A Reinforcement Learning Algorithm to Train
a Tetris Playing Agent

Patrick Thiam, Viktor Kessler, and Friedhelm Schwenker

Ulm University, Institute of Neural Information Processing
89069 Ulm, Germany
friedhelm.schwenker@uni-ulm.de

Abstract. Inthispaper weinvestigate reinforcement learning approaches
for the popular computer game Tetris. User-defined reward functions have
been applied to T'D(0) learning based on e-greedy strategies in the stan-
dard Tetris scenario. The numerical experiments show that reinforcement
learning can significantly outperform agents utilizing fixed policies.

1 Introduction

Tetris is a popular computer game originally invented by the Russian mathe-
matician Alexey Pajitnov in the mid 1980’s, and nowadays it is implemented
on almost all operating systems and hardware platforms. The standard Tetris
board has a size of 200 cells (arranged in 10 columns and 20 rows), where each
cell has two states: free or occupied, and thus 22°° gaming board configurations
are possible. During the game, gaming pieces (shapes of four connected cells, also
called tetrominos) are dropped from the top of the gaming board into the board
and stacked upon occupied cells or the bottom line of the gaming board. In the
standard Tetris seven different tetrominos exist, and pieces to be dropped are
selected with equal probability. The player can select one out of the ten columns
and can rotate the current tetromino before dropping it. When a line of cells is
occupied the line is removed and all cells above it are moved down by one line.
Each removed line adds to the player’s score, and multiple lines can be removed
at the same time. The game is over when a cell in the top row is occupied by
the current tetromino. The goal is to maximize the score. Because of its complex
nature Tetris has been proven to be NP-complete [3]. The consequence of this
result is that it is not possible to find an optimal policy effectively, and thus
artificial intelligence methods could be of interest to find approximating solu-
tions. Because of its popularity, standard Tetris [8] as well as variations, such as
SZ-Tetris [7] have become popular benchmark tests for various machine learning
algorithms during the last years.

Neural networks have been successfully applied to numerous real world appli-
cations, for instance in pattern recognition, data mining, time series prediction.
In recent years several attempts have been made to train artificial neural net-
works for game playing tasks. For instance, Tesauro [10] has successfully applied
feedforward neural networks to play Backgammon. In this scenario artificial
neural networks are applied in conjunction with reinforcement learning (RL) al-
gorithms. Combinations of reinforcement learning with artificial neural networks

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 165-170, 2014.
© Springer International Publishing Switzerland 2014



166 P. Thiam, V. Kessler, and F. Schwenker

and ensemble learning have been successfully applied to board games such as
Connect Four or English Draughts [6,4,5]. Here in this paper we apply temporal
difference learning - a well know RL algorithm - to train a Tetris playing agent.

The major goal of this work is to explore and evaluate the effectiveness of
reinforcement learning techniques to train a Tetris playing agent. The paper is
organized as follows: In Section 2 a brief introduction to RL is presented, then
in Section 3 the T'D(0) implementation for the standard Tetris application is
described. The numerical experiments are shown in Section 4, and finally we
discuss results and draw conclusions in Section 5.

2 Introduction to Reinforcement Learning

A reinforcement learning scenario contains two interacting parties: an agent and
its environment. We assume that the environment can be completely observed,
so for any time step ¢ the environment is in a particular state s;. Given this sate,
the agent can select an action a; out of a set of possible actions A(s;). After
the agent has performed an action a; the environment gives a particular reward
r(as, s¢) to the agent and performs a state transition s; — S¢41.

The agent’s goal is to maximize the sum of rewards over time, for this, a state
value function (in the following denoted by V') has to be estimated. Using this
information allows the agent to choose appropriate actions with respect to the
given task. A comprehensive guide on reinforcement learning can be found in [9].

The greedy action aj is determined by taking the one with a maximum sum
of reward and value of the following state.

ay := argmaxry + YV (S¢41)
a€EA(st)

here v € (0, 1) is some discounting factor.

The policy defines the strategy used by the agent to choose its next action.
Obviously, only these greedy actions are used for testing. In training, it is useful
to explore other states and actions. To allow other actions and states to be
reached, a random action is taken with a rate of . In this work an e-greedy
policy will be use, with € € [0,1). The agent plays a greedy action with a rate of
1 — e (exploitation) and a random action with a rate of ¢ (exploration).

In case a greedy action is chosen, the value of the current state V'(s;) has to
be adjusted according to the temporal difference learning rule (see Eq. 2). The
greedy action a} is determined by taking the one with a maximum sum of reward
and the weighted value of the following state ry+1 + YV (s¢41). The reward is a
function that assesses the configuration of a state at each given time ¢ giving it
a numerical valuation 7. This function is used to evaluate the next state s;11
and the value obtained 741 is used in combination with the weighted value of
the next state vV (s;+1) as a comparison parameter to select the greedy action.

By modelling the reinforcement learning scenario as an Markov decision pro-
cess through P2%,, namely the propability of changing from state s to s’ under

ss’



Reinforcement Learning for Tetris 167

action a, and RY,,, the respective reward, one could formulate the relationship

between values of an optimal V-function:

V™ (s) = max Poy (Rey +7V™ () (1)
acA(s) o es

These conditions are called Bellman equations, please see [1] for a detailed math-
ematical analysis.

There are many approaches for estimating such optimal solutions. In this
work, we will use the simple temporal difference learning rule

Vi(se) =V (se) +afre +9V (si41) = V (s1)] (2)

where o > 0 is a small positive learning rate.

3 TD(0)-Learning for Tetris

It has been shown in [2] that Tetris cannot be won. Therefore it is less promising
to give some rewards at only at the end of the game. To avoid such weak rewards
to the agent, a heuristic evaluation function for all the possible states are defined
to get some more valuable rewards at any time step t.

The reward functions used in this work have been designed through linear
combinations of weighted features. The first two features consist of the value of
the highest used column (max},, ght) and the average of the heights of all used
columns (avg! ., ght) at each given time ¢. The next feature consists of the total
number of holes between pieces at each given time ¢ (ent}, ,..). The last feature
consists of the quadratic unevenness of the profile (U, ). This feature results
from summing the squared values of the differences of neighboring columns.
tt —enthores) (3)

— t+1 t
Te41 =D X (avgheight - avgheight) + 16 (CTL holes holes

T4l =9 X (avgltzeight - avgz—gilght) +16 % (cntzoles - cntfglles) + (Ulgro - Itj_r:;) (4)

Both reward functions take both next state s;1; and current state s; into
consideration. They describe how good is the transition from the current state
to the next state, whereby the higher the returned value the better the state.
Furthermore the second reward function (cf. Eq. 4) uses the quadratic unevenness
as an additional feature. Later we will see the impact of this particular feature
in the performance of the agent.

A tabular representation of the V-Function is too large to be stored in any
available memory. Just take into account every one of the 200 cells is allowed
to be in 2 different states gives 22°° configurations. In order to tackle this prob-
lem and reduce the state space to a usable size, the height difference between
adjacent columns was used to encode each state. For a given state the height
difference between successive columns is computed. Prior to that, a threshold
is set to limit the maximum and minimum height difference. In this work the



168 P. Thiam, V. Kessler, and F. Schwenker

threshold was set to +3. The possible height differences form a set of 7 values:
{+3,+2,+1,0,—1,—2,—3}. All height differences outside this range are trun-
cated to £3. Subsequently, each state is represented as a 9-tuple of values taken
from the previous set. Using this method results in reducing the state space to
79 &~ 40 x 10% possible states.

450% 10 Epsilon = 0.1 vs Epsilon = 0.01 vs Epsilon = 0.001
T T T T T

400 -

350+

)
K
T 3001 N
=
g 250+ i
g
g_ 200+ —Epsilon = 0.1
3 — Epsilon = 0.01
: 150 — Epsilon = 0.001]
2
<
2 100 i
50 4
10 60 110 160 210 260 310 360 410 s
played Games x 10

Fig. 1. Learning curves of the RL agent trained through 7"D(0) with e-greedy policy
and reward function as defined in Eq. (4) € = 0.1 (green) vs € = 0.01 (blue) vs ¢ =
0.001 (red)

4 Numerical Evaluation

Several experiments were undertaken to assess the performance of the imple-
mented agents. They consist primarily of alternating learning and test phases.
Prior to that, values for the learning rate a = 0.1 and the discount factor v = 0.9
were set for the entire experiments. The total number of played gaming pieces per
game is used as the performance indicator. At first, the agent is trained through
a fixed number of games which depends on the experiment being undertaken.
Subsequently, a test phase follows in which the agent is tested by 1000 games.
These episodes of alternating learning and test phases are repeated several times
in order to achieve a robust estimate of the agent’s performance.

Figure 1 shows the performance of the reward function defined in Eq. (4). The
agent is trained through 37 episodes of 10000 games each. The total number of
played gaming pieces is collected for each played game. The median of these
values is plotted at the end of each learning phase. This experiment is repeated
for three different e-values (0.1, 0.01, 0.001).

In order to perform a fair comparison between different e-values a second ex-
periment was conducted. Here the agent’s performances are compared on the
basis of greedy played gaming pieces instead of the number of played games. A
test phase of 1000 games follows each training phase, and again the median value



Reinforcement Learning for Tetris 169

of the total number of played gaming pieces has been taken as performance mea-
sure. Figure 2 shows the performance of the second (cf. Eq. 4) reward function.
For this experiment a threshold of 10® greedy played gaming pieces is set. During
each training phase, the agent is trained with so many games until this threshold
is reached. The experiment is repeated for two different values of ¢ (0.1, 0.01).
The abscissas depict the total number of greedy played gaming pieces during
the training phase, and the ordinates depict the median value of played gaming
pieces during the test phase, whereby the value labeled zero shows the result of
the untrained agent. Untrained agents take actions according to the evaluation
function given in Eq. (4).

o 8
Count of learning steps = 10
50010 : :

450~
400~
350~
300~
250~
200~

150

50 —Epsilon = 0.1
— Epsilon = 0.01
I I 1

1
0 0.5 1 15 2 2.5 3 35 y
learned Moves x 10

played Tetrominos (Median)

Fig. 2. Test curves of the RL agent trained through T"D(0) with e-greedy policy (¢ =
0.1 (blue) vs € = 0.01 (green))

5 Discussion and Conclusion

After taking a closer look at the results plotted from the first experiment, it
is clear that exploration increases with increasing € values. Thus the number
of played gaming pieces decreases. As the number of games per learning phase
is constant, the number of greedy played game pieces decreases with increasing
Epsilon. It follows that the agent needs to be trained with more games to achieve
results comparable with those obtained with lower ¢ values. However, it is not
possible through this experiment to determine the effect of € on the learning
performance of the agent. The next experiment serves this purpose.

Through the second experiment a comparison is done between the number of
greedy played gaming pieces during the training phase and the number of played
gaming pieces during the test phase. This comparison depicts at which extend
the agent is able to learn when he follows solely its greedy policy. Thereby it is
also possible to determine the effect of the greedy parameter € on the learning
performance of the agent. The results of the experiment for the second reward



170 P. Thiam, V. Kessler, and F. Schwenker

function (cf. Eq. 4), shows clearly that the agent yields better performances for
lower values of €. Both plotted curves seem to reach a saturation point after
playing approximately 2.5 x 10° greedy gaming pieces. Consequently, Figure 3
seems to show that larger exploration doesn’t seem to help the agent play better.
At this point it has to be pointed out that the agent had not been trained
further due to the time consumption of both training and test phases. Thus this
observation could not be proven throughout further investigation.

For the first reward function given in Eq. 3 learning results are very poor (only
approximately 2000 pieces after training with 3.5 x 10° greedy gaming pieces)
at least in comparison with the reward function given in Eq. 4 (approximately
400, 000 pieces after training with 3.5 x 10° greedy gaming pieces). The untrained
agent using the second reward function reached a median value of 14000 played
gaming pieces, while this value lied by 60 played gaming pieces using the first
reward function. But in both cases, the overall performance has been significantly
improved through T'D(0) learning utilizing e-greedy policy. Ongoing research
focuses on time-depending exploration in 7'D(0) learning and applications to
real world scenarios.

References

1. Bellman, R.E.: Dynamic Programming. Dover Publications (2003)

2. Burgiel, H.: How to lose at Tetris. Mathematical Gazette 81, 194-200 (1997)

3. Demaine, E.D., Hohenberger, S., Liben-Nowell, D.: Tetris is hard, even to approxi-
mate. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, Springer,
Heidelberg (2003)

4. FauBler, S., Schwenker, F.: Neural approximation of Monte Carlo policy evalua-
tion deployed in Connect Four. In: Prevost, L., Marinai, S., Schwenker, F. (eds.)
ANNPR 2008. LNCS (LNATI), vol. 5064, pp. 90-100. Springer, Heidelberg (2008)

5. Faufler, S., Schwenker, F.: Learning a strategy with neural approximated temporal-
difference methods in English Draughts. In: 2010 20th International Conference on
Pattern Recognition (ICPR), pp. 2925-2928. IEEE (2010)

6. Faufler, S., Schwenker, F.: Ensemble methods for reinforcement learning with func-
tion approximation. In: Sansone, C., Kittler, J., Roli, F. (eds.) MCS 2011. LNCS,
vol. 6713, pp. 56-65. Springer, Heidelberg (2011)

7. Faufler, S., Schwenker, F.: Neural network ensembles in reinforcement learning.
Neural Processing Letters, 1-15 (2013)

8. GroB, A., Friedland, J., Schwenker, F.: Learning to play Tetris applying reinforce-
ment learning methods. In: ESANN, pp. 131-136 (2008)

9. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press,
Cambridge (1998)

10. Tesauro, G.: Temporal difference learning and TD-Gammon. Commun. ACM 38(3),
58-68 (1995)



	A Reinforcement Learning Algorithm to Train
a Tetris Playing Agent

	1 Introduction
	2 Introduction to Reinforcement Learning
	3 TD(0)-Learning for Tetris

	4 Numerical Evaluation
	5 Discussion and Conclusion
	References




