
Verifiable Delegation of Computations

with Storage-Verification Trade-off�

Liang Feng Zhang and Reihaneh Safavi-Naini

Institute for Security, Privacy and Information Assurance
Department of Computer Science

University of Calgary, Calgary, Canada

Abstract. Outsourcing computations has attracted much attention in
recent years. An important security challenge is ensuring the correct-
ness of the computed results. In the verifiable computation (VC) model
of Gennaro, Gentry and Parno (CRYPTO 2010), a client can delegate
the computation of its function to a cloud server, and efficiently verify
the correctness of any computed results. In the existing VC schemes, the
server must store an encoding of the function that doubles the required
cloud storage, compared with storing the function itself. In this paper,
we introduce a parameter that measures the trade-off between the re-
quired cloud storage and the client’s verification time. We construct four
(privately or publicly) VC schemes for delegating polynomials and matri-
ces. These schemes allow the client to significantly reduce the consumed
cloud storage by slightly increasing its verification time.

Keywords: verifiable computation, storage, verification, trade-off.

1 Introduction

Cloud computing allows resource-restricted clients to outsource (delegate) the
storage of their data, and/or computations on the data, to cloud servers. The
clients can access their data and request for computations on the outsourced
data at their will. Outsourcing however, raises many security concerns such as
the integrity of the stored data, and the delegated computations on the data. In
this paper we are concerned with the latter.

The problem of verifiably outsourcing computation has been extensively stud-
ied in recent years, resulting in a number of models motivated by different appli-
cation scenarios. In the verifiable computation (VC) model of Gennaro, Gentry
and Parno [8], the client invests a one-time expensive computational effort to
compute and store an encoding of its function with a cloud server, such that
any evaluation of the function by the server, can be efficiently verified (using
substantially less time than doing the evaluation). The one-time effort spent on
encoding can be amortized over many evaluations of the function. Following [8],
there has been a long list of papers on verifiable computation, both for generic
functions [8,6,1,17,5] and for specific functions [2,7,16].

� This research is in part supported by Alberta Innovates Technology Futures.

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 112–129, 2014.
c© Springer International Publishing Switzerland 2014

VC with Storage-Verification Trade-off 113

A VC scheme is called privately verifiable, if verification of the computed re-
sult can only be done by the client who has delegated the function; and publicly
verifiable, if anyone with access to the computed result and possibly some public
information can perform verification. To provide verifiability in a VC scheme,
the encoding of the delegated function may include the delegated function itself,
as well as some authentication information that will be used by the server to gen-
erate proofs. A common drawback of the existing VC schemes [8,6,1,17,5,2,7,16]
is that, the encoding requires at least twice more cloud storage, compared with
the delegated function. We define the storage overhead of a VC scheme as the
ratio of the total cloud storage used by the encoding, to the cloud storage re-
quired for the delegated function itself. Less overhead is desirable because it
means more efficient schemes. Under this definition, the existing VC schemes
[8,6,1,17,5,2,7,16] have storage overhead ≥ 2.

1.1 Our Work

The emphasis of all existing VC schemes has been on efficient verification, and
little attention has been paid to reducing the storage overhead. In practice a
client may be willing to spend a bit more time on verification, if it can substan-
tially reduce the consumed cloud storage. Note that the delegated function can
be of tera byte size and so reducing the storage overhead can lead to substantial
cost saving. This would be particularly attractive if the client does not need to
compute the function very frequently and remains idle in between. In this paper,
we investigate the trade-off between the consumed cloud storage and the client’s
verification time. We focus on the VC schemes of [2,7] for delegating polynomi-
als and matrices (any matrix can define a function that takes a vector as input
and outputs the vector-matrix multiplication). Both functions have important
applications such as in verifiable keyword search, discrete Fourier transform, and
linear transformations.

We introduce a trade-off parameter s, that measures the trade-off between the
required cloud storage and the client’s verification time. We break the delegated
computation into s sub-computations, from which the result of the delegated
computation can be reconstructed. In our setting, the cloud provides the s sub-
computation results, along with one proof; the client verifies the correctness of
the s results, and then computes the result of the delegated computation. The
s subcomputations are the inner products of a common vector, with s vectors
which are obtained from the delegated function. We authenticate the s vectors
with a single tag vector, and thus obtain a saving of cloud storage (for tags).

We construct two VC schemes for delegating m-variate polynomials of degree
≤ d in each variable, a privately verifiable scheme, Π1, and a publicly verifiable
scheme, Π2; and two VC schemes for delegating m × d matrices, a privately
verifiable scheme, Π3, and a publicly verifiable scheme, Π4.

Compared with [2,7], our schemes have storage overhead 1 + 1/s < 2. To
achieve such a smaller storage overhead, the client’s verification time in Π1 and
Π2 is only slightly increased compared with [2] and [7], respectively. The scheme
Π3 is the first private VC scheme for delegating matrices. The scheme Π4 is

114 L.F. Zhang and R. Safavi-Naini

more efficient than [7] not only in terms of storage overhead but also in terms
of the client’s verification time.

1.2 Background and Our Technique

For any finite set X , the notation “x← X” means choosing an element x from
X uniformly at random. Benabbas et al. [2] (Lemma 5.4) proposed a technique
that allows a client to securely delegate the inner product computation of a fixed
vector f = (fi)i∈I ∈ Z

N
p with any vector y = (yi)i∈I ∈ Z

N
p , where p is a λ-bit

prime and I is a finite ordered set of cardinality N . The client picks α← Zp, r =
(ri)i∈I ← Z

N
p , and stores fi and ti = αfi + ri with the server for every i ∈ I.

In order for the client to learn the inner product ρ = f · y, the server returns ρ
and a proof π = t · y. The client accepts ρ only if π = αρ + r · y. A malicious
server may try to deceive the client into accepting ρ̄ �= ρ, using a forged proof
π̄ such that π̄ = αρ̄+ r · y. A successful “try” implies (requires) the knowledge
of α = (ρ̄ − ρ)−1(π̄ − π), which is unknown to the server. Thus, the security
is guaranteed. Inner product captures numerous widely used computations. For
example, one can take I ⊆ {0, 1, . . .}m, and consider f as the coefficients of a
polynomial f(x) =

�
i∈I

fi ·xi, where xi = xi1
1 · · ·xim

m for x = (x1, . . . , xm), and

every i = (i1, . . . , im) ∈ I. Let y = (xi)i∈I. Then the inner product f · y exactly
represents the polynomial evaluation f(x).

The technique however, has two drawbacks: (a1) The client must keep a secret
key (α, r) which consumes more storage than f ; (a2) The verification requires
the client to compute r · y which is as heavy as the delegated computation (i.e.,
f ·y). Benabbas et al. [2] constructed a VC scheme for delegating the polynomial
f(x), based on an adaption of this technique. Let G be a cyclic group of prime
order p ≈ 2λ, generated by g. In their scheme, the client picks α ← Zp and a
PRF Fk : I → G; it stores fi and ti = gαfi · Fk(i) with the server for every

i ∈ I. Given x, the server returns ρ = f(x) and a proof π = Πi∈I(ti)
xi

. The

client believes that “ρ = f(x)” only if π = gαρ · τ , where τ =
�

i∈I
Fk(i)

xi

. If we
denote Fk(i) = gri for every i, then [2] actually uses their proposed technique,
on the exponent of g. The client can keep (α, k) for verification and therefore
avoid (a1). On the other hand, a critical observation of [2] is that one can choose
Fk (with closed-form efficiency) such that computing τ requires substantially
less time than computing ρ. This efficiency property of Fk removes (a2). The
scheme of [2] has been extended to construct public VC schemes for delegating
polynomials and matrices [7].

Our Technique. We propose a technique for securely delegating the inner prod-
uct computations of s given vectors, F1 = (F1,i)i∈I, . . . ,Fs = (Fs,i)i∈I ∈ Z

N
p ,

with any vector y = (yi)i∈I ∈ Z
N
p , where p is a λ-bit prime and, I is an ordered

set of cardinality N . Note that the technique of [2] can delegate the s given
vectors separately but require the server to store a separate vector of N tags for
each of the s vectors. Our main observation is that the s inner product compu-
tations involve a common vector y, and we can authenticate the s given vectors
with a single vector of N tags such that the server can generate a single proof for

VC with Storage-Verification Trade-off 115

the s inner product computations. The details of our technique are as follows.
The client picks α = (α1, . . . , αs) ∈ Z

s
p and r = (ri)i∈I ← Z

N
p , and computes

the tag ti = α1F1,i + · · · + αsFs,i + ri of the data blocks (F1,i, F2,i, . . . , Fs,i)
for every i ∈ I. It then stores F1, . . . ,Fs, and a tag vector t = (ti)i∈I, with the
server. In order for the client to learn ρ1 = y · F1, . . . , ρs = y · Fs, the server
returns ρ = (ρ1, . . . , ρs) and a single proof π = t · y; the client accepts ρ only
if π = α · ρ + r · y. As expected, the s vectors are authenticated using one tag
vector t of size N . A malicious server may try to deceive the client into accepting
ρ̄ �= ρ with a forged proof π̄ such that π̄ = α · ρ̄+r ·y. A successful “try” implies
(requires) the knowledge of a nonzero vector u = (π − π̄, ρ̄ − ρ) ∈ Z

N+1
p such

that u · v = 0, where v = (1,α) ∈ Z
N+1
p . As α is hidden from the server, it is

intuitively hard for the malicious server to find u. Our technical lemma (Lemma
1) in Section 2.2 shows that this intuition is true, even if the malicious server is
allowed to make a polynomial (in λ) number of “tries”, say u1, . . . ,uq, and is
told whether uj ·v = 0 or not for every “try” uj . Our client can choose α in two
ways: (b1) pick α← Z

s
p; (b2) pick α← Zp, and set α = (α, α2, . . . , αs). In this

paper we use our technique, together with the PRFs with closed-form efficiency,
to delegate functions whose computations can be captured by the inner prod-
uct computations of s given vectors, with a common (for all s vectors) vector.
The s given vectors represent the delegated function, and the common vector is
computed from an input to the delegated function. The functions we consider
include polynomials and matrices.

1.3 Verifiable Delegation of Polynomials

Let f(x) =
�

i∈{0,1,...,d}m fi · xi ∈ Zp[x] be an m-variate polynomial of degree

≤ d in each variable. Let s be the trade-off parameter, n = (d + 1)/s and
I = {0, 1, . . . , n− 1} × {0, 1, . . . , d}m−1. Then

f(x) =
s�

�=1

x
(�−1)n
1

��
i∈I

f(�−1)n+i1,i2,...,im · xi
�
. (1)

For every � ∈ [s], let F� = (F�,i)i∈I ∈ Z
|I|
p , be a vector such that F�,i =

f(�−1)n+i1,i2,...,im for every i = (i1, . . . , im) ∈ I. Let y = (xi)i∈I. The equa-
tion (1) reduces the computation f(x) to s inner product computations ρ1 =

y · F1, . . . , ρs = y · Fs since f(x) =
�s

�=1 ρ� · x(�−1)n
1 . Thus, the verifiable dele-

gation of f(x) can be captured by our technique.
In this paper, we construct two schemes Π1 and Π2 for verifiably computing

the s inner products and thus give two VC schemes for delegating f . In both
schemes, the client stores (F1,i, . . . , Fs,i) and a corresponding tag ti with the
server for every i ∈ I. Given x = (x1, . . . , xm) ∈ Z

m
p , the server returns ρ =

(ρ1, . . . , ρs) and a proof π = Πi∈I(ti)
xi

. Let G = 〈g〉 be a group of prime order
p, and let Fk : I → G be a PRF. In Π1, the client picks α ← Zp and computes
ti = gαF1,i+···+αsFs,i · Fk(i), for every i ∈ I; it accepts ρ only if π = gα·ρ · τ ,
where α = (α, . . . , αs) and τ =

�
i∈I

Fk(i)
xi

. The scheme Π2 uses a group G

116 L.F. Zhang and R. Safavi-Naini

that admits a bilinear map e (see Section 2.3 for bilinear maps). The client picks
α = (α1, . . . , αs) ← Z

s
p and computes ti = gα1F1,i+···+αsFs,i · Fk(i), for every

i ∈ I. It accepts ρ only if e(π, g) = e(g, g)α·ρ · τ , where τ = e(
�

i∈I
Fk(i)

xi

, g).
The scheme is publicly verifiable: e(g, g)α1 , . . . , e(g, g)αs and τ are safely made
public such that the verification can be done publicly. The Fk in both schemes
is chosen such that computing τ requires substantially less time than computing
f(x). The security of Π1 is based on the SDDH or DDH assumption for G; the
security of Π2 is based on the DLIN assumption for G.

1.4 Verifiable Delegation of Matrices

Let E = (Ei,j) be an m × d matrix over Zp. Let s be the trade-off parameter,
n = d/s and I = [m] × [n]. We consider E as a block matrix E = (F1, . . . ,Fs)
where the block F� consists of n columns of E numbered from (� − 1)n + 1 to
�n for every � ∈ [s]. It is easy to see that F� = (F�,i) is an m × n matrix such
that F�,i = Ei,(�−1)n+j for every i = (i, j) ∈ I. Let x = (x1, . . . , xm) ∈ Z

m
p . For

every j ∈ [n], we have s inner product computations of x with the j-th columns
of the block matrices F1, . . . ,Fs.

In this paper, we construct two schemes Π3 and Π4 for verifiably computing
the s inner products for all j ∈ [n] and thus give two VC schemes for delegating
E. In both schemes, the client stores (F1,i, . . . , Fs,i) and a corresponding tag
ti with the server for every i = (i, j) ∈ I. Given x = (x1, . . . , xm) ∈ Z

m
p , the

server returns ρ = (ρ1, . . . , ρd) = x · E and n proofs {πj = Πm
i=1(ti,j)

xi}nj=1,
one for each set of s inner products. Let G = 〈g〉 be a group of prime order
p and let Fk : I → G be a PRF. In Π3, the client picks α ← Zp and defines

ti = gαF1,i+α2F2,i+···+αsFs,i · Fk(i) for every i = (i, j) ∈ I. The client accepts ρ

only if πj = g
�s

�=1
ρj+(�−1)n ·α� · τj for every j ∈ [n], where τj =

�m
i=1 Fk(i, j)

xi .
The Fk is chosen such that computing {τj}nj=1 requires substantially less time
than computing x ·E. The scheme Π4 is a public version of Π3 using a group G

that admits bilinear map. The security of Π3 is based on the DDH assumption
for G; the security of Π4 is based on the DLIN assumption for G.

1.5 Performance Analysis and Extensions

We do performance analysis of the constructed schemes. Our analysis focuses
on the trade-off between the required cloud storage, and the client’s verifica-
tion time. The storage overheads of our schemes are all equal to 1 + 1/s, which
is smaller than [2,7]. The clients in Π1 and the scheme in [2], require around
((m + 2)λ + 4s)λ2 and (m + 1)λ3 bit operations for each verification, respec-
tively. Thus, Π1 achieves significant saving of the cloud storage at the price of
slightly increasing the client’s verification time. The scheme Π4 uses a bilinear
map instance (p,G,GT , e, g) (see Section 2.3). The client’s verification time is
dominated by (m + n) exponentiations in G, sn exponentiations in GT and 2n
pairing computations. Compared with Π4, the client’s verification time of [7] is
dominated by (m+sn) exponentiations in G, sn exponentiations in GT , and 2sn

VC with Storage-Verification Trade-off 117

pairing computations. Thus, our scheme Π4 is more efficient not only in terms of
storage overhead but also in terms of client’s verification time. The performance
analysis of Π2 and Π3 can be done similarly.

Our schemes for delegating f(x) reduce f(x) to the computations of s shorter
polynomials, each taking one of the vectors F1, . . . ,Fs as coefficients, and having
degree ≤ n − 1 in x1, and degree ≤ d in any other variable. We can repeat
this degree reduction on x2, . . . , xm and thus reduce f(x) to the computations
of sm shorter polynomials, each having degree ≤ n − 1, in any variable. Our
technique can also be used to delegate multiple distinct functions, resulting in
batch verification, which is more efficient than delegating the functions separately
using the schemes of [2,7]. For example, when m = 1 we can treat the vectors
F1, . . . ,Fs in Π1 as coefficients of s univariate polynomials; Π1 allows us to
efficiently verify the evaluations of the s polynomials at the same point, with a
single proof from the server.

1.6 Related Work

The problem of verifiably outsourcing computation has a long history. We refer
readers to [8,2] for a more detailed treatment of solutions that use strong as-
sumptions on the adversary, and more theoretical solutions that use interaction.
Here we are interested in non-interactive solutions in the standard model.

Verifiable Computation. The verifiable computation (VC) of Gennaro et al.
[8] gave a non-interactive solution for verifiably outsourcing computation in the
standard model. The VC schemes of [8,6,1] can delegate a function that is repre-
sented by a boolean circuit. They stay as mainly theoretical solutions because of
using fully homomorphic encryption (FHE). The memory delegation of [5] can
delegate computations on an arbitrary portion of the outsourced data. However,
the client must be stateful and the solution suffer from the impracticality of
PCP techniques. Benabbas et al. [2] initiated the study of practical (private)
VC schemes for delegating specific functions such as polynomials. Parno et al.
[17] initiated the study of public VC schemes. Fiore et al. [7] extended the con-
structions of [2] and obtained public VC schemes for delegating polynomials and
matrices. Papamanthou et al. [16] constructed a public VC scheme for delegat-
ing polynomials that allows efficient update. The storage overhead of all these
schemes is ≥ 2.

Homomorphic MACs and Signatures. A homomorphic MAC or signature
scheme [10,4] allows one to freely authenticate data and then verify computa-
tions on the authenticated data. Such schemes result in VC: the client stores
data blocks and their MAC tags (or signatures) with a server; the server com-
putes some admissible functions on an arbitrary subset of the data blocks; the
server provides both the result and a MAC tag (or signature) vouching for the
correctness of the result. The storage overhead of the resulting VC is ≥ 2.

Non-interactive Proofs. Goldwasser et al. [12] gave a non-interactive scheme
for delegating NC computations. However, for any circuit of size n, the server’s
running time is a high degree polynomial in n, and so not practical. The SNARGs

118 L.F. Zhang and R. Safavi-Naini

or SNARKs [3,9], gives a non-interactive scheme for delegating computation.
However, they rely on non-falsifiable assumptions [11] which are much stronger
than the common assumptions (such as DDH), used in this paper.

Proofs of Retrievability. PoR [13,18] allows a client to store a file with a
server, and then efficiently check the file’s integrity. Homomorphic linear au-
thenticators that are similar to our authenticators, have been used in [18] but
not formally proved as an authentication system. We give a formal proof here.
Other differences with [18] are as follows: firstly, the α in [18] was chosen using
(b1); we can use (b2) and thus have a much shorter secret key; secondly, they
cannot use PRFs with closed-form efficiency while we can combine such PRFs
with our technique to give VC schemes.

Organization. In Section 2 we recall the notions of VC and PRFs with closed-
form efficiency; In Section 3 we present the schemes Π1-Π4; Section 4 contains
some concluding remarks.

2 Preliminaries

Let λ be a security parameter. We denote by “poly(λ)” and “neg(λ)” the classes
of polynomial functions and negligible functions in λ, respectively. Let A(·) be
a probabilistic polynomial time (PPT) algorithm. The notation “y ← A(x)”
means that y is the output of A on input x.

2.1 Verifiable Computation

A verifiable computation (VC) scheme is a tuple Π = (KeyGen,ProbGen,
Compute,Verify) of four algorithms, where

– (ek, dk, vk) ← KeyGen(1λ, f) is a key generation algorithm that takes as
input the security parameter λ and a function f and outputs an evaluation
key ek, a delegation key dk and a verification key vk;

– (σ, τ) ← ProbGen(dk, x) is a problem generation algorithm that takes as
input dk and any input x in the domain of f and outputs an encoding σ of
x and some auxiliary information τ for verification;

– (ρ, π) ← Compute(ek, σ) is a computation algorithm that takes as input ek
and σ and outputs an answer ρ and a proof π; and

– {f(x),⊥} ← Verify(vk, τ, ρ, π) is a verification algorithm that verifies ρ with
(vk, τ, π); it outputs f(x) or ⊥ (to indicate failure).

Model. The VC model involves a client C and a server S, where C has a function
f . The client C picks (ek, dk, vk) ← KeyGen(1λ, f) and gives ek to the server.
In order to learn f(x), the client computes (σ, τ) ← ProbGen(dk, x) and gives
σ to the server. Given (ek, σ), the server computes and replies with (ρ, π) ←
Compute(ek, σ). At last, the client runs Verify(vk, τ, ρ, π) to verify ρ and recover
f(x). The verification of ρ requires vk, τ and π. The scheme Π is called privately
verifiable if (vk, τ) must be kept private by C, and publicly verifiable if (vk, τ)
can be made public (in particular, it can be known to S).

VC with Storage-Verification Trade-off 119

Correctness. This property requires that the client can always learn the cor-
rect result of the delegated computation when the server is honest. Formally,
the scheme Π is correct if for any function f , any (ek, dk, vk)← KeyGen(1λ, f),
any x in the domain of f , any (σ, τ) ← ProbGen(dk, x) and any (ρ, π) ←
Compute(ek, σ), it holds that Verify(vk, τ, ρ, π) = f(x).

Security. This property requires that no malicious server can cause the client to
compute an incorrect result of the delegated computation. Formally, the scheme
Π is said to be secure if any PPT adversary A wins with probability < neg(λ)
in the security game of Fig. 1.

– Setup. Given f , the challenger picks (ek, dk, vk) ← KeyGen(1λ, f). If Π is pri-
vately verifiable, it gives ek to A and keeps (dk, vk); if Π is publicly verifiable,
it gives (ek, vk) to A and keeps dk.

– Queries. The adversary A adaptively makes a polynomial number of queries:
for every j = 1 to q = poly(λ),
• A picks xj from the domain of f and gives it to the challenger;
• The challenger computes (σj , τj) ← ProbGen(dk, xj). If Π is privately veri-

fiable, it gives σj to A; if Π is publicly verifiable, it gives (σj , τj) to A.
• A picks a response (ρ̄j , π̄j) to the challenger;
• The challenger gives the output of Verify(vk, τj , ρ̄j , π̄j) to A.

– Forgery. A picks x∗ from the domain of f . The challenger computes (σ∗, τ∗)←
ProbGen(dk, x∗). If Π is privately verifiable, the challenger gives σ∗ to A; if Π is
publicly verifiable, the challenger gives (σ∗, τ∗) to A. At last, A picks (ρ̄∗, π̄∗).

– Output. The adversary wins if Verify(sk, τ∗, ρ̄∗, π̄∗) /∈ {f(x∗),⊥}.

Fig. 1. Security game

Remark. In Forgery A behaves just like it has done in any one of the q
queries. Without loss of generality, we can suppose (x∗, ρ̄∗, π̄∗) = (xc, ρ̄c, π̄c) for
some c ∈ [q], i.e., A picks one of its q queries as forgery.

2.2 A Technical Lemma

In this section we study a problem that underlies the security of our technique
in Section 1.1 (and the security proofs of the privately verifiable schemes Π1 and
Π3). Let λ be a security parameter. Let p be a λ-bit prime and let Fp be the finite
field of p elements. Let s > 0. We define an equivalence relation ∼ over Fs

p \ {0}
as below: two vectors u,v ∈ F

s
p \ {0} are equivalent if there exists ξ ∈ Fp \ {0}

such that u = ξ · v. Let Ωp,s = (Fs
p \ {0})/ ∼ be the set of all equivalent classes.

We represent each equivalent class with a vector in that class. Without loss of
generality, we agree that the representative of each class in Ωp,s is chosen such
that its first non-zero element is 1. For example, when p = 3 and s = 2, we have
that Ωp,s = {(0, 1), (1, 0), (1, 1), (1, 2)}. For any u,v ∈ Ωp,s, we define u� v = 0
if the inner product of u and v is 0 and define u�v = 1 otherwise. For example,
when p = 3 and s = 2, we have that (1, 1) � (1, 2) = 0 and (1, 1) � (1, 1) = 1.
The following problem models the malicious server’s attack in our technique.

120 L.F. Zhang and R. Safavi-Naini

Problem 1. Let A be any algorithm. Let U, V ⊆ Ωp,s+1 and let q = poly(λ). In
this problem, a vector v∗ ← V is chosen and hidden from A; for i = 1 to q, A
adaptively picks a query ui ∈ U and learns bi = ui � v∗ ∈ {0, 1}; A wins only
if there exists an i∗ ∈ [q] such that bi∗ = 0.

Lemma 1. Suppose that 0 < ε < 1. If |{v ∈ V : u� v = 0}| ≤ ε · |V | for every
u ∈ U , then A wins in Problem 1 with probability ≤ εq.

Proof. For every i ∈ [q], let Si be the event that bi = 0 and let ¬Si be the
event that bi = 1. We denote Fi = ¬Si ∧ · · · ∧ ¬S1 for every i ∈ [q]. Clearly,
the probabilities of Si,¬Si and Fi are all taken over the uniform choice of v∗

and the adversarial choices of u1, . . . ,ui by A. The probability that A wins in
Problem 1 is bounded by

ε∗ = Pr[S1] +

q�
i=2

Pr[Si ∧ Fi−1]. (2)

Note that |{v ∈ V : u1 � v = 0}| ≤ ε|V | for any u1 ∈ U , we must have that

Pr[S1] = Pr[u1 � v∗ = 0] = |{v∈V :u1�v=0}|
|V | ≤ ε. If F1 occurs, then A learns

that v∗ /∈ {v ∈ V : u1 � v = 0}, which allows A to rule out at most ε · |V |
possibilities of v∗. Conditioned on F1, the v∗ will be uniformly distributed over
the set V1 = {v ∈ V : u1 � v = 1}. Note that |{v ∈ V1 : u2 � v = 0}| ≤ |{v ∈
V : u2 � v = 0}| ≤ ε|V | for any u2 ∈ U . Thus, Pr[S2 ∧ F1] = Pr[u2 � v∗ =

0|F1] · Pr[F1] =
|{v∈V1:u2�v=0}|

|V1|
|V1|
|V | ≤ ε, where the second equality follows from

the fact that v∗ is uniformly distributed over V1 (conditioned on F1). In general,
for any i ∈ [q] we can bound the probability εi = Pr[Si∧Fi−1] that ui is the first
query such that ui�v∗ = 0. Let Vi−1 = {v ∈ V : u1�v = 1, · · · ,ui−1�v = 1}.
Conditioned on Fi−1, v

∗ must be uniformly distributed over Vi−1. Note that
|{v ∈ Vi−1 : ui � v = 0}| ≤ ε|V | for any ui ∈ U . We have

εi = Pr[Si|Fi−1] Pr[Fi−1] = Pr[ui � v∗ = 0|Fi−1]
i−1�
h=2

Pr[¬Sh|Fh−1] Pr[F1]

=
|{v ∈ Vi−1 : ui � v = 0}|

|Vi−1|
|Vi−1|
|Vi−2| · · ·

|V2|
|V1|
|V1|
|V | ≤ ε,

where Pr[¬Sh|Fh−1] is the probability that the uniform random variable v∗ (over
Vh−1) falls into Vh ⊆ Vh−1 for every h ∈ [i− 1]. Hence, we have ε∗ ≤ εq as each
summand on the right hand side of (2) is ≤ ε. �

Example 1. Let Vlin = {(1,w) : w ∈ F
s
p} ⊆ Ωp,s+1 and U ⊆ Ωp,s+1. It is easy

to see that |Vlin| = ps. For any u ∈ U , there are ≤ N = (ps−1)/(p−1) elements
v ∈ Vlin such that u� v = 0. Thus, ε ≤ N/|Vlin| < 1/(p− 1).

Example 2. Let Vpol = {(1, α, . . . , αs) : α ∈ Fp} ⊆ Ωp,s+1 and U ⊆ Ωp,s+1. Let
u = (u0, u1, . . . , us) ∈ U and v = (1, α, . . . , αs) ∈ Vpol. Then u� v = 0 only if α
is a root of u0+u1x+ · · ·+usx

s. For any u ∈ U , there are ≤ s elements v ∈ Vpol

VC with Storage-Verification Trade-off 121

such that u � v = 0 because a univariate polynomial of degree s has ≤ s roots
in Fp. Thus, ε ≤ s/p in this case.

The two examples provide us with two ways of choosing the α in our technique:
(b1) pick α← F

s
p; and (b2) pick α← Fp and define α = (α, α2, . . . , αs). We use

(b2) in Π1 and Π3 such that a short secret key suffices to do verification.

2.3 Cryptographic Assumptions

We assume a group scheme G(1λ, �) that takes as input the security parameter λ
and an integer � ∈ {1, 2} and outputs a random group instance Λ. When � = 1, Λ
is a triple (p,G, g), where G = 〈g〉 is a group of prime order p ≈ 2λ; when � = 2,
Λ is a quintuple (p,G,GT , e, g), where G = 〈g〉 and GT are groups of prime
order p ≈ 2λ, and e : G×G→ GT is an efficiently computable non-degenerated
bilinear map. In Section 2.4 we present five PRFs. The security of each PRF is
based on one of the following assumptions for G: the d-strong decision Diffie-
Hellman assumption (d-SDDH); the decision Diffie-Hellman assumption (DDH);
and the decision linear assumption (DLIN). We refer the readers to [2,7] for
their definitions. There is also a much weaker assumption for G: the hardness of
computational Diffie-Hellman (CDH) problem. In CDH, one is given (g, gα, h)
and must output hα, where α← Zp and h← G. The hardness of CDH says that
no PPT algorithm can output hα except with probability < neg(λ).

2.4 PRFs with Closed-Form Efficiency

In this section, we review the notion of PRFs with closed-form efficiency and
present several such PRFs for our VC schemes. A PRF is a pair Σ = (Kg,F)
of algorithms. The key generation algorithm Kg(1λ, params) takes as input a
security parameter λ and some additional parameters params and outputs a
secret key k and a public parameter pp, where pp specifies the domain I and range
Y of Fk. Given any i ∈ I, Fk(i) outputs a value y ∈ Y. Σ is called pseudorandom
if for any PPT algorithm A, we have |Pr[AFk(·)(1λ, pp) = 1]−Pr[AΦ(·)(1λ, pp) =
1]| < neg(λ), where the probabilities are taken over (pp, k)← Kg(1λ, params), the
choice of a random function Φ : I→ Y and A’s random coins. Let C(y,x) be any
computation that takes y = {yi}i∈I ∈ Y

|I| and some x as input. Suppose that
computing C(y,x) for general (y,x) requires time t. We say that Σ has closed-
form efficiency for C if there is an algorithm Σ.CFE such that Σ.CFE(k, I,x) =
C({Fk(i)}i∈I,x) but only requires time o(t).

Construction 1. Let m > 0 and d + 1 = sn. Our first PRF Σ1 = (Kg,F)
is tailored from the PRF2,d in [2]. The algorithm Kg(1λ, (m, s, n)) picks Λ =
(p,G, g) ← G(1λ, 1), k = (k0, k1, . . . , km) ← Z

m+1
p and outputs k and pp =

(Λ,m, s, n). The domain of Fk is I = {0, 1, . . . , n − 1} × {0, 1, . . . , d}m−1; the

range of Fk is G. For any i = (i1, . . . , im) ∈ I, Fk(i) = gk0k
i1
1 ···kim

m . In fact, Σ1

is the restriction of PRF2,d on I. Theorem 1 of [2] shows that Σ1 is a PRF
under the d-SDDH assumption. For x = (x1, . . . , xm) ∈ Z

m
p and y = {yi}i∈I ∈

G
|I|, let C′(y,x) =

�
i∈I

(yi)
xi

. Then we have C′({Fk(i)}i∈I,x) = gξ, where

122 L.F. Zhang and R. Safavi-Naini

ξ = k0(1 − (k1x1)
n)/(1 − k1x1) ·

�m
j=2(1 − (kjxj)

d+1)/(1 − kjxj). Without k,

computing C′({Fk(i)}i∈I,x) requires O(|I|) operations. Given k, the Σ1.CFE can
compute ξ and then gξ using O(m) = o(|I|) operations. Thus, Σ1 has closed-form
efficiency for C′.
Construction 2. Let m > 0 and d + 1 = 2a = sn = s · 2b. Below is our
instantiation Σ2 = (Kg,F) of the Naor-Reingold PRF (Section 4.1, [15]).

Kg(1λ, (m,a, b)): Picks Λ = (p,G, g)← G(1λ, 1). Picks k0 ← Zp, k1,w ← Zp for every
w ∈ [b] and ku,v ← Zp for every (u, v) ∈ {2, . . . ,m}× [a]. Outputs k = {k0}∪ {k1,w :
w ∈ [b]} ∪ {ku,v : (u, v) ∈ {2, . . . ,m} × [a]} and pp = (Λ,m, a, b). The domain of Fk

is I = {0, 1, . . . , n− 1} × {0, 1, . . . , d}m−1. The range of Fk is G.

Fk(·): Given i = (i1, . . . , im) ∈ I, computes the binary representations of i1, . . . , im,
say i1 = (i1,1, . . . , i1,b) and iu = (iu,1, . . . , iu,a) for every 2 ≤ u ≤ m. It outputs

Fk(i) = gξi , where ξi = k0 ·
�b

w=1
k
i1,w
1,w ·

�m

u=2

�a

v=1
k
iu,v
u,v .

As a Naor-Reingold PRF defined over {0, 1}b+(m−1)a, Σ2 is pseudorandom under

DDH. Note that C′({Fk(i)}i∈I,x) =
�

i∈I
Fk(i)

xi

= gξ, where

ξ =
�
i∈I

ξi · xi =
2b−1�
i1=0

2a−1�
i2=0

· · ·
2a−1�
im=0

k0 ·
b�

w=1

k
i1,w
1,w x

i1,w ·2w−1

1 ·
m�

u=2

a�
v=1

kiu,v
u,v · xiu,v ·2v−1

u

= k0 ·
b�

w=1

�
1 + k1,wx

2w−1

1

�
·

m�
u=2

a�
v=1

�
1 + ku,vx

2v−1

u

�
.

Computing C′({Fk(i)}i∈I,x) without k requires O(|I|) operations. Given k, the
Σ2.CFE can compute ξ and then gξ using O(ma) = o(|I|) operations. Thus, Σ2

has the closed form efficiency for C′.
Construction 3. Let m > 0 and d + 1 = 2a = sn = s · 2b. Below is an
instantiation Σ3 = (Kg,F) of the Lewko-Waters PRF (Section 3.1, [14]).

Kg(1λ, (m,a, b)): Picks Λ = (p,G,GT , g) ← G(1λ, 2), k0, l0 ← Zp, a 2 × 2 matrix
K1,w ← Z

2×2
p for every w ∈ [b], and a 2 × 2 matrix Ku,v ← Z

2×2
p for every (u, v) ∈

{2, . . . ,m}×[a]. Outputs k = {k0, l0}∪{K1,w : w ∈ [b]}∪{Ku,v : (u, v) ∈ {2, . . . ,m}×
[a]} and pp = (Λ,m, a, b). The domain of Fk is I = {0, 1, . . . , n−1}×{0, 1, . . . , d}m−1;
the range of Fk is G.

Fk(·): Given i = (i1, . . . , im) ∈ I, computes the binary representations of i1, . . . , im,
say i1 = (i1,1, . . . , i1,b) and iu = (iu,1, . . . , iu,a) for every 2 ≤ u ≤ m. It outputs

Fk(i) = gξi , where (ξi, ηi) = (k0, l0)
�b

w=1
K

i1,w
1,w

�m

u=2

�a

v=1
K

iu,v
u,v .

As a Lewko-Waters PRF defined over {0, 1}b+(m−1)a, Σ3 is pseudorandom under
DLIN. Note that C′({Fk(i)}i∈I,x) = gξ with ξ =

�
i∈I

ξi ·xi. As in construction
2, we can similarly show that Σ3 has the closed form efficiency for C′.
Construction 4. Let m,n > 0. Below is a DDH based PRF Σ4 = (Kg,F).

Kg(1λ, (m,n)): Picks Λ = (p,G, g) ← G(1λ, 1), ui ← G for every i ∈ [m], kj ← Zp

for every j ∈ [n]; outputs k = {ui}mi=1 ∪ {kj}nj=1 and pp = (Λ,m, n). The domain of
Fk is I = [m]× [n]; the range of Fk is G.

Fk(·): Given (i, j) ∈ [m]× [n], it outputs Fk(i, j) = u
kj

i .

VC with Storage-Verification Trade-off 123

In the full version, we show Σ4 is a DDH-based PRF. Let x = (x1, . . . , xm) ∈ Z
m
p

and y = {yi,j} ∈ G
m×n. Let C′′(y,x) = {�m

i=1(yi,j)
xi}nj=1. Then

�m
i=1 Fk(i, j)

xi

=
�m

i=1(u
kj

i)xi = (
�m

i=1 u
xi

i)kj for every j ∈ [n]. Computing C′′({Fk(i, j)},x)
without k requires O(mn) operations. Given k, the Σ4.CFE can compute U =�m

i=1 u
xi

i and then Ukj for all j ∈ [n] using O(m+ n) operations. Thus, Σ4 has
closed-form efficiency for C′′.
Construction 5. Fiore et al. (Section 3.1.3, [7]) constructed a PRF Σ5 =
(Kg,F). The Kg(1λ, (m,n)) picks Λ = (p,G,GT , e, g) ← G(1λ, 2), ui, vi ← G

for every i ∈ [m], kj , lj ← Zp for every j ∈ [n] and outputs k = {(ui, vi) : i ∈
[m]} ∪ {(kj , lj) : j ∈ [n]} and pp = (Λ,m, n). The domain and range of Fk are

I = [m] × [n] and G, respectively. For any (i, j) ∈ I, Fk(i, j) = u
kj

i v
lj
i . They

showed that Σ5 is a DLIN-based PRF and has closed-form efficiency for C′′.

3 Our Schemes

3.1 Verifiable Delegation of Polynomials

In this section, we present two VC schemes Π1 and Π2 for delegating the polyno-
mial f in Section 1.3. We use all notations from there. Furthermore, we suppose
that d+1 = 2a = sn = s ·2b for some integers a, b > 0. Equation (1) reduces the
computation of f(x) to the s inner products ρ1 = y · F1, . . . , ρs = y · Fs. In Π1

and Π2 the server must return ρ1, . . . , ρs and a proof such that the client can
verify and then compute f(x).

A Privately Verifiable Scheme: Fig. 2 shows our private VC scheme Π1 for
delegating f(x). The PRF Σ is Σ1 or Σ2. The params is equal to (m, s, n) when
Σ = Σ1 and equal to (m, a, b) when Σ = Σ2. The τ in Π1 is computed using
Σ.CFE. It is easy to see that Π1 is correct.

KeyGen(1λ, f): picks (pp, k) ← Σ.Kg(1λ, params), where pp = (Λ, params) and Λ =

(p,G, g); picks α← Zp; computes ti = gαF1,i+α2F2,i+···+αsFs,i · Fk(i) for every i ∈ I;
then outputs ek = (f, {ti}i∈I), dk = k and vk = α.

ProbGen(dk,x): given x ∈ Z
m
p , outputs σ = x and τ =

�
i∈I

Fk(i)
xi

.

Compute(ek, σ): computes ρ� =
�

i∈I
F�,i · xi for every ∈ [s] and π =

�
i∈I

(ti)
xi

;
then outputs ρ = (ρ1, . . . , ρs) and π.

Verify(vk, τ,ρ, π): verifies if π = gρ1·α+ρ2·α2+···+ρs·αs ·τ . Outputs y =
�s

�=1
ρ�·x(�−1)n

1

if the equality holds; otherwise, outputs ⊥.

Fig. 2. The scheme Π1

Theorem 1. Π1 is secure under the d-SDDH assumption for G when Σ = Σ1

and secure under the DDH assumption for G when Σ = Σ2.

124 L.F. Zhang and R. Safavi-Naini

Proof. Let G0 be the standard security game for Π1 (Fig. 1). Let G1 be a
security game which makes no difference with G0 except that the function Fk

is replaced with a random function Φ : I → G. Let A be any PPT adversary.
Let εi be the probability that A wins in Gi for every i ∈ {0, 1}. We need to
show ε0 < neg(λ). Firstly, we have |ε0 − ε1| < neg(λ) because otherwise one can
use A to break the security of Σ which however is secure under the respective
assumptions. Thus, it suffices to show ε1 < neg(λ). We show ε1 < neg(λ) even if
A is computationally unbounded.

Consider G1. We use the notations f,m, d, s, n, a, b and I from the beginning
of this section. Let ek = (f, {ti}i∈I), dk = k and vk = α be the keys generated
by KeyGen(1λ, f). Note that the function Fk is replaced with Φ and therefore

ti = gαF1,i+α2F2,i+···+αsFs,i · Φ(i) for every i ∈ I. The adversary A is given ek.
For any choice of α ∈ Zp, there is a unique choice of Φ(i) ∈ G for every i ∈ I

such that ti is consistent with A’s view. As Φ is truly random, A learns no
information about α from ek even if it is computationally unbounded (such that
computing discrete logarithms is easy). Thus, from A’s view, α = (1, α, . . . , αs)
is uniformly chosen from Vpol. Given ek, the adversary A adaptively makes a
polynomial number of queries {xj}qj=1 to ProbGen(dk, ·) and {(ρ̄j, π̄j)}qj=1 to
Verify(vk, τj , ·, ·):
for j = 1 to q, the challenger and A proceeds as below.
– A gives an input xj = (xj,1, . . . , xj,m) ∈ Z

m
p to the challenger;

– the challenger gives σj = xj to A and keeps τj =
�

i∈I
Φ(i)x

i
j ;

– A gives ρ̄j = (ρ̄j,1, . . . , ρ̄j,s) ∈ Z
s
p and π̄j ∈ G to the challenger;

– the challenger gives the output of Verify(vk, τj , ρ̄j , π̄j) to A.

After the queries, A needs to produce a forgery. As remarked in Section 2.1,
we can suppose that A’s forgery is (xc, ρ̄c, π̄c) for some c ∈ [q]. Let (ρc, πc) ←
Compute(ek, σc) be the response that could be computed by an honest server,
where ρc = (ρc,1, . . . , ρc,s) ∈ Z

s
p and πc ∈ G. Due to the correctness of Π1,

we must have that πc = g
�

s

�=1
ρc,�·α� · τc. The adversary A wins in G1 only if

ρ̄c �= ρc and π̄c = g
�

s

�=1
ρ̄c,�·α� · τc. It follows that A wins only if ρ̄c �= ρc and

π̄c/πc = g
�s

�=1
(ρ̄c,�−ρc,�)·α�

. (3)

Suppose that π̄c/πc = gβc . Then (3) holds only if uc = (−βc, ρ̄c,1−ρc,1, . . . , ρ̄c,s−
ρc,s) ∈ Z

s+1
p is a nonzero vector such that uc · α = 0. Recall that α ← Vpol.

Without loss of generality, we can suppose that the first nonzero component of
uc is 1 such that uc ∈ Ωp,s+1. This does not matter because if the first nonzero
component of uc is γ �= 0 then γ−1 · uc will belong to Ωp,s+1 and A could have
made the query γ−1 ·uc instead of uc with the same consequence (i.e., success or
failure). In general, for every j ∈ [q] and the j-th queries xj and (ρ̄j , π̄j), we can
follow the analysis for j = c and learn a vector uj ∈ Ωp,s+1. The j-th queries
cause A to win only if uj · α = 0. Thus, the query part of G1 turns out to be
Problem 1 with U ⊆ Ωp,s+1 and V = Vpol. Lemma 1 and Example 2 show that
A wins with probability ≤ sq/p, which is negligible, i.e., ε1 < neg(λ). �

VC with Storage-Verification Trade-off 125

A Publicly Verifiable Scheme: Fig. 3 shows our public VC scheme Π2 for
delegating f(x). The τ in Π2 is computed using Σ3.CFE. It is easy to see that
Π2 is correct.

KeyGen(1λ, f): picks (pp, k)← Σ3.Kg(1
λ, (m,a, b)), where pp = (Λ,m, a, b) and Λ =

(p,G,GT , e, g); picks α = (α1, . . . , αs)← Z
s
p; computes ti = gα1F1,i+···+αsFs,i · Fk(i)

for every i ∈ I; then outputs ek = (f, {ti}i∈I), dk = k and vk = (h1, . . . , hs) =
(e(g, g)α1 , . . . , e(g, g)αs);

ProbGen(dk,x): given x ∈ Z
m
p , outputs σ = x and τ = e

��
i∈I

Fk(i)
xi

, g
�
.

Compute(ek, σ): computes ρ� =
�

i∈I
F�,i · xi for every ∈ [s] and π =

�
i∈I

(ti)
xi

;
then outputs ρ = (ρ1, . . . , ρs) and π.

Verify(vk, τ,ρ, π): verifies if e(π, g) =
�s

�=1
h
ρ�
� · τ . outputs y =

�s

�=1
ρ� · x(�−1)n

1 if
the equality holds; otherwise, outputs ⊥.

Fig. 3. The scheme Π2

Theorem 2. Π2 is secure under the DLIN assumption for G.

Proof. Let G0 be the standard security game for Π2 (see Fig. 1). Let G1 be a
security game which makes no difference with G0 except that the function Fk is
replaced with a random function Φ : I → G. Let A be any PPT adversary. Let
εi be the probability that A wins in Gi for every i ∈ {0, 1}. As in Theorem 1, it
suffices to show that ε1 < neg(λ).

Consider G1. We use the notations f,m, d, s, n, a, b and I from the begin-
ning of Section 3.1. Suppose that ε1 is non-negligible. We show that there is
a challenger B that can simulate A to solve the CDH problem, which however
should be hard under DLIN. Given a CDH problem (g, gα, h), B must output
hα. Fig. 4 shows how B plays with the adversary A in G1. Let (ρc, πc) ←
Compute(ek, σc) be the response that could be computed by an honest server,

Setup. The challenger B picks ti ← G for every i ∈ I; picks r ← [s] and computes
hr = e(gα, h); picks α� ← Zp and computes h� = e(g, g)α� for every ∈ [s] \ {r};
then it defines ek = (f, {ti}i∈I), dk =⊥, vk = (h1, . . . , hs); B gives (ek, vk) to A.
Queries. The adversary A adaptively makes a polynomial number of queries {xj}qj=1

to ProbGen(dk, ·) and {(ρ̄j , π̄j)}qj=1 to Verify(vk, τj , ·, ·):
for j = 1 to q, B and A proceed as below

1. A picks xj = (xj,1, . . . , xj,m) ∈ Z
m
p and give it to B;

2. B gives σj = xj and τj = e
��

i∈I
(ti)

xi
j , g
�
/
�s

�=1
h

�
i∈I

F�,i·xi
j

� to A;
3. A picks ρ̄j = (ρ̄j,1, . . . , ρ̄j,s) ∈ Z

s
p and π̄j ∈ G and gives them to B;

4. B gives the output of Verify(vk, τj , ρ̄j , π̄j) to A.
Forgery. As remarked in Section 2.1, A outputs (xc, ρ̄c, π̄c) as its forgery (c ∈ [q]).

Fig. 4. B’s simulation in the game G1

126 L.F. Zhang and R. Safavi-Naini

where ρc = (ρc,1, . . . , ρc,s) ∈ Z
s
p and πc ∈ G. Due to the correctness of Π2, we

have that e(πc, g) =
�s

�=1 h
ρc,�

� · τc. The adversary A wins the game G1 only if

ρ̄c �= ρc and e(π̄c, g) =
�s

�=1 h
ρ̄c,�

� · τc. It follows that A wins only if ρ̄c �= ρc and

e(π̄c/πc, g) =
s�

�=1

h
ρ̄c,�−ρc,�

� (4)

It is not hard to see that the (ek, vk) and {(σj , τj)}qj=1 generated by B strictly
follow the respective distributions in G1, although they are not obtained by
directly running the algorithms KeyGen and ProbGen. Due to our assumption, A
should win with probability ε1, i.e., the probability that ρ̄c �= ρc and (4) holds
is ε1. As ρ̄c �= ρc, there is a nonempty set R ⊆ [s] such that ρ̄c,r∗ �= ρc,r∗ for any
r∗ ∈ R. The r in Fig. 4 was uniformly chosen and independent of everything else.
Therefore, the probability that r falls into R is ≥ |R|/s ≥ 1/s. The challenger B
as a CDH-solver outputs ⊥ (to indicate failure) if r /∈ R. Otherwise, (4) implies

that e(π̄c · π−1
c , g) · ��∈[s]\{r} h

−(ρ̄c,�−ρc,�)
� = h

ρ̄c,r−ρc,r
r = e(gα, h)ρ̄c,r−ρc,r =

e(hα(ρ̄c,r−ρc,r), g). It follows that the challenger B can compute hα = (π̄c · π−1
c ·�

�∈[s]\{r} g
−α�(ρ̄c,�−ρc,�))

1
ρ̄c,r−ρc,r . The probability that B learns hα is exactly

equal to the probability that A wins in G1 and r ∈ R, which is ≥ ε1/s and
thus non-negligible. This contradicts the hardness of CDH and thus the DLIN
assumption. Hence, ε1 must be negligible.

3.2 Verifiable Delegation of Matrices

In this section, we present two VC schemes Π3 and Π4 for delegating the matrix
E in Section 1.4. We use all notations from there. Recall that x · E can be
reduced to n sets of inner product computations. In Π3 and Π4 the server must
return x ·E and n proofs, one for each set of s inner product computations.

A Privately Verifiable Scheme: Fig. 5 shows our private VC scheme Π3 for
delegating E. The τ in Π3 is computed using Σ4.CFE. It is easy to see that
Π3 is correct. Due to lack of space, we show that Π3 is secure under the DDH
assumption for G in the full version.

KeyGen(1λ,E): picks (pp, k) ← Σ4.Kg(1
λ, (m,n)), where pp = (Λ,m, n) and Λ =

(p,G, g); picks α← Zp; computes ti,j = ti = gαF1,i+α2F2,i+···+αsFs,i · Fk(i) for every
i = (i, j) ∈ [m]× [n]; then outputs ek = (E, {ti}), dk = k and vk = α.

ProbGen(dk,x): given x ∈ Z
m
p , computes τj =

�m

i=1
Fk(i, j)

xi for every j ∈ [n]; then
outputs σ = x and τ = (τ1, . . . , τn).

Compute(ek, σ): computes ρ = (ρ1, . . . , ρd) = x ·E and πj =
�m

i=1
(ti,j)

xi for every
j ∈ [n]; then outputs ρ and π = (π1, . . . , πn).

Verify(vk, τ ,ρ,π): verifies if πj = g

�s

�=1
ρj+(�−1)n·α� · τj for every j ∈ [n]; if all

equalities hold, outputs ρ; otherwise, outputs ⊥.

Fig. 5. The scheme Π3

VC with Storage-Verification Trade-off 127

A Publicly Verifiable Scheme: Fig. 6 shows our public VC scheme Π4 for
delegating E. The τ is in Π4 is computed using Σ5.CFE. It is easy to see that
Π4 is correct. Due to lack of space, we show that Π4 is secure under the DLIN
assumption for G in the full version.

KeyGen(1λ,E): picks (pp, k)← Σ5.Kg(1
λ, (m,n)), where pp = (Λ,m, n) and Λ = (p,

G,GT , e, g); picks α = (α1, . . . , αs) ← Z
s
p; computes ti = ti,j = gα1F1,i+···+αsFs,i ·

Fk(i) for every i = (i, j) ∈ [m] × [n]; then outputs ek = (E, {ti}), dk = k and
vk = (h1, . . . , hs) = (e(g, g)α1 , . . . , e(g, g)αs);

ProbGen(dk,x): given x ∈ Z
m
p , computes τj = e

��m

i=1
Fk(i, j)

xi , g
�
for every j ∈ [n];

then outputs σ = x and τ = (τ1, . . . , τn).

Compute(ek, σ): computes ρ = (ρ1, . . . , ρd) = x ·E and πj =
�m

i=1
(ti,j)

xi for every
j ∈ [n]; then outputs ρ and π = (π1, . . . , πn).

Verify(vk, τ ,ρ,π): verifies if e(πj , g) =
�s

�=1
h
ρj+(�−1)n

� · τj for every j ∈ [n]; if all
equalities hold, outputs ρ; otherwise, outputs ⊥.

Fig. 6. The scheme Π4

3.3 Performance Analysis and Extensions

In this section we analyze our schemes. We take Π1 and Π4 as example. The
analysis of Π2 and Π3 can be done similarly.

Analysis of Π1. Storage: In Π1, the client stores ek = (f, {ti}i∈I) with the
server, where f can be represented by (d+1)m elements of Zp and ti belongs to
a group G of order p for every i ∈ I. The storage overhead of Π1 is ((d+ 1)m +
|I|)/(d + 1)m = 1 + 1/s. Let λ = 1024, |p| = λ,m = 1, d + 1 = 230, s = λ and
n = 220. Let the G in Π1 be an order p subgroup of Z∗

p′ , where p′ is a prime.

To delegate f , the client stores |I| = 220 tags in G with the server. Thus, to
delegate (d + 1)m × |p|/23B = 128GB data, Π1 requires |I| · λ/23B = 128MB
cloud storage for tags. This is only 1/1024 times the 128GB tags used by [2].
Verification: Let Ep,Mp and Ap be the number of bit operations required
by each exponentiation, multiplication, and addition in Zp, respectively. Let
EG and MG be the number of bit operations required by each exponentiation
and multiplication in G, respectively. Let CG be the number of bit operations
required for comparing two elements of G. In Π1.ProbGen, the client requires
mEp+3mMp+2mAp bit operations to compute the τ using Σ1.CFE. InΠ1.Verify,
the client requires (2s−1)Mp+(s−1)Ap bit operations to compute η = ρ1α+· · ·+
ρsα

s, EG bit operations to compute gη, MG bit operations to compute gη · τ and
then CG bit operations to compare π with gη ·τ ; it also requires Ep bit operations

to compute xn
1 , (s− 2)Mp bit operations to compute x2n

1 ,, x
(s−1)n
1 , and then

sMp + (s− 1)Ap bit operations to compute f(x). Thus, the client’s verification
totally requires (m+1)Ep+(3m+4s−3)Mp+(2m+2s−2)Ap+EG+MG+CG bit
operations. The scheme of [2] requires mEp+(3m+1)Mp+2mAp+EG+MG+CG

bit operations to do verification. Note that Ep,EG ≈ λ3,Mp,MG ≈ λ2, and
Ap,CG ≈ λ. The client in Π1 requires ≈ ((m + 2)λ + 4s)λ2 bit operations and

128 L.F. Zhang and R. Safavi-Naini

the client in [2] requires ≈ (m + 1)λ3 bit operations. Therefore, our client is
roughly δ = 1 + λ+4s

(m+1)λ times slower than the client of [2]. When m = 1 and

s = λ, we have that δ = 3.5. Our parameter s provides a meaningful trade-off
between the size of tags and the client’s verification time. The larger the s is,
the smaller the storage overhead is and the slower the client of Π1 is. The δ
shows that our client can significantly reduce the consumption of cloud storage
by slightly increasing the verification time.

Analysis of Π4. Our scheme Π4 uses a random bilinear map instance (p,G,GT ,
e, g). In Π4.ProbGen, the client requires m + n exponentiations in G and n
pairing computations to compute τ = (τ1, . . . , τn) using Σ5.CFE. In Π4.Verify,
the client requires s exponentiations in GT , s multiplications in GT , one pairing
computation and one comparision of the elements of GT to check the equality
e(πj , g) =

�s
�=1 h

ρj+(�−1)n

� ·τj for every j ∈ [n]. Thus, the client’s verification time
is dominated by m+ n exponentiations in G, sn exponentiations in GT , and 2n
pairing computations. The scheme of [7] is a special case of Π4 with s = 1. In
their scheme, the client requires m + sn exponentiations in G and sn pairing
computations to compute d = sn elements τ1, . . . , τd for future verification. The
client also requires one exponentiation in GT , one multiplication in GT , one
pairing computation and one comparision of the elements of GT to check an
equality for each of the sn components of x ·E. Therefore, the verification time
of their client is dominated by (m+sn) exponentiations in G, sn exponentiations
in GT , and 2sn pairing computations. Hence, our publicly verifiable scheme Π4

for delegating matrices is much more efficient than [7] not only in terms of storage
overhead (1 + 1/s vs. 2) but also in terms of the client’s verification time.

Extensions. The coefficients of f are considered as s vectors in Π1 and the com-
putation of f(x) is reduced to computing inner products with them. Each inner
product is an evaluation of an m-variate polynomial of degree ≤ n− 1 in x1 and
degree ≤ d in any other variables. We can repeatedly apply our technique on these
shorter polynomials to further reduce the degrees of x2, . . . , xm such that the com-
putation of f(x) is reduced to evaluating sm different m-variate polynomials of
degree ≤ n − 1 in each variable. This is particularly useful when d = O(1) but
m = O(log λ). Our schemes also provide batch verifications of multiple functions.
For example, if we set m = 1, then Π1 allows the client to verify the evaluations
of s univariate polynomials of degree ≤ n− 1 using substantially less time (≈ 7λ3

bit operations when s = λ) than delegating the s polynomials separately using [2]
(which requires ≈ 2sλ3 bit operations for verification).

4 Conclusions

In this paper, we construct VC schemes for delegating polynomials and matrices
that provide trade-offs between the consumed cloud storage and the client’s
verification time. As [2,7], our polynomial f must have special form. For example,
in Π1 we require that d+1 = 2a = sn = s2b. This is necessary to use PRFs with
closed-form efficiency. For a general polynomial, one may add redundant terms
to meet the requirement. It is interesting to extend our results to more general
functions such as the m-variate polynomials of total degree ≤ d.

VC with Storage-Verification Trade-off 129

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient
Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010)

2. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over
Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–
131. Springer, Heidelberg (2011)

3. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From Extractable Collision Re-
sistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again.
In: ITCS, pp. 326–349 (2012)

4. Boneh, D., Freeman, D.M.: Homomorphic Signatures for Polynomial Functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

5. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory Delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

6. Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved Delegation of Computation Us-
ing Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

7. Fiore, D., Gennaro, R.: Publicly Verifiable Delegation of Large Polynomials and
Matrix Computations, with Applications. In: CCS, pp. 501–512 (2012)

8. Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

9. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and
Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

10. Gennaro, R., Wichs, D.: Fully Homomorphic Message Authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320.
Springer, Heidelberg (2013)

11. Gentry, C., Wichs, D.: Separating Succinct Non-Interactive Arguments from All
Falsfiable Assumptions. In: STOC, pp. 99–108 (2011)

12. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating Computation: Interactive
Proofs for Muggles. In: STOC, pp. 113–122 (2008)

13. Juels, A., Kaliski, B.: PORs: Proofs of Retrievability for Large Files. In: CCS, pp.
584–597 (2007)

14. Lewko, A.B., Waters, B.: Efficient Pseudorandom Functions from the Decisional
Linear Assumption and Weaker Variants. In: CCS, pp. 112–120 (2009)

15. Naor, M., Reingold, O.: Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. J. ACM 51(2), 231–262 (2004)

16. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of Correct Computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013)

17. Parno, B., Raykova, M., Vaikuntanathan, V.: How to Delegate and Verify in Public:
Verifiable Computation from Attribute-Based Encryption. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

18. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

	Verifiable Delegation of Computationswith Storage-Verification Trade-off
	1 Introduction
	1.1 Our Work
	1.2 Background and Our Technique
	1.3 Verifiable Delegation of Polynomials
	1.4 Verifiable Delegation of Matrices
	1.5 Performance Analysis and Extensions
	1.6 Related Work

	2 Preliminaries
	2.1 Verifiable Computation
	2.2 A Technical Lemma
	2.3 Cryptographic Assumptions
	2.4 PRFs with Closed-Form Efficiency

	3 Our Schemes
	3.1 Verifiable Delegation of Polynomials
	3.2 Verifiable Delegation of Matrices
	3.3 Performance Analysis and Extensions

	4 Conclusions
	References

