
puting time differences) resulted quite inadequate. We addressed this problem by defin-
ing a suite of user-defined SPARQL functions that can be used by analysts, leveraging
the extension mechanisms provided by Sesame,!! though this solution is generally not
portable across different triplestore implementations.

PREFIX bpmn: <http ://dkm. fbk.eu/index . php/BPMN Ontology #>

PREFIX domain: <https ://dkm. fbk.eu/#>

PREFIX trace: <http ://dkm.fbk.eu/Trace Ontology #>

PREFIX ttrace: <http ://dkm.fbk.eu/TTrace Ontology#>

PREFIX fn: <http :// shell .fbk.eu/custom functions/>

SELECT ?office name ?activity name (COUNT(?t) AS ?executions) (AVG(?t) AS ?time)
WHERE {

[] a bpmn:business process diagram , domain:Birth Management; # retrieve process

bpmn: has business process diagram pools [ # and public office
bpmn: has pool participant ref [ # participants for
a domain: Public Office; # each pool of the
bpmn:has participant name ?office name |; # birth management
bpmn: has pool process ref ?process |. # process diagram
?7gatewayl a bpmn:gateway . # require the
?7gateway2 a bpmn:gateway . # presence of two
Zactivity a bpmn:activity. # gateways and
# an activity in
?process bpmn:has process graphical elements # the participant
?gatewayl , ?gateway2, ?activity. # process
?gatewayl # require two paths
bpmn:is directly connected via sequence flow ?gateway2; # between gateways:
bpmn:is connected via sequence flow ?activity. # — a direct path
# — an indirect
?activity ttrace:associated to ?Activity ; # path passing
bpmn:has flow object name ?activity name; # through the
bpmn:is connected via sequence flow ?gateway2. # activity
OPTIONAL { # if the activity
2activity execution a ?Activity; # was performed ,
trace:initial start dateTime ?start; # get its execution
trace: final end dateTime ?end. # time using the
BIND ((fn:timestamp(?end) — fn:timestamp (?start)) AS ?t) # custom function
} # fn:timestamp

GROUP BY ?office name ?activity name

Listing 1. SPARQL formulation of query Q.4: “Number of cases and avg. time spent for
optional activities by public offices involved in the birth management procedure”.

Table 1. Query results

office name activity name executions time

“SAIA” “Verifica CF” 86 501.097 s
“SAIA” “Genera CF SAIA” 15009 270.122 s
“Comune” “Genera CF Comune” 21000 485.541 s
“APSS” “Genera CF APSS” 8315 418327 s

i http://www.openrdf.org/


http://www.openrdf.org/

240 C. Di Francescomarino et al.

6 Evaluation

In this section we report on the evaluation of the proposed model and architecture on a
real case study — the birth management scenario —investigated in the scope of the ProMo
project, with the goal to assess the usefulness and scalability of the approach.

In the above mentioned scenario:

— P is a BPMN process model (see Figure 1) containing 4 pools, 19 activities, 11
domain objects, 19 events, 14 gateways, 54 sequence flows and 6 message flows;

— Kis adomain ontology (an extract is shown in Figure 3) containing 5 properties and
379 classes covering 28 activities and 12 data objects such that, on average, each
data object contains 25 simple data fields organized in a 4 levels-depth structure;

— T is a set of execution traces automatically generated based on the aforementioned
P and K and a few samples of real traces (that we can not directly use as containing
sensitive personal data); on average each trace covers 10 events with associated data
objects, and is encoded with 2040 triples from which 1260 triples can be inferred.

In order to assess the approach in real contexts, we selected and analyzed 8 queries
among those that business analysts involved in the ProMo project were interested to
investigate, with the selection driven by our perception about their importance for busi-
ness analysts as well as by the goal to cover as much variety as possible (e.g., type of
query result, multiple VS single trace analysis) so to increase their representativeness.
Queries and their analysis are reported in Table 2. For each query, the columns corre-
sponding to the component(s) (P, K or T) involved by the query, are marked. Similarly,
the inference column (Inf.) is marked when the query demands for reasoning support.
The table suggests that all the three dimensions explored by the proposed approach, as
well as the inference support, are indeed needed to answer business analysts’ queries,
thus suggesting the usefulness of the proposed approach in real business scenarios.

Concerning scalability, we mainly focus on the storing and querying aspects. Assum-
ing the data rates of the Italian birth management scenario at national level (Section 2),
we investigated a one day, one week and one month loads (respectively ~1500, ~10500
and ~42000 traces). Table 3 shows the corresponding performance figures, measured
on a quad-core Intel Core 17 860 workstation with 16 GB of memory. For each load, we

Table 2. Query analysis

Query Description P K T Inf.

Q.1 Average time per process execution spent by the municipality of Trento X

Q.2 Total number of Registration Request documents filled from Jan 1st, 2014 X X

Q.3 Percentage of times in which the flow followed is the one which passes
first through the APSS pool and then through the municipality one

Q.4 Number of cases and average time spent by each public office involved in
the birth management procedure for executing optional activities

Q.5  Number of times the municipality sends to SAIA a request without FC XXX X

Q.6 Last event of trace TRACEID X

Q.7  Average time spent by trace TRACEID X

Q.8  Does trace TRACEID go through activity labeled “Present at the hospital’? X X

X X

XXX X
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Table 3. Scalability Results

Stored triples Storing Querying
Asserted Inferred  Total Throughput Total time Time Q.4 Time Q.8
1500 3062349 1895471 4957820 37.89 trace/min 2426.88s 324 ms 41.4 ms
10500 21910269 13057464 34967773 37.41 trace/min 16851.21 s 881.4 ms 26.2 ms
42000 87503538 52045200 139548738 37.34 trace/min 67537.95 s 4510.0 ms 105.0 ms

Traces

report the number of stored triples (asserted, inferred, total), the storing time (through-
put in traces per minute and total population time) and the average evaluation times for
queries Q.4 and Q.8 (from Table 2), which are representative, respectively, of analytical
and non-selective queries and of very specific and selective queries.

Overall, the system is able to manage a throughput of about 37 traces per minute,
which is perfectly adequate with the Italian scenario (a newbirth per minute). More
significantly, the throughput is largely independent of the load, demonstrating how the
choice to decouple inference for each trace allows to efficiently cope with increasingly
large amounts of data. Finally, the time required for performing a query as complex as
Q.4, which involves all the dimensions and exploits inferred knowledge (e.g., for iden-
tifying public offices and determining whether an activity is optional), is still acceptable
for the specific context and for an online analysis of data. Of course, the more the repos-
itory grows, the slower the answer is. Nevertheless, queries concerning the whole set of
data collected in a month, can be managed in times of the order of seconds.

7 Related Works

Approaches adding formal semantics to process models (also defined in the BPMN
notation) are not new in the literature [1,2,3,4,5,6]. We can divide the existing proposals
into two groups: (1) those adding semantics to specify the dynamic behavior exhibited
by a business process [1,2,3], and (2) those adding semantics to specify the meaning of
the entities of a Business Process Diagram (BPD) in order to improve the automation
of business process management [4,5,6]. The latter are more relevant in our context, as
they focus on models, rather than the execution semantics of the processes.

Thomas and Fellmann [5] consider the problem of augmenting EPC process models
with semantic annotations. They propose a framework which joins process model and
ontology through properties (such as the “semantic type” of a process element). This
enrichment associates annotation properties to the process instances. In the SUPER
project [4], the SUPER ontology is used for the creation of semantic annotations of both
BPMN and EPC process models in order to support automated composition, mediation
and execution. In [1], semantic annotations are introduced for validation purposes, i.e.
to verify constraints about the process execution semantics.

In our previous work [6,9], we enrich process models with semantic knowledge and
establish a set of subsumption (aka subclass) relations between the classes of two on-
tologies: one formalizing the notation used (the BPMN meta-model) and another de-
scribing the specific domain of the process model. This way we provide an ontology
integration scheme, based on hierarchical ontology merge, that supports automated ver-
ification of semantic constraints defining the correctness of semantic process annota-
tions as well as of structural constraints [6].
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Only few works (e.g., [15,8,16]) in the context of the SUPER project have tried to
combine static and procedural business level aspects (very close to the ones we con-
sider) with the execution data. Nevertheless either they try to provide a comprehen-
sive Semantic Business Process Management framework (e.g., [15]) or, when explicitly
dealing with process monitoring and analysis [8], they mainly focus on the usage of
semantic technologies to provide domain-independent solutions to process monitoring,
which, instantiated by concrete organizations in their specific domain, aims at automate
the reconciliation between the business and the data level. In this work, semantic tech-
nologies are exploited to integrate the three investigated dimensions, thus supporting
process analysis by means of inference and querying.

Finally, there exist works dealing with the formalization of abstract frameworks for
describing process executions. For instance, the standardized PROV-O [17] ontology,
whose aim is providing a formalization for representing and interchanging provenance
information generated in different systems, provides a set of classes (and relationships
and axioms) to be instantiated with activity executions and artefacts, similarly to the
Trace Ontology. Through the opportune mapping between PROV-O and Trace Ontol-
ogy classes (e.g., the PROV-O activity and the Trace Ontology Traceable Flow
Object), it would be possible to align the proposed model to PROV-O and thus allow
the consumption of Trace Ontology data by PROV-O aware applications.

The problem of exploiting the advantages deriving from semantic-based approaches
with large amounts of data has been widely investigated in the last years. One of the
most known and used solutions is the Ontology Based Data Access [18] (OBDA).
OBDA aims at providing access to data stored in relational heterogeneous data sources
through the mediation of a semantic layer in the form of an ontology, that provides a
high level conceptual view of the domain of interest [19]. Among the available efficient
query answering reasoners we can find MASTRO-i [18] and the most recent Quest [20].

Triplestore solutions like Virtuoso, Owlim, Bigdata and others provide similar query
answering functionalities though a different mechanism. Among the available Seman-
tic Web technologies we chose to use a semantic triplestore solution. Indeed, besides
allowing us to address the semantic as well as the big data requirements, it also allows
us to update the model structure in a lightweight way. Being based on triples, it does
not strongly constraint the meta-level, thus leaving the flexibility to change the model
in an agile way, without loosing the data already stored.

8 Conclusion

In this paper we show how to combine different orthogonal dimensions and exploit rea-
soning services in order to expose interesting analysis on organizations’ execution data
in business terms. In detail, static domain knowledge, procedural domain knowledge
and execution data have been plugged into a semantic solution and Semantic Web tech-
nologies have been exploited to cope with large quantities of data. The approach has
been applied to an industrial case study investigated in the context of the ProMo project
for the modeling, monitoring and analysis of Italian Public Administration procedures.
In the future we plan to further investigate the reasoning capabilities that semantic tech-
nologies can offer, also in terms of user-defined rule-sets.
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