Skip to main content

Systemic Approaches to Resolve Spatiotemporal Regulation of GTPase Signaling

  • Chapter
  • First Online:
GTPases

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

  • 550 Accesses

Abstract

Rho-related GTPases are the signaling switches that pair extracellular changes to intracellular signaling cascades. Their proficiency in the regulation of cellular signaling and modifications requires rigorous control of their spatial and temporal activities. The observation of spatiotemporal activity of Rho proteins cannot be achieved only through biochemical assays. The advent of fluorescent probes and optical reporters has transformed the precise detection and measurement of cellular activity in real time. Conventionally, the presumed cellular activity of a GTPase protein could be assumed by the manifestation of the cytoskeletal and cellular adhesion. Even though these methods provided information regarding relative activity of Rho GTPases, no information could be retrieved about their spatiotemporal dynamics. This necessitates the development of new tools to enable quantitative and spatial detection of the activity of these proteins. Some of the recent studies have devised new techniques to provide an insight into understanding the regulation of protein activities in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Z. Small GTPases: versatile signaling switches in plants. Plant Cell. 2002;14(Suppl):S375–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Gu Y, Wang Z, Yang Z. ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol. 2004;7:527–36.

    Article  CAS  PubMed  Google Scholar 

  3. Nagawa S, Xu T, Yang Z. RHO GTPase in plants: conservation and invention of regulators and effectors. Small GTPases. 2010;1(2):78–88.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Wu G, Gu Y, Li S, Yang Z. A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell. 2001;13(12):2841–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell. 2005;120(5):687–700.

    Article  CAS  PubMed  Google Scholar 

  6. Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, et al. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell. 2010;143(1):99–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science. 2002;296(5575):2026–8.

    Article  CAS  PubMed  Google Scholar 

  8. Wu P, Brand L. Resonance energy transfer: methods and applications. Anal Biochem. 1994;218(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  9. Clegg RM. FRET tells us about proximities, distances, orientations and dynamic properties. J Biotechnol. 2002;82:177–9.

    CAS  PubMed  Google Scholar 

  10. Truong K, Ikura M. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol. 2001;11:573–8.

    Article  CAS  PubMed  Google Scholar 

  11. Pollok BA, Heim R. Using GFP in FRET-based applications. Trends Cell Biol. 1999;9:57–60.

    Article  CAS  PubMed  Google Scholar 

  12. Kenworthy AK. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods. 2001;24(3):289–96.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura T, Kurokawa K, Kiyokawa E, Matsuda M. Analysis of the spatio-temporal activation of Rho GTPases using Raichu probes. Methods Enzymol. 2006;406:315–32.

    Article  CAS  PubMed  Google Scholar 

  14. Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol. 2002;22(18):6582–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yoshizaki H, Ohba Y, Kurokawa K, Itoh RE, Nakamura T, Mochizuki N, et al. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol. 2003;162(2):223–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell. 2005;120(5):687–700.

    Article  CAS  PubMed  Google Scholar 

  17. Fu Y, Xu T, Zhu L, Wen M, Yang Z. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol. 2009;19(21):1827–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hwang JU, Gu Y, Lee YJ, Yang Z. Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell. 2005;16(11):5385–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Galperin E, Sorkin A. Visualization of Rab5 activity in living cells by FRET microscopy and influence of plasma-membrane-targeted Rab5 on clathrin-dependent endocytosis. J Cell Sci. 2003;116(Pt 23):4799–810.

    Article  CAS  PubMed  Google Scholar 

  20. Kalab P, Weis K, Heald R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science. 2002;295(5564):2452–6.

    Article  CAS  PubMed  Google Scholar 

  21. Kalab P, Pralle A, Isacoff EY, Heald R, Weis K. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature. 2006;440(7084):697–701.

    Article  CAS  PubMed  Google Scholar 

  22. Caudron M, Bunt G, Bastiaens P, Karsenti E. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science. 2005;309(5739):1373–6.

    Article  CAS  PubMed  Google Scholar 

  23. Dumont J, Petri S, Pellegrin F, Terret ME, Bohnsack MT, Rassinier P, et al. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol. 2007;176(3):295–305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, et al. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell. 2010;143(1):99–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tao LZ, Cheung AY, Wu HM. Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant cell. 2002;14(11):2745–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Levskaya A, Weiner OD, Lim WA, Voigt CA. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature. 2009;461:997–1001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature. 2009;461(7260):104–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Schiene K, Puhler A, Niehaus K. Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a Rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration. Mol Gen Genet. 2000;263(5):761–70.

    Article  CAS  PubMed  Google Scholar 

  29. Miki D, Itoh R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice. Plant Physiol. 2005;138(4):1903–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hoefle C, Huesmann C, Schultheiss H, Bornke F, Hensel G, Kumlehn J, et al. A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell. 2011;23(6):2422–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Singh MK, Ren F, Giesemann T, Bosco CD, Pasternak TP, Blein T, et al. Modification of plant Rac/Rop GTPase signalling using bacterial toxin transgenes. Plant J. 2013;73(2):314–24.

    Article  CAS  Google Scholar 

  32. Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature. 1997;387(6634):729–33.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor- 1. Nature. 1997;387:725–9.

    Article  CAS  PubMed  Google Scholar 

  34. Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol. 2011;9:487–98.

    Article  CAS  PubMed  Google Scholar 

  35. Just I, Fritz G, Aktories K, Giry M, Popoff MR, Boquet P, et al. Clostridium difficile toxin B acts on the GTP-binding protein Rho. J Biol Chem. 1994;269(14):10706–12.

    CAS  PubMed  Google Scholar 

  36. Belyi Y, Aktories K. Bacterial toxin and effector glycosyltransferases. Biochim Biophys Acta. 2010;1800(2):134–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Pandey, G.K., Sharma, M., Pandey, A., Shanmugam, T. (2015). Systemic Approaches to Resolve Spatiotemporal Regulation of GTPase Signaling. In: GTPases. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-319-11611-2_9

Download citation

Publish with us

Policies and ethics