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Abstract. Access control is a necessary, but often insufficient, mechanism for
protecting sensitive resources. In some scenarios, the cost of anticipating infor-
mation needs and specifying precise access control policies is prohibitive. For this
reason, many organizations provide employees with excessive access to some re-
sources, such as file or source code repositories. This allows the organization to
maximize the benefit employees get from access to troves of information, but ex-
poses the organization to excessive risk. In this work we investigate how to build
profiles of normal user activity on file repositories for uses in anomaly detec-
tion, insider threats, and risk mitigation. We illustrate how information derived
from other users’ activity and the structure of the filesystem hierarchy can be
used to detect abnormal access patterns. We evaluate our methods on real access
logs from a commercial source code repository on tasks of user identification and
users seeking to leak resources by accessing more than they have a need for.

Keywords: file, access, insider threat.

1 Introduction

Theft of critical information by malicious insiders is a major threat. Companies may
suffer critical damages when disgruntled employees steal intellectual property. There
are ample evidences where organizations have suffered significantly due to leakage of
large amount of sensitive information accessed by insiders who have legitimate access
control privileges to access such information. Insider threats can be caused either by
malicious employees or negligent employees who either have their credentials stolen or
their devices compromised by malware.

Current access control paradigms, such as role-based access control [1], multi-level
security [2], or originator access control [3], are insufficient to deal with this threat of
malicious insiders [4]. It is often difficult to a priori predict future needs and configure
access control to enforce least privilege in highly dynamic environments. For example,
many organizations provide employees access to large data and source code repositories
that make it easier to learn and build upon past success without having to reinvent the
wheel; in healthcare environments, emergencies often dictate needs. In these cases it
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is thus desirable to allow broader access to resources and monitor for potential abuse
later. Such systems expose themselves to risk from malicious insiders who can abuse
their authorizations by making many access requests, building up aggregate risk.

In this paper we investigate the approach of using filesystem-derived features to de-
tect such insider threats. We evaluate our techniques on a real dataset derived from a
commercial source-code repository from a large organization to detect malicious insid-
ers stealing sensitive information. The techniques developed are applicable to any large
file repository or web-based information system, such as a wiki.

Most existing solutions for anomaly detection [5-8] only consider an individual re-
source or command, or aggregate statistics about file-related operations [9]. These sys-
tems often yield high false positive rates, especially for new users or resources. Building
profiles based on past history or other resources accessed [10] often results in a blowup
in the number of probability point estimates.

One existing approach is to adopt a risk-based access control model [4]. For example,
in FuzzyMLS [11], one quantifies the risk entailed by the access to each file, and sums
up such risk. The risk is independent of a user’s access history—and the access history
of other users—and depends on a risk-model on known user- and file-attributes. Such a
model is not flexible in dynamic environments and has a high cost to deploy.

Our key insight is that the file system hierarchy, in addition to the behavior of other
users, provides meaningful information regarding the relevance of a resource. For ex-
ample, the location of a new file often indicates the project, component, revision, owner,
or type of the file. We discuss how to extract and leverage this information for anomaly
/ normality testing. Our key idea is to detect abnormal accesses based on comparing a
user’s current accesses with the history. The hypothesis is that there is significant self-
similarity in most user’s accesses. That is, each user’s accesses during the current time
period will be similar to what the user has accessed in the past.

We approach the problem in two steps. In the first step, we define a scoring function
that computes the score for the pair of a history (which we abstract as a set of files
accessed during the history) and a file that is currently accessed. This scoring function
can take into consideration extra information, such as file hierarchy and the histories of
other users.

In the second step, we explore how to use such a scoring function to detect malicious
insider behaviors. We propose and evaluate several models for scoring and aggregation,
and evaluate how well each performs at identifying anomalous behavior. We evaluate
our methods on real dataset of access logs, and find that filesystem hierarchy derived
features are promising in the field of risk scoring and anomaly detection.

The rest of this paper is organized as follows. In Section 2, we present related work.
In Section 3 we define the problem and provide an adversarial model for the scenarios
we consider in this work. Details of our proposed approach are presented in Sections 4.
We provide a description of the test system and experimental results in Section 5, and
conclude in Section 6.

2 Related Work

Most related work is in the area of anomaly or intrusion detection. Denning [7] pre-
sented the first host-based intrusion detection system leveraging statistics (frequency,
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inter-arrival time, etc.) of events for alerting. Javitz and Valdes [12] later implemented
the concept as IDES. These works focus on building statistical profiles of past behavior
and issuing alerts when new events exceed significant thresholds, such as a set number
of standard deviations.

There has been an abundance of work on network-based intrusion detection [13—
16], typically measuring anomalies in the rate or volume of the traffic [13], abnormal
numbers of distinct hosts or ports [17], or similarity to known malicious behavior [18],
such as blacklists' and signatures [19]. Salem et al. [5] present a survey of research on
insider attacks for host and network intrusions.

There is relatively little work specifically looking at filesystem events for anomaly
detection. Stolfo et al. [10] use filesystem features—primarily filename, working direc-
tory, and parent directory—to detect rootkits and other malicious activity. No features
are derived from the relationship between two files in the filesystem, and each resource
is treated as an opaque identifier. Deviations from first and second order density estima-
tors [8] are used to score events. The system estimates the probability of a previously
unseen event.

Huang and Wong [20] discuss the use of a Fuse virtual filesystem to monitor for
filesystem anomalies. It uses a “baseline” library of profiles, but provides no details
on how this library is generated or how filesystem requests are scored against the li-
brary. The TripWire File Integrity system? detects anomalies in filesystems by testing
for unexpected changes in files using a file digest, similar to how ZFS detects file cor-
ruption [21], and cannot be used to detect violations of confidentiality.

Senator et al. [9] use statistical anomalies in file events, specifically the fraction of
file events on removable media, to detect injected malicious activity into activity logs
obtained from workstations at Raytheon.

Bowen et al. [22] suggest using decoy files to detect malicious insiders. Decoys
are files that contain tainted information whose use can be tracked, e.g., credentials or
account information. Their system relies on traceable or booby trapped resources rather
to detect malicious insiders rather than by analyzing resources users typically require.
It is more difficult to perform such attacks in software code repositories where use of
the software is more difficult to detect.

Chen and Malin [6] propose an anomaly detection method that clusters weighted
graphs of users’ access to resources. Their clustering approach is similar to a hybrid
of k-nearest neighbor and spectral analysis. If a user does not access similar resources
to other users, or changes the cluster of similar users over time, they are considered an
anomaly. This work is the most similar to ours in that it considers the resources other
users access, but it does not consider the relationships between resources implicit in the
filesystem or file names.

3 Problem Definition

At a high level, the problem we want to answer is how to detect malicious insiders
who try to steal files they have the privilege or clearance to access. In this section, we

! https://developers.google.com/safe-browsing/
2 http://www.tripwire.com/it-security-software/scm/
file-integrity-monitoring/
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introduce a concrete formulation of this problem. Note that while we are using the term
“files” here, our approach is applicable to other types of resources where similarity can
be measured.

We assume the following inputs. Let F denote the set of all files with associated
information, e.g., the file hierarchy, the type of the files, etc. We are given A§- forl <
t<Tand1l < j < N, where N denotes the number of users, j ranges over all users, T’
is the index of the current time period, ¢ ranges over all time periods, and each A; cF
denotes the set of files accessed by user j during the ¢’th time period. We use A;’tZ to

denote A;l u A;lH u---u A;"’. We use A to denote the matrix consisting of all A§- ’s.

For the output, we want to identify the users that are malicious in time period 7'.
More specifically, we want a mechanism M that outputs a non-negative real number
when given A F, j, where an output of 0 denotes completely normal behavior, and the
larger the value, the more suspicious the j’th user activity during the ¢’th time period.
Then the j indices with the highest values are considered abnormal.

3.1 Adversary Model

We try to detect malicious insiders whose objective is to steal (i.e., download/check
out) files. We assume that the attacker needs to steal a substantial number of files, and
is aware of the mechanism that is being deployed. We consider two kinds of attackers.

— An impetuous attacker is one who turns malicious only at time 7". An employee
who turns malicious after learning that he will be fired soon belongs to this kind.

— A patient attacker is one who is malicious at a time earlier than T". Such an attacker
can alter his normal access pattern over time to make the attacking activities in time
T look benign.

3.2 Challenges and Evaluation Criteria

An important challenge is how to evaluate such a mechanism. While our formulation is
close to classification problems in machine learning, one challenge is that we have very
little labeled data, and the few labels we have are of limited reliability, containing both
false negatives and false positives. To deal with this challenge of limited or missing
labels, we treat this as an unsupervised learning problem, and build models using only
the access data. We assume this data is mostly benign when training and testing. For data
representing malicious activity, we inject file accesses representing attempts to steal
files. Such data are not used in training, and are used only for testing the effectiveness
of our approaches at detecting users with such injected accesses. We vary the number
of file accesses injected into one user’s access from around 500 to around 12,000, and
evaluate the robustness of different approaches.

A second challenge is to be resilient to patient adversary who knows about the de-
ployed mechanism, and may carry out evasion attacks. To evaluate effectiveness against
such adversaries, we evaluate how the adversarial strategy of accessing a few files
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among the files one plan to steal (i.e., among the files to be injected) impacts the effec-
tiveness of different methods.

4 Proposed Approaches

Some currently deployed systems use the number of files that are accessed as a fea-
ture for detecting. This approach, however, is unlikely to be sharp enough to achieve
the needed tradeoff between false positives and false negatives. Our intuition is that
it should be possible to exploit more information between the files that are accessed
in the current period, A7, against the files that have been accessed during the history,
A]T%:Tfl, which we use Af as a short hand. We drop the subscript j when it is not
important. First, if all files that one user currently accesses have been accessed in the
recent past by the user, then this is unlikely to be a malicious theft. Second, even if
many of the currently-accessed files have not accessed, if they are similar to the files
that have been accessed, then this is less likely to be malicious theft. Many ways to
measure similarity exist. One possibility is based on the hierarchical structure of the
file. Files under the same directory may be viewed as more similar than files that are far
apart in the hierarchy. Files that are accessed by essentially the same set of users may be
viewed as more similar than files that are accessed by mostly disjoint sets of users. Files
that have similar meta-data attribute values, such as file types (e.g., C source code files
versus HTML files) may be viewed as more similar. In summary, we want to measure
both the “amount” of accesses and the “similarity” of accesses.

At the center of our approach is a function that assigns a score for each file f when
given an access history A7, we use the notation score[f| A¥] to represent the scoring
of f when given A . Intuitively, this function measures how “unexpected” a file f is,
when given A as access history. We desire the following algebraic properties for such
a score function:

1. score[f|AH] is low when f C A*. The intuition is that a file already accessed is
considered quite normal.

2. score[f|AH] < score[f|AL] when A D A and as a corollary, score[f|}] should
be high.

We construct score[ f| A7 ] by using a composition of two functions, a similarity mea-
sure between two files, and an aggregation function. For each new access f the scoring
function is mapped against f and each file in the user’s history. The aggregation func-
tion reduces the result into a final score. The general function is:

score[f\AH} = aggycan score(f,g)

To instantiate this, we need to define both the aggregation function and a scoring
function. The score( f, g) function dictates how two files relate to each other while the
agg expresses how a single file f relates to the entire history A . In the remainder of
this section we present several possible instantiations, and methods to use the scoring
function.
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4.1 The Scoring Function: score( f, g)

The scoring function for two individual files defines how files relate to each other within
the system. We will explore several different techniques to classify their relationships.

Binary Equality. The most basic method is to define a score to test for equality be-

tween two files:
0 when f =
score(f,g) = { 1 whenj"c # g

This method works well when users consistently access the same set of files, but cannot
adequately handle new resources, such as new files in the same directory as previous
requests.

Full Distance. This approach measure the distance between two files if one were to
walk the hierarchy to the least common ancestor, lca, which is normalized by the worst
case scenario where the Ica is the root of the filesystem.

score(f, g) = length(f,lca(f,g)) + length(g, Ica(f, g))
’ length( f, root) 4 length(g, root)

Lowest Common Ancestor (LCA). Another approach is to look at the lowest common
ancestor between the two files. This gives a distance to the branch point, but does not
consider how far away the other file is from that branch point. The full distance between
two files can sometimes lead to longer than expected paths if there is a deeply nested
structure where most of the accesses are occurring at the leafs. This approach evaluates
the distance based on the branch of the filesystem being accessed as opposed to the
exact files being accessed, and under some types of systems and hierarchies may be a
more appropriate scoring technique.

_length(f,lca(f,g))
SCOI’E(fa g) - length(f, root)

Note that this is not symmetric, that is score(f, g) = score(g, f) is not necessarily
true.

Log LCA. The previous method penalizes files near the root more than files deep
within the hierarchy. The penalty incurred for being near the root may be too harsh,
and so different ways of scaling the score may be applied. One way to scale the score
is to take the log of the distances values, which adjusts the scores so files that are very
shallow are not penalized as much as the previous technique.

_ log(length(f,Ica(f,g)) +1)
score(f, 9) = log(length( f, root) + 1)

Different scaling techniques also affect how the score of non-exact matches relate
to the score of exact matches. In the case of this technique, exact matches still have
a score of 0, while matches within the same directory or close directories will have a
higher score relative to the non-scaled score.

Access Similarity. Given user sets Uy and U, which contain the users who access files
f and g in the history, we use the Jaccard Distance to define the score function between

fand g.
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|UfﬁUg|

score(f,g) =1 —
Uy U Ug|

The underlying hypothesis for this scoring method is that files dissimilar in the hier-
archy may be similar for other reasons, and this association is elevated by user access
patterns. For example, the specification and implementation files in a source code repos-
itory and their corresponding documentation. This is closely related to collaborative
filtering, where new resources are suggested based on previous requests.

Discussion. The above techniques are the primary score functions that we examine in
this work, but is not meant to be an exhaustive list of filesystem derived features. Future
work will consider the order and frequency of file accesses, as well as other file meta-
data, such as the type. We also note that it is highly unlikely any single scoring function
will be sufficient in all possible use cases or for all file requests. We will investigate how
well each scoring function performs at discriminating abnormal activity in Section 5.

4.2 The Aggregation Function: agg,c o=

A single file f € AT generates | A | different scores, one for each g € A”. The agg
function defines the way that the system aggregates the | A*?| scores to create a single
score for the specific f.

Min Score.  One approach is to take min, ie., agg,camscore(f,g) =
minge 41 score( f, g). The advantage of this approach is that it is simple, and in many
cases captures the distance effectively. Even a single access in a certain area may be
useful to predict where the next accesses are going to occur. The downside of this is
that it is susceptible to seeding attacks by “patient adversaries” who may perform a
single access in an area that they plan to later access much more broadly. That single
access can hide many later accesses and undermine certain scoring functions.

Average. To mitigate the patient adversary attack described above, one can calculate
the aggregate score as the average of all similarity score values. This increases the effort
for an adversary to seed their history with files similar to the intended target, but may
increase the aggregate risk scores for diverse users.

K -Nearest Scores. An alternative that balances the tradeoffs of the minimum and
average aggregate functions is to compute the average of the k files in A that have the
lowest score. This is also vulnerable to “patient adversaries”, who can seed the past with
a few files in different locations, however it takes more of an effort and some knowledge
of k to be effective.

4.3 Feature Generation

The previous techniques produce a way to determine the score for any specific file,
in this section we focus on how to use those scores to generate a feature set for a
specific user. We look at how to use these scores for inner (to self) and outer (to others)
approaches to feature generation.
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4.3.1 Cumulative Score
Individual score( f, A™) results taken as a single value are not able to provide any mean-
ingful context as to possibly malicious behavior. Rather, the scores for all f € AT taken
together provide more information. We focus on two primary ways of accumulating the
risk into a single feature, summing and averaging the scores.

Since we are primarily concerned with a user stealing information, the method of a
summing the scores together is one obvious choice since it will generate a higher value
when more files are accessed, we define this as

M
sumScore = Z score[fk\Af]

k=1

where f;, € A;TF and M = \A;‘F\ is the number of unique files accessed in the current
period. A user who exceeds a risk budget could be flagged and their behavior reviewed.
However, summing the scores will result in very unstable values, for instance in one
period a user may perform 10x or 100x more accesses then they did in the previous
or next period. Any technique which builds a model of the user’s expected behavior
would need to normalize the information or handle these drastically different cases
accordingly.

Averaging the user’s scores against the total number of unique accesses they per-
formed is one natural way to normalize the data, aveScore = S“m]@w”. In this way,
activity between periods can be compared more naturally since all values will be in
[0,1], and the overall score will be effected by the portion of files that receive a high or
low score.

One way to use both the sum or average is to create a single score for each user as
they relate to their own history. That is, for a set of users U, and j € U, we calcu-
late the sumScore or aveScore given Af and A;I . However, this does not use all the
information that is available.

4.3.2 Self Score vs. Relative Scores

Instead of taking a single score for user j, we can generate a matrix of scores x where
z; j = aveScore; ; using AT and Af . Each row in the matrix represents a single user’s
current set of accesses AZT, and each column indicates how that user relates to the his-
tory of the j’th user, A;I . The advantage here is that instead of requiring a single score
to be fixed above some threshold, we can instead evaluate how all the scores change in
the same period. It may be that a user’s behavior deviates from their own A by a rela-
tively high degree, however if that user’s behavior stays consistent to most of the other
A, then this can be an indication that the new behavior reflects a user legitimately
accessing new files. Conversely, if a user stays consistent to their own behavior, but
deviates highly from all the other As then this can indicate other types of abnormal
behavior.

The novelty here is that in most cases either a global model of user behavior is trained
and used to detect abnormal behavior, or a specific profile given one user’s history is
trained. While the global model is capable of incorporating some of the more complex
relationships within the data, it can be difficult to do on such high dimensional and
sparse data.
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4.4 Using the Features

Given the scores and features constructed in the previous subsection, we now turn to
how to use this information.

4.4.1 Self Score Evaluation

The most basic way in which to use the similarity score is to look directly at the
sumScore or aveScore for the user’s own profile. There are two ways we may want to
use this information during an evaluation, anomaly detection and profile identification.

Profile Identification This is also an effective way to associate an unknown A7 to the
actual user it belongs to. In this process we generate score[A?T\Af ] forall j € U, and
the A with the lowest scores generally help to identify the user that actually generated
the accesses.

Anomaly Detection If the score for a particular set of accesses is above some threshold,
then it is marked as abnormal.

We will see in our evaluation that even this simple metric on the scores can be effec-
tive. This is the only technique that we use which only looks at a user own score, the
rest of this section discusses techniques that look at the all of the scores as a larger set
of features, comparing a single access pattern back to all users’ histories.

4.4.2 Mean Vector

This technique is similar to centroid based clustering techniques with known user labels
for all points. Given the full features x where ; ; = score[A] |A¥] over many time
periods, we find a mean vector to represent each user, which is essentially the center
point for a cluster that will represent a specific user’s expected behavior. The advantage
of this technique is that each user’s accesses will relate to other users in specific ways
based on similar access patterns and job responsibilities so it adds more information
into the system. Once we know the mean vectors for all users, we can compare any new
feature vector to determine how close that vector is to the mean of each specific user.
Cosine Similarity is used to measure the distance between the centroids and new feature
vectors. This handles outliers in the training period well by smoothing the expectation
out over all the training points. However this does not account well for cases where a
user may be performing several different job functions over different periods but works
well in general.

5 Experimental Results

The techniques presented can be applied to any system that manages sensitive resources,
such as document repositories, online wikis, and source code repositories. While we ex-
tensively leverage the filesystem hierarchy, the presented techniques are general enough
to be adapted to other domains. For example, the Wikipedia ontology or the shortest
path between two URLSs can be used as a substitute.

In our experiments we focus on a commercial source code repository for a large orga-
nization. Source code is an attractive target for malicious insiders and has an extremely
high value, such as the theft of Goldman Sachs source code by Sergey Aleynikov [23],
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and negative impact to the organization, for example the RSA SecureIlD? or Adobe
breaches®*. Source code is often organized into hierarchies, and access is often limited
by job function and expertise. Source code has many of the characteristics of other file
repositories that make anomaly detection difficult. Files are not consistently accessed,
and become stable over time, e.g., libraries, while new files are constantly being added
or removed. Further, many users require different levels of access. Those responsible
for building code require broad read-only access, while many developers need narrow
read-write access. Debugging may often require an employee to investigate how other
components function to narrow down root causes. This all makes finding stable and
consistent access patterns challenging.

The source code management system we use in our study is Configuration Manage-
ment Version Control (CMVC). Each file in CMVC is associate with a filename and
a location in a hierarchy, and files can be grouped into components orthogonal to the
filesystem hierarchy. For example, not all files in a directory need to be in the same
components, and a component can contain files from any directory. The components
may be further nested, and users are granted access to check in and check out files by
authorizing them to components. CMVC also includes extensive reporting, task and
defect management, and release levels to make administration of large projects easier.

Lines from the log consist of a timestamp, userID, action performed on a resource,
and the name of the resource. The logs contain additional lines which relate to other
information such as reporting and defects, however we limit our view of the logs to the
file activity. For our task, we consider only accesses that result in file reading. CMVC
does not log which component a request pertains to, and we do not have access to the
access control lists, historical or current.

For our task we analyze one year of log data consisting of approximately two-
thousand users. There are ~512k unique files and ~133k unique directories in the
filesystem. Since there must be some history for all of our techniques to be useful, there
is a single period of learning the initial history. Then there are 10 meaningful periods of
training data, and a final period used for testing.

5.1 Portion of Files Accessible

One way to measure the effectiveness of each scoring technique is to measure how well
it scores files that the user does access compared to files that the user does not access in
a given time period. We generate a set of uniformly sampled files to represent the ‘All
Possible Access’ group, while using each user’s actual accesses for the other group.

Figure 1 plots ¢ at every increment of .05 between 0 and 1, the x and y values are
generated by the following formulas :

3http://www.darkreading.com/attacks—and—breaches/
rsa-securid-breach-cost-$66-million/d/d-id/10992327

4http://arstechnica.com/security/2013/lO/adobe—source—code—and—
customer-data-stolen-in-sustained-network-hack/
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Fig. 1. Actual Access vs. All Possible Accesses

N o .
1 # files in hierarchy for user i under score t

x(t) =

N P # files in hierarchy
) = 1 XL #files access by user i under score t
YW= N P # of files accessed by user i

The z value represents, averaged across all users, how many files in the complete
hierarchy have a score under threshold ¢. The y value represents, averaged across all
users, the number of actual accessed files in a given period that have a score under
threshold ¢.

In an ideal scenario, with knowledge of the future, all legitimate accesses made in a
given period would receive a score less than all of the files from the group the user did
not access. This would create a line from the upper left, (0,1), to the upper right, (1,1),
of the graph. Given unpredictable human behavior and shifting responsibilities, this is
of course impossible, and so we desire a scoring function which gets closer to the upper
left but also allows for changing behavior.

All techniques which use min as the aggregation function start their curve at ~52%
since on average a user accessed around half of their files in a previous time period, and
exact matches get a score of 0 for all min techniques. The min-loglca and min-log stand
out as performing the best among the techniques across all thresholds. The knn10-Ilca
and knn10-loglca show a marked difference between the Ica vs loglca techniques.

Averaging the distance between all files in the history to the current file does not per-
form well overall in this task. Originally this seemed like one possibly useful technique
since it naturally weights branches of the hierarchy with more accesses, however, this
potential advantage seems to be overwhelmed by other properties of the access behavior
and file hierarchy.
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Fig. 2. ROC curve to compare the overall relative performance of each technique

The binary score function in Figure 1 is represented by two points and creates the
line from (0,.52) to (1,1). The binary technique is useful given the nature of our target
system, a source code repository where roughly half of accesses have already been
performed in the past. However, under different conditions where most accesses are
new and unique, such as classified documents or medical records, then repeat accesses
to the same data across multiple time periods could be less common and this signal
would become weaker.

5.2 Profile Identification

Another task we explore is how effective each technique is at identifying which user
generated a specific set of access. That is, given a random AT, how well can we
predict which user generated that set of accesses. For this task we compute x where
x;; = aveScore; ; as specified in Section 4.3.2. We denote the cases where ¢ = j
as the “SelfScore”, and the cases where 7 # j as “OtherScore”. The percent of self
scores and other scores that are assigned a score in a specific range for a subset of tech-
niques are presented in the Appendix in Figure 5 and the ROC curves for all techniques
are presented in Figure 2 in this section. This gives an indication of how well each
technique performs in identifying a user’s own behavior. One thing to note here is that
user accesses can be highly correlated, and so it is not necessarily abnormal for some
“OtherScores” to have low values.

The generic scaling for depth, taking the log of the lowest common ancestor and
log of the distance to root, has a slight performance impact for our data, seen in the
difference between Figures 5(a) and 5(b) and in Figure 2.

Given the outcome from Figure 1 and 2 we focus the remaining experiments on the
min-loglca technique to generate features. The min-binary technique is used as a base-
line that only counts unique accesses in the current period given all previous periods.
This is different from counting the unique accesses in the current period, which we also
use as another baseline since this is the most commonly used statistic in related work.
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5.3 Attacker

The primary goal for the attacker we model is on data exfiltration of varying degrees.
While there are other potential attacks, such as targeted insertion or deletion, for this
evaluation we only focus on the general problem of stealing information. Due to the
nature of the target application domain there are several assumptions that we make
about the data and the attacker.

Arbitrarily Self Control. An attacker using account u; can arbitrarily control file
accesses in AT and AX.

Restricted Overall Control. An attacker is not able to control another user’s activity
on the system.

Targeted Knowledge. The attacker has knowledge of the files or directories they are
targeting, and does not have to perform a read all on the root of the repository.

Location Stability. For the purposes of this evaluation, we assume that files are stable
in their location in the hierarchy. It is possible that files can be moved, but given the log
data, this is very infrequent. Additionally, if an attacker wants to directly move a file,
then the action is captured in the logs and will count as both a read from the source and
write to the destination, which would translate to the same general information as just
reading or writing a file directly.

With this in mind we discuss two attack types that we test against, impetuous and
patient attackers.

5.3.1 Impetuous Attacker

An impetuous attacker is a user who does not have the time or ability to create a crafted
attack. It represents an employee who is suddenly laid off or leaving the company, a
naive user who is unaware of the protections in place, or an attacker who is afraid of
being detected and so they grab as much data as quickly as possible.

To model an impetuous attacker, we generate injections that consist of randomly se-
lected directories that contain file counts in various ranges, we then inject all files under
that directory into the accesses in A7 to simulate that the user accessed all information
under a specific directory. We generate data for 3 ranges to capture the effect that dif-
ferent access counts have on detection: 500-1000 accesses contains 10 unique attacks,
1000-2500 accesses contains 12 unique attacks and 5000+ accesses contains 2 unique at-
tacks. We compare the detection rates for all injections in a given range against the actual
accesses to determine the true positive and false positive rate for various techniques.

Figure 3 demonstrates detection when a user has abnormal access activity. SumScore
and AveScore for each user, as defined in Section 4.3.1, are generated with the loglca-
min technique. NewUnique is equivalent to taking the SumScore of binary-min for a
user’s own profile.

Unique accesses in the current period and NewUnique access are a baseline,
AveScore and SumScore are calculated against the user’s own profile. The MeanDis-
tance is calculated as discussed in Section 4.4.2, using the historic x vectors from the
previous periods as training data to learn an expected profile for each user. Multiplying
the MeanDistance by the NewUnique gives a higher score to abnormal behavior that
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Fig. 3. Demonstrates the performance of detecting various quantities of injected files into other-

wise normal behavior

0.1

also accesses many files compared to abnormal behavior that only accesses a few files,
and is similar to the difference between AveScore and SumScore.

The NewUnique value generally performs well in our tests, however this is in part
due to the nature of our dataset where many accesses are not unique in the actual data.
On average, users access ~600 unique files in the test period, and ~300 of those are
new files the user has not previously accessed.

The AveScore performs best in the lowest range, since it is able to differentiate be-
tween expected and unexpected behavior, while the SumScore performs better as the
injected file counts increase since this more strongly penalizes larger sets of unique
accesses. The MeanDistance alone does not perform best overall, but scaled by the
number of NewUnique accesses performs well in the 500-1000 range, and best in the

1000-2500 and 5000+ ranges.
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Fig. 4. Demonstrates the performance of detecting various quantities of injected files when the
attacker also seeds an attack ahead of time

5.3.2 Patient Attacker

Our attack model assumes that the attacker is capable of injecting accesses into their
own training periods, we model this as a patient attacker who has both the time and
knowledge to craft a more meaningful attack in order to manipulate the detection tech-
niques. Under this model, an attacker has arbitrary control over their own score, but less
control over their relation to other profiles.

We use the same set of injections as the impetuous attack evaluation. To model the
patient attacker we seed file accesses from the injection into the A’?, and then generate
the features vectors x from A7 based off of the seeded A”. We injected seeds for
various access counts, but find that a single seed access is nearly as effective as most
strategies, and so we present only single access seed results in Figure 4.
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The features are generate in such a way that z; ; uses the seeded AH while x;,; for
i # j uses the non-seeded A . Each row in the feature vector x reflects the outcome
of a seeded attack by the user represented by that row, and not the case when all users
spontaneously decide to inject their own profiles with the same seed.

Any techniques that only use a the self score will be affected since the self score
is easy to manipulate under the hierarchy based similarity techniques. The SumScore
is less affected since the injection always increases the score over the normal activity.
More aggressive seeding techniques would cause a bigger drop in the SumScore AUC.

The techniques that use the entire feature vector for a user as they relate to all other
users are more robust to seeding attacks as seen in Figure 4 and particularly they are
stable when compared against Figure 3. They also get the highest AUC value and lead
to fewer false positives in the early part of the ROC curve. For the 1000:2500 case we
can detect about 80% of attacks with 2.5% of normal accesses as false positives using
the NewUnique*MeanDistance method, compared to 80% detection at just below 5%
FP for the NewUnique method. While 2.5% may be too high depending on the number
of users in the system and the resources of the organization to investigate alerts, this is
still a meaningful improvement over the baseline.

6 Conclusions

The techniques we propose in this paper are a first step to better use hierarchy and
similarity information to understand a user’s behavior and detect behavior that is most
likely malicious. While we have shown that the detection rates can be improved using
our proposed methods, this is just a first step. There seems to be potential in collabo-
rative learning on this complex data that contains rich relational information. The end
goal is to utilize this information more effectively to achieve even better detection with
fewer false positives and to take the burden away from the incident response teams who
have to deal with alerts from any such system.
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A Appendix
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Fig.5. The percent of Self Scores vs Other Scores in each score range for various techniques

using the aveScore output
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