Skip to main content

Functional Genomic Perspective of Small GTPases

  • Chapter
  • First Online:
GTPases

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

  • 559 Accesses

Abstract

Rho GTPases serve as the central signaling molecules in the regulation of vital cellular processes such as cell expansion, directional growth, and division. Rho GTPases have an exceptional ability to interact with diverse regulator and effector molecules that eventually confer signaling specificity to them. Three important regulatory factors including GEFs, GAPs, and GDIs have been identified as essential for Rho signaling events. In response to an extracellular stimulus, GEFs control spatiotemporal signaling activity of Rho GTPases. In comparison to GEFs, GAPs and GDIs are largely believed to be of lesser functional significance. However, recent research has established that members of Rho GAPs and Rho GDIs are much more intricate in the regulation of Rho signaling-mediated cellular processes than previously predicted. Rho GAP and Rho GDI gene families are well conserved in eukaryotes. It has been established that in animals, GAPs and GDIs function strictly according to the upstream regulators, and similar regulation has been anticipated for their plant counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998;93(5):815–26.

    Article  CAS  PubMed  Google Scholar 

  2. Borg S, Podenphant L, Jensen TJ, Poulsen C. Plant cell growth and differentiation may involve GAP regulation of Rac activity. FEBS Lett. 1999;453(3):341–5.

    Article  CAS  PubMed  Google Scholar 

  3. Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature. 2005;436(7054):1176–80.

    Article  CAS  PubMed  Google Scholar 

  4. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6(2):167–80.

    Article  CAS  PubMed  Google Scholar 

  5. Tcherkezian J, Lamarche-Vane N. Current knowledge of the large RhoGAP family of proteins. Biol Cell. 2007;99:67–86.

    Article  CAS  PubMed  Google Scholar 

  6. Hoffman GR, Nassar N, Cerione RA. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell. 2000;100(3):345–56.

    Article  CAS  PubMed  Google Scholar 

  7. Yalovsky S, Bloch D, Sorek N, Kost B. Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol. 2008;147:1527–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ueda T, Kikuchi A, Ohga N, Yamamoto J, Takai Y. Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J Biol Chem. 1990;265:9373–80.

    CAS  PubMed  Google Scholar 

  9. Klahre U, Becker C, Schmitt AC, Kost B. Nt-RhoGDI2 regulates Rac/ROP signaling and polar cell growth in tobacco pollen tubes. Plant J. 2006;46:1018–31.

    Article  CAS  PubMed  Google Scholar 

  10. Klahre U, Kost B. Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/ROP to the apex of pollen tubes. Plant Cell. 2006;18:3033–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nomanbhoy TK, Cerione RA. Characterization of the interaction between RhoGDI and Cdc42Hs using fluorescence spectroscopy. J Biol Chem. 1996;271:10004–9.

    Article  CAS  PubMed  Google Scholar 

  12. DerMardirossian C, Bokoch GM. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 2005;15:356–63.

    Article  CAS  PubMed  Google Scholar 

  13. Bernards A, Settleman J. GAP control: regulating the regulators of small GTPases. Trends Cell Biol. 2004;14:377–85.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida S, Pellman D. Plugging the GAP between cell polarity and cell cycle. EMBO Rep. 2008;9:39–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. DerMardirossian C, Rocklin G, Seo JY, Bokoch GM. Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Mol Biol Cell. 2006;17:4760–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Qiao J, Holian O, Lee BS, Huang F, Zhang J, Lum H. Phosphorylation of GTP dissociation inhibitor by PKA negatively regulates RhoA. Am J Physiol Cell Physiol. 2008;295:C1161–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J. 2000;348:241–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Perez P, Rincón SA. Rho GTPases: regulation of cell polarity and growth in yeast. Biochem J. 2010;426:243–53.

    Article  CAS  PubMed  Google Scholar 

  19. Wu G, Li H, Yang Z. Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for rop-specific GTPase stimulation. Plant Physiol. 2000;124(4):1625–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Pirone DM, Carter DE, Burbelo PD. Evolutionary expansion of CRIB-containing Cdc42 effector proteins. Trends Genet. 2001;17(7):370–3.

    Article  CAS  PubMed  Google Scholar 

  21. Gu Y, Vernoud V, Fu Y, Yang Z. ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot. 2003;54(380):93–101.

    Article  CAS  PubMed  Google Scholar 

  22. Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, et al. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol. 2005;169(1):127–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell. 2005;120(5):687–700.

    Article  CAS  PubMed  Google Scholar 

  24. Fu Y, Xu T, Zhu L, Wen M, Yang Z. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol. 2009;19(21):1827–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, et al. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell. 2010;143(1):99–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Molendijk AJ, Ruperti B, Singh MK, Dovzhenko A, Ditengou FA, Milia M, et al. A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J. 2008;53(6):909–23.

    Article  CAS  PubMed  Google Scholar 

  27. Dorjgotov D, Jurca ME, Fodor-Dunai C, Szucs A, Otvos K, Klement E, et al. Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro. FEBS Lett. 2009;583(7):1175–82.

    Article  CAS  PubMed  Google Scholar 

  28. Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, et al. The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci U S A. 1999;96:10922–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, et al. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci U S A. 2006;103(1):230–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nakashima A, Chen L, Thao NP, Fujiwara M, Wong HL, Kuwano M, et al. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex. Plant Cell. 2008;20(8):2265–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T, Shimamoto K. A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice 1[w]. Plant Physiol. 2005;138(3):1644–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, et al. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell. 2007;19(12):4022–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Pandey, G.K., Sharma, M., Pandey, A., Shanmugam, T. (2015). Functional Genomic Perspective of Small GTPases. In: GTPases. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-319-11611-2_8

Download citation

Publish with us

Policies and ethics