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Abstract. For a small sample problem with a large number of fea-
tures, feature selection by cross-validation frequently goes into random
tie breaking because of the discrete recognition rate. This leads to inferior
feature selection results. To solve this problem, we propose using a least
squares support vector regressor (LS SVR), instead of an LS support
vector machine (LS SVM). We consider the labels (1/-1) as the targets
of the LS SVR and the mean absolute error by cross-validation as the
selection criterion. By the use of the LS SVR, the selection and ranking
criteria become continuous and thus tie breaking becomes rare. For eval-
uation, we use incremental block addition and block deletion of features
that is developed for function approximation. By computer experiments,
we show that performance of the proposed method is comparable with
that with the criterion based on the weighted sum of the recognition
error rate and the average margin error.

Keywords: Backward feature selection, feature ranking, forward fea-
ture selection, incremental feature selection, pattern classification, sup-
port vector machines, support vector regressors.

1 Introduction

To realize a classifier with high generalization ability, feature selection, which
eliminates redundant and irrelevant features, is especially important for a small
sample problem with a large number of features (SSPLF). In such a problem,
to avoid deleting important features for classification, wrapper methods [1–3],
which use recognition rate-based criteria, are preferable to filter methods, which
use more simpler criteria [4–6].

For kernel-based classifiers, imbedded methods, in which feature selection and
training are done simultaneously are also used [7, 8].

For wrapper methods, forward selection and backward selection are often used.
In forward selection, a feature is sequentially added to an initially empty set, and
in backward selection, a feature is sequentially deleted from the set initialized
with all the features. Because forward selection is faster than backward selection
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if the number of selected features is small, but less stable, the combination of
forward selection and backward selection is also used [3, 9–11].

There are several approaches to speed up wrapper methods: some feature
selection methods combine filter methods and wrapper methods and use filter
methods as a preselector [12–14]. In [3], instead of sequential forward selection
and backward selection, block addition (BA) of features followed by block dele-
tion (BD) of features is proposed.

Incremental selection has also been proposed [15–19] to speed up feature se-
lection. In [19], BABD for input variable selection is extended to incremental
selection and speedup was shown for the small sample problems with a large
number of input variables (SSPLV).

In applying a wrapper method to an SSPLF, frequently we need to break ties
in feature selection and feature ranking, because the feature selection/ranking
criterion is discrete. In addition, the number of selected features is very small
because the 100% recognition rate is easily obtained for the validation data set.
This worsens the generalization ability. To avoid this, we used the weighted sum
of the recognition error rate and the average margin error [3]. This led to more
stable feature selection for microarray data sets.

In this paper, instead of the weighted sum of error rate and the average margin
error used in [3], we propose using the mean absolute error by the least squares
support vector regressor (LS SVR), assuming the labels (1/− 1) as the targets
of regression. Because, unlike the regular SVM, for the LS SVM, classifiers and
regressors have the same form, training for the LS SVM and that for the LS
SVR are the same. The only difference is whether the recognition error is calcu-
lated or the mean absolute error is calculated. Thus, a classification problem is
easily converted into the associated regression problem, whose absolute error is
continuous. Therefore, unlike the LS SVM, tie breaking rarely happens for the
LS SVR.

The procedure for feature selection is based on incremental block addition and
block deletion [3, 19]. Starting from the empty set, we repeat adding multiple
features at a time to the set. We stop addition when the generalization ability of
the set is no longer improved. Then from the set of selected features, we delete
multiple features at a time until the generalization ability is not improved.

In Section 2, we discuss the idea of feature selection and selection criteria.
Then in Section 3 we discuss the proposed methods based on incremental block
addition and block deletion, and in Section 4, we show the results of computer
experiments using two-class benchmark data sets including microarray data sets.

2 Idea of Feature Selection and Selection Criteria

For an SSPLF such as microarray data sets, the optimal set of features that
realizes the generalization ability comparable to that of the original set of fea-
tures is usually not so large. In such a situation, forward selection is faster than
backward selection. Therefore, by forward selection we select a set of features
whose generalization ability is comparable to that of the original set of features.
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But because an added feature may become redundant after another feature is
added, we perform backward selection for the set of features selected by forward
selection.

To speedup feature selection, we use multiple feature addition (block addi-
tion) and multiple feature deletion (block deletion) and combine BABD with
incremental feature selection.

To avoid frequent tie breaking in feature selection and feature ranking, we use
a continuous selection criterion.

Let the decision function for a two class problem be

z = f(x) = w�φ(xi) + b, (1)

where x and z are the feature vector and the decision output, respectively, w is
the coefficient vector of the separating hyperplane in the feature space, φ(x) is
the mapping function that maps x into the feature space, and b is the bias term.

For M training input-output pairs {xi, yi} (i = 1, . . . ,M), the LS SVM is
given by

minimize
1

2
w�w +

C

2

M∑

i=1

ξ2i (2)

subject to yi f(xi) = 1− ξi for i = 1, . . . ,M, (3)

where C is the margin parameter, yi = 1 for Class 1 and −1 for Class 2, and ξi
is the slack variable associated with xi.

Multiplying yi to both sides of (3) and replacing yi ξi with ξi, we obtain

minimize
1

2
w�w +

C

2

M∑

i=1

ξ2i (4)

subject to f(xi) = yi − ξi for i = 1, . . . ,M. (5)

The above LS SVM is the same as the LS SVR.
In a wrapper method, we use the recognition error rate EC. For the training

data set it is given by

EC =
1

M

M∑

i=1

ei for ei =

{
0 for yi f(xi) ≥ 0,
1 for yi f(xi) < 0.

(6)

Because the recognition error rate is discrete, for an SSPLF, frequent tie breaking
occurs for feature selection and feature ranking. Therefore, in [3] we proposed
the following MM criterion:

EMC = EC + r EM, (7)

where r is a positive parameter and r = 1/M , and EM is the mean margin error
given by

EM =
1

M

M∑

i=1

ξi where ξi =

{
0 for yi f(xi) ≥ 1,

1− yi f(xi) for yi f(xi) < 1.
(8)
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Because the LS SVM can also be used as a regressor, we consider the classi-
fication problem as a function approximation problem: we assume that the class
labels (1/−1) are target values of a function approximation problem. Then,
training the LS SVM is equivalent to training the associated LS SVR.

Thus, instead of (7), we consider using the mean absolute error:

EMAE =
1

M

M∑

i=1

|yi − f(xi)|. (9)

Because yi = 1 or−1, minimization of (9) leads to minimization of the recogni-
tion error. But model selection by cross-validation using (9) does not necessarily
lead to the same model obtained by cross-validation using the recognition error
or the MM criterion given by (7).

3 Feature Selection by Incremental Block Addition
and Block Deletion

We use incremental BABD for function approximation discussed in [19]. The
algorithm for pattern classification is essentially the same. In the following we
explain incremental BABD.

In incremental BABD, initially we select a subset from the set of initial fea-
tures and select features from the subset by BABD. Then we add features that
are not yet processed to the set of selected features and repeat BABD until all
the features are processed. This procedure is called one-pass incremental BABD.

By this method, important features may be discarded before the new features
are added. To prevent this, we repeat one-pass BABD until no further improve-
ment in the selection criterion is obtained. This procedure is called multi-pass
incremental BABD.

Now we explain incremental BABD more in detail referencing the correspond-
ing steps in Algorithm 1, which is an extension of iterative BABD discussed in
[20].

Let Im = {1, . . . ,m} be the set of the original m features. Initially, we select
the set of m′ features, Im

′
, from Im as the initial set of features (Step 1), and

calculate the MAE for Im
′
, Em′

, by cross-validation. This is used as the threshold
of feature selection for Im

′
, Tm′

(Step 2):

Tm′
= Em′

. (10)

By BA, we iterate feature ranking and feature addition until

Ej ≤ Tm′ ≤ Ej + εM (11)

is satisfied, where εM is a positive value, Ij is the set of selected j features,
j ≤ m′, and Ij ⊆ Im

′
. The right-hand side inequality is to control the number

of selected features, and as the value of εM is decreased, the number of selected
features is increased. Then if Ej < Tm′

, we update the threshold by

Tm′
= Ej . (12)
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In the feature ranking we rank features in Im
′
in the ascending order of

MAEs, which are evaluated by temporarily adding a feature to the set of selected
features. Then we add, to the set of selected features, from the top ranked to the
2kth ranked features, where k = 1, . . . , 2A and A is a user defined parameter, and
evaluate the MAE by cross-validation (Step 3). If the minimum MAE for k ∈
{1, . . . , 2A} is smaller than or equal to Tm′

, we permanently add the associated
features, and update the threshold. If the right-hand side inequality in (11) is
satisfied, finish BA. If not, repeat BA. Otherwise, if the minimumMAE is smaller
than that at the previous BA step, we permanently add the associated features,
update the threshold, and repeat BA. Otherwise, we add the top ranked feature
and repeat BA (Step 4).

Because redundant features may be added by BA, we delete these features by
BD repeating feature ranking and deletion of features.

For each feature in Ij we evaluate the MAE by cross-validation temporarily
deleting the feature (Step 5).

We generate set Sj that includes features whose MAE is not larger than Tm′
.

If Sj is empty we terminate BD. If only one element is in Sj, delete this feature
and iterate BD (Step 6). Otherwise, we temporarily delete all the features in
Sj and evaluate the MAE by cross-validation. If it is not larger than Tm′

, we
permanently delete these features and update j, and repeat BD (Step 7). If not,
we rank features in Sj and temporarily delete the top half and evaluate the MAE
by cross-validation. We repeat this until feature deletion is succeeded (Step 8).

After BD is succeeded, Ej for the resulting set of features Ij satisfies

Ej ≤ Tm′
. (13)

Then we update the threshold by Tm′
= Ej and repeat BD.

The above procedure guarantees that the MAE for the selected features is not
larger than that for Im

′
, i.e., Ej ≤ Em′

.
Let iInc be the number of features that are added at the incremental step. We

add iInc features from Im − Im
′
to Ij ,

Let the resulting set of features be Ij+iInc . Then the MAE for Ij+iInc is Ej+iInc .
We set the threshold Tm′+iInc by Tm′+iInc = Ej+iInc . Here, we must notice that

Tm′+iInc ≤ Tm′
. (14)

is not always satisfied.
We iterate the above BABD for Ij+iInc . Let the resulting set of features be

Io, where o ≤ j + iInc. Then

Eo ≤ Tm′+iInc (15)

is satisfied. If (14) is satisfied,

Eo ≤ Tm′
(16)

is also satisfied. But otherwise, there is no guarantee that the above inequality
is satisfied.
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If (16) is satisfied, we repeat BABD adding the variables not processed. Oth-
erwise, we consider that the BABD for this step failed and undo the feature
selection at this step; namely, we restart BABD with threshold Tm′

and Ij , and
add remaining features to Ij .

In one-pass incremental BABD, we repeat the BABD until all the variables
are processed. In multi-pass incremental BABD, to reduce the absolute error
further, we repeat the above procedure until the selection criterion does not
change (Step 9).

Algorithm 1 (Incremental BABD).

Initialization
Step 1 Set Im

′
(⊆ Im), j = 0, and Ej = ∞.

Block Addition
Step 2 Calculate Em′

for Im
′
. Set Tm′

= Em′
.

Step 3 Add feature i in Im
′ − Ij temporarily to Ij , calculate Ej

iadd
, where iadd

denotes that feature i is temporarily added, and generate feature ranking
list V j . Set k = 1.

Step 4 Calculate Ej+k (k = 1, 21, . . . , 2A). If Ej+k < Tm′
, set j ← j+k, Tm′ ←

Ej . And if Tm′ ≤ Ej + εM, go to Step 5; if not, go to Step 3. Otherwise,
if Ej+k < Ej is satisfied, set j ← j + k and go to Step 3. Otherwise, if
Ej ≤ Tm′

, go to Step 5; otherwise, set j ← j + 1, Tm′ ← Ej and go to Step
3.

Block Deletion
Step 5 Delete temporarily feature i in Ij and calculate Ej

idel
, where idel denotes

that feature i is temporarily deleted.
Step 6 Calculate Sj. If Sj is empty, Io = Ij and go to Step 9. If only one

feature is included in Sj , set Ij−1 = Ij − Sj , set j ← j − 1 and go to Step
5. If Sj has more than two features, generate V j and go to Step 7.

Step 7 Delete all the features in V j from Ij : Ij
′
= Ij −V j , where j′ = j− |V j |

and |V j| denotes the number of elements in V j . Then, calculate Ej′ and if
Ej′ > Tm′

, go to Step 8. Otherwise, update j with j′, Tm′ ← Ej′ , and go
to Step 5.

Step 8 Let V
′j include the upper half elements of V j . Set Ij

′
= Ij − {V ′j},

where {V ′j} is the set that includes all the features in V
′j and j′ = j −

|{V ′j}|. Then, if Ej′ ≤ Tm′
, delete features in V

′j and go to Step 5 updating
j with j′ and Tm′

with Ej′ . Otherwise, update V j with V
′j and iterate Step

8 until Ej′ < Tm′
is satisfied.

Step 9 If Eo is larger than Tm′
in the previous step, undo current BABD.

If some features in Im are not added, Im
′
= Io ∪ IiInc , m′ ← o + iInc,

j = 0, Ej = ∞, and go to Step 2. Otherwise, if one-pass, terminate feature
selection; otherwise if Tm′

decreases from previous Tm′
, go to Step 1. If not,

stop feature selection.

4 Performance Evaluation

Because feature selection based on the EC criterion performed poorly for a large
number of features [3], in this section, we compare the MAE criterion with the
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MM criterion and incremental BABD with batch BABD using two kinds of data
sets: data sets with small numbers of features and microarray data sets with
large numbers of features. We set A = 5 and εM = 10−5 as in [3]. In incremental
feature selection, we set m′ = iInc and add features from the first to the last.

4.1 Data Sets with Small Numbers of Features

We used the ionosphere and WDBC data sets [21]. We divided each data set
randomly into training and test data sets and generated 20 pairs.

For these data sets, in [3] we showed that the recognition rates of the test data
sets and the numbers of selected features by batch BABD were comparable to
those shown in [2, 8, 13]. Therefore, here, we only compare the proposed method
with batch BABD.

We used the RBF kernels: K(x,x′) = φ�(x)φ(x′) = exp(−γ||x− x′||2/m),
where γ is a positive parameter. Using all the features we determined the γ and C
values by fivefold cross-validation changing γ = {0.001, 0.01, 0.5, 1.0, 5.0, 10, 15,
20, 50, 100} and C = {1, 10, 50, 100, 500, 1000, 2000}. During and after feature
selection we fixed the γ and C values to the determined values.

We measured the average feature selection time per data set using a personal
computer with 3GHz CPU and 2GB memory.

Table 1 shows the results for the ionosphere and WDBC data sets. The upper
part for each data set shows the result for the MM criterion and the lower part,
the MAE criterion. In the “Data (Tr/Te/In)” column, the first row of each data
set shows the name of the data set followed by the numbers of training data, test
data, and features. The first column also includes performance with the standard
deviation using all the features: the recognition rates for the test data sets and
those for the validation data sets in the parentheses. For the MAE criterion,
MAEs are shown in the parentheses.

In the second column, MM denotes batch BABD with the MM criterion and
MAE, that with the MAE criterion. And for instance “20” denotes the one-
pass incremental BABD with 20 features added, and “m” in 20m denotes the
multi-pass incremental BABD. The third column shows the recognition (ap-
proximation) performance after feature selection. And the fourth and the fifth
columns show the number of selected features and the feature selection time,
respectively.

For each performance measure, the best performance is shown in bold face.
From the table, except for two cases by one-pass incremental BABD, the

recognition rates (MAEs) by cross-validation were improved by feature selection,
but for the test data sets, the recognition rates were decreased. This was caused
by overfitting.

Now compare the MM and MAE criteria. Using all the features, the recogni-
tion rates of the test data sets by the MAE criterion were better for both data
sets. This means that different γ and C values were selected by cross-validation.
But the differences including those after feature selection were small.

As for the effect of incremental BABD, although multi-pass incremental BABD
improved the recognition rates (MAEs) by cross-validation, in some cases
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Table 1. Comparison of selection methods

Data (Tr/Te/In) Method Test Rate (CV Rate/MAE) Selected Time [s]

Ionosphere (281/70/34) MM 93.93±2.59(97.10±0.80) 15.20±5.0 14.70±2.12
94.21±1.89(95.57±0.67) 20 92.64±3.07(96.57±0.84) 13.9±3.3 15.55±2.82

20m 92.79±2.73(97.12±0.55) 13.1±3.7 37.80±13.06
10 91.86±3.50(96.51±0.86) 11.3±3.1 17.70±1.31
10m 92.29±3.04(97.17±0.71) 11.4±3.3 45.15±17.36
1 91.29±2.78(95.14±1.51) 5.7±1.7 35.90±5.84
1m 91.71±3.55(96.05±1.63) 7.2±2.3 142.9±66.60

95.29±2.31(0.2640±1.16) MAE 94.21±2.57(0.2278±0.0120) 13.5±2.4 13.75±1.41
20 93.14±3.25(0.2315±0.0134) 10.7±2.7 14.15±1.42
20m 93.43±3.33(0.2267±0.0127) 10.9±2.6 33.95±9.86
10 92.21±2.77(0.2321±0.0145) 7.8±2.9 15.80±1.29
10m 92.14±3.11(0.2274±0.0145) 8.6±3.2 34.45±9.46
1 91.50±3.85(0.2406±0.0140) 4.8±0.7 32.90±3.99
1m 91.36±3.51(0.2344±0.0112) 5.4±1.2 91.90±41.29

WDBC(455/114/30) MM 97.11±1.15(98.41±0.33) 16.6±4.4 40.45±8.99
97.41±0.98(98.09±0.34) 20 97.02±1.09(98.32±0.38) 14.4±2.7 41.50±6.34

20m 96.93±1.13(98.57±0.24) 14.7±3.6 100.5±27.00
10 97.06±1.01(98.26±0.35) 13.2±3.4 42.90±4.38
10m 96.71±1.24(98.56±0.34) 12.7±3.4 126.5±25.51
1 96.14±1.02(98.01±0.38) 6.6±1.4 114.3±9.81
1m 95.96±1.16(98.33±0.34) 7.5±2.0 381.7±134.0

97.72±1.22(0.2335±0.0067) MAE 96.14±1.40(0.1622±0.0058) 5.3±1.0 30.45±2.42
20 96.10±1.43(0.1622±0.0058) 5.2±1.0 34.20±2.27
20m 95.92±1.62(0.1619±0.0058) 5.0±1.2 62.10±9.72
10 96.10±1.43(0.1622±0.0058) 5.2±1.0 35.55±2.31
10m 95.92±1.62(0.1619±0.0058) 5.0±1.2 71.25±10.50
1 96.19±1.60(0.1617±0,0051) 4.2±1.0 86.05±8.23
1m 96.05±1.58(0.1616±0.0052) 4.4±1.2 366.7±810.1

one-pass incremental BABD showed better recognition rates for the test data
sets. Except for the WDBC data set with the MAE criterion, the recognition
rates for the test data sets decreased as iInc was decreased.

The numbers of selected features decreased as iInc was decreased and they
were minimum when iInc = 1 both for one- and multi-pass feature selection.

Feature selection time by batch BABD was shortest for all four cases. This
means that because the numbers of features were not so large, incremental fea-
ture selection did not contribute in speeding up feature selection.

4.2 Microarray Data Sets

We compared BABD with the MM criterion and BABD with the MAE crite-
rion for microarray data sets (see [22] for details of data sets), each of which
consisted of 100 pairs of training and test data sets. Because microarray data
sets have a small number of samples and a large number of features, they are
linearly separable and overfitting occurs easily. Therefore, we used linear kernels:
K(x,x′) = x� x′ and fixed C = 1.
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To measure feature selection time, we used a personal computer with 3.4GHz
CPU and 16GB memory.

To determine the number of added features (iInc), we carried out incremental
BABD with the MAE criterion for the breast cancer data set (1) changing iInc.
Figure 1 shows the result for one- and multi-pass BABD. As shown in Fig. (a),
the MAE for the training data by multi-pass BABD was better than that by one-
pass BABD. But there was not much difference in the recognition rates of the
test data by one- and multi-pass BABD (Fig. (b)), although by one-pass BABD
the feature selection time was shorter and the number of selected features was
smaller. From Figs. (b) and (c), we set iInc = 500 in the following experiments.
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Fig. 1. Feature selection for the breast cancer (1) data set

Table 2 shows the results. In the table if 100% recognition rates were obtained,
they are not shown. The triplet in the “Summary” row shows from the left the
numbers that the best/second best/third performance were obtained. In the
“Selected” and “Time” columns, the average value with the asterisk shows that
it is statistically significant between the values for the MM criterion and one-
pass incremental method with iinc = 500 by the Welch t-test with the confidence
interval of 95%.

Comparing the results for the MM and MAE criteria, there is not much differ-
ence of the recognition rates of the test data sets (statistically comparable). In
some cases (e.g., the breast cancer (3) and hepatocellular carcinoma data sets),
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Table 2. Performance comparison of incremental BABD and batch BABD

Data (Tr/Te/In) Method Test Rate (CV Rate/MAE) Selected Time [s]

B. cancer (1) (14/8/3226) MM 80.50±11.36 40.5∗±11.9 4.04±2.08
73.87±11.47 (76.50±7.09) 500 78.25±10.55 44.7±8.3 2.20∗±0.57

500m 79.25±10.93 47.7±7.3 6.71±2.58
73.87±11.47(0.6215±0.0709) MAE 79.12±9.85(0.0843±0.0104j 43.1±9.0 5.85±1.88

500 80.63±11.37(0.0875±0.0101) 42.1±6.7 2.51∗±0.59
500m 79.25±12.15(0.0816±0.0102) 45.8±7.7 8.98±3.52

B. cancer (2) (14/8/3226) MM 83.38±13.12 43.9∗±12.4 4.34±2.08
91.88±10.21(83.50±7.93) 500 82.63±13.45 50.1±7.9 2.39∗±0.63

500m 82.13±13.02 55.0±9.7 7.45±2.60
91.88±10.21(0.6356±0.0729) MAE 82.00±11.64(0.0950±0.0138) 49.9±12.8 7.16±2.35

500 83.50±12.10(0.0982±0.0117) 47.9±9.3 3.21∗±0.65
500m 83.87±12.03(0.0904±0.0117) 52.9±10.8 10.21±3.69

B. Cancer (3) (78/19/24188) MM 63.37±9.93 70.7∗±15.5 847.0±358.0
67.32±9.42(66.96±4.58) 500 62.95±9.29 82.6±8.5 555.4∗±74.74

500m 64.58±10.28 84.6±8.1 1999±673.8
67.32±9.42(0.8167±0.0474) MAE 63.47±10.39(0.1547±0.0122) 115.8±15.8 3557±915.2

500 62.05±8.82(0.1701±0.0095) 94.3∗±12.0 1463∗±107.4
500m 62.79±11.25(0.1576±0.0117) 97.7±11.8 5595±1724

B. cancer (s) (14/8/3226) MM 67.00±13.17 39.5∗±12.4 3.85±2.09
69.12±10.82(72.79±9.30) 500 68.87±11.92 46.5±7.9 2.31∗±0.69

500m 68.75±12.69 50.9±7.5 7.47±2.61
69.13±10.82(0.7248±0.0816) MAE 67.37±13.33(0.1051±0.0149) 46.0±10.5 6.56±2.39

500 67.50±12.75(0.1110±0.0139) 43.9±7.8 3.03∗±0.67
500m 69.13±13.16(0.1012±0.0121) 49.3±8.8 10.25±4.30

C. cancer (40/20/2000) MM 81.05±6.68(99.53±1.10) 91.8±35.7 47.22±43.42
79.64±6.54(79.67±6.21) 500 80.82±7.06(99.70±0.89) 84.1±23.4 30.17∗±11.83

500m 80.86±7.05(99.95±0.35) 87.0±16.2 73.55±45.44
79.64±6.54(0.6819±0.0880) MAE 81.82±6.49(0.2423±0.0319) 66.1∗±19.9 28.17±10.93

500 81.50±6.40(0.2357±0.0268) 71.1±15.6 22.68∗±4.68
500m 81.23±6.88(0.2223±0.0275) 76.9±13.7 72.78±26.70

H. Carcinoma (33/27/7129) MM 64.63±7.45 53.0∗±14.4 42.21±20.45
67.96±7.00(66.21±7.34) 500 64.70±7.81 61.0±8.8 26.52∗±3.84

500m 64.74±7.80 66.4±8.2 84.05±28.07
67.96±7.00(0.8263±0.0708) MAE 63.56±8.14(0.1538±0.0196) 65.3±13.9 101.5±34.46

500 65.04±8.24(0.1601±0.0192) 63.5±9.6 45.64∗±5.34
500m 64.78±7.99(0.1480±0.0176) 66.4±9.0 153.3±56.05

H. glioma (21/29/12625) MM 70.07±8.46 49.6∗±13.6 78.66±36.30
75.59±7.58(72.71±10.23) 500 70.38±8.39 61.6±9.7 22.66∗±3.03

500m 70.52±8.58 66.3±9.4 79.46±27.45
75.59±7.58(0.7718±0.0124) MAE 71.17±8.63(0.1364±0.0232) 52.5±12.9 131.1±38.38

500 70.10±8.60(0.1409±0.0217) 54.6±10.2 30.74∗±4.26
500m 70.41±9.13(0.1286±0.0192) 58.9±9.2 110.6±40.56

Leukemia (38/34/7129) MM 94.38±3.88 47.9∗±12.2 43.76±20.11
94.44±4.70(92.45±3.32) 500 94.41±3.87 56.6±8.6 25.93∗±4.94

500m 94.29±3.90 62.3±7.3 74.31±24.85
94.44±4.70(0.4866±0.0392) MAE 94.06±3.58(0.0883±0.0129) 66.3±14.5 126.3±42.17

500 94.32±3.80(0.0896±0.0110) 62.1∗±10.0 66.78∗±7.83
500m 94.59±3.83(0.0829±0.0095) 64.9±10.5 196.6±59.68

P. cancer (102/34/12600) MM 84.65±6.08(99.18±1.64) 350.5±243.8 33970±34855
87.03±4.56(88.52±2.27) 500 83.74±6.75(99.77±0.44) 251.3∗±134.1 9625∗±5279

500m 84.29±6.54(99.88±0.32) 288.2±115.6 39593±36943
87.03±4.56(0.8757±0.0429) MAE 80.68±6.30(0.4039±0.0385) 105.4∗±26.4 2490±1037

500 82.62±6.18(0.3988±0.0235) 135.3±21.8 1974∗±176.6
500m 83.38±6.45(0.3662±0.0213) 153.7±20.3 9157±3141

MM 7/2/9 10/4/4 0/17/1
Summary 500 4/8/6 8/10/0 18/0/0

500m 7/8/3 0/4/14 0/1/17
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the MAE criterion selected more features and thus feature selection time was
longer. But for the colon cancer data sets, the opposite was true. The above
results confirm that the MAE criterion is comparable to the MM criterion.

From the “Summary” rows, we found that multi-pass incremental BABD
showed the best recognition rates for the test data sets, but the numbers of
selected features were the largest and also feature selection was slowest. The
recognition rates by one-pass incremental BABD were comparable with those by
batch BABD and feature selection was the fastest, but the numbers of selected
features were the second to batch BABD. Therefore, one-pass BABD can be an
alternative to the batch BABD.

The reason why one-pass BABD performed well for the microarray data sets
although it was not for the ionosphere and WDBC data sets is as follows: because
the numbers of features are very large and the number of training samples are
very small, there exist many alternative subsets of features that realize best
generalization performance. In addition, because the number of added features
was usually much larger than the number of selected features, during incremental
BABD, optimal features were not deleted, or even if deleted, alternative features
remained.

5 Conclusions

In this paper, we proposed using the MAE (mean absolute error) criterion in
selecting features of small sample problems with a large number of features.
Setting class labels (1/−1) as the targets of regression, we train the least squares
SVM and calculate the MAE. Because the MAE is continuous, tie breaking,
which is a problem for a discrete criterion, does not occur frequently. Therefore,
feature selection is stabilized.

We evaluate the MAE criterion by incremental block addition and block dele-
tion (BABD) using the microarray data sets. The results show that the MAE
criterion is comparable with the MM criterion, which is the weighted sum of the
recognition error rate and the average margin error, and that the one-pass in-
cremental BABD is comparable in generalization abilities to batch BABD with
faster feature selection.
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