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Abstract. A Hidden Vector Encryption (HVE) scheme is a special type
of anonymous identity-based encryption (IBE) scheme where the at-
tribute string associated with the ciphertext or the user secret key
can contain wildcards. In this paper, we introduce two constant-size
ciphertext-policy hidden vector encryption (CP-HVE) schemes. Our first
scheme is constructed on composite order bilinear groups, while the sec-
ond one is built on prime order bilinear groups. Both schemes are proven
secure in a selective security model which captures plaintext (or payload)
and attribute hiding. To the best of our knowledge, our schemes are the
first HVE constructions that can achieve constant-size ciphertext among
all the existing HVE schemes.

Keywords: Hidden vector encryption, Ciphertext policy, Constant-size
ciphertext, Viète’s Formulas.

1 Introduction

Embedding policy-based access control into modern encryption schemes is an
interesting but challenging task that has been intensively studied by the crypto-
logic research community in recent years. Typical examples of such encryption
schemes include Attribute-based Encryption (ABE) [1–4] and Predicate Encryp-
tion [5, 6] schemes, which can be treated as special instances of a more general
notion called Functional Encryption which was formalized by Boneh, Sahai, and
Waters [7].

As a special type of functional encryption, Hidden Vector Encryption (HVE)
schemes [5, 6, 8, 9] allow wildcards to appear in either the encryption attribute
vector associated with a ciphertext or the decryption attribute vector associated
with a user secret key. Similar to ABE schemes, we name the former Ciphertext
Policy (CP-) HVE schemes and the latter Key Policy (KP-) HVE schemes. The
decryption will work if and only if the two vectors match. That is, for each
position, the two vectors must have the same letter (defined in an alphabet Σ)
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unless a wildcard symbol ‘�’ appears in one of these two vectors at that position.
In this paper, we focus on the construction of CP-HVE schemes.

Related Works. All the recent development on functional encryptions can be
traced back to the earlier work on identity-based encryption which was intro-
duced by Shamir [10] and first realized by Boneh and Franklin [11] and Cocks
[12]. One important extension of IBE is hierarchical IBE (HIBE) [13], which
allows users at a level to issue keys to those on the level below.

The notion of Anonymous IBE was introduced by Boneh et al. [14] and later
formalized by Abdalla et al. [15]. Compared with the normal IBE, anonymous
IBE supports the additional feature of identity/attribute hiding. That is, except
the user holding the correct decryption key, no one is able to link a ciphertext
with the identity string used to create that ciphertext.

In [16], Abdalla et al. also proposed another extension of IBE called Wild-
carded IBE (or WIBE for short). WIBE is closely related to CP-HVE except
that the former does not consider the property of identity/attribute hiding when
it was introduced in [16]. Abdalla et al. proposed several WIBE constructions
based on the Waters HIBE [17], the Boneh-Boyen HIBE [18], and the Boneh-
Boyen-Goh HIBE [13]. Recently, to address the identity hiding problem, Abdalla
et al. also proposed an anonymous WIBE in [19].

In a predicate encryption system [5, 6] for a (polynomial-time) predicate P ,
two inputs (besides some public parameters) are required in the encryption pro-
cess, one is the messageM to be encrypted, and the other one is an index string
i. A decryption key is generated based on a master secret and a key index k.
The decryption key can successfully decrypt a valid encryption of (i,M) if and
only if P (k, i) = 1. IBE can be treated as a special type of predicate encryption
where the predicate function simply performs an equality test, while for HVE
the predicate function will ignore the positions where wildcard symbols ‘�’ have
occurred when doing an equality test.

After the notion of hidden vector encryption was first proposed by Boneh and
Waters in [5], several HVE schemes [6, 8, 9, 20–23] have been proposed, most
of which are key policy based (i.e., the wildcards ‘�’ appear in the decryption
attribute vector). One common drawback in many early HVE schemes (e.g.
[5, 6, 21, 22]) is that the ciphertext size and the decryption key size are large
(linear in the length of the vector). In [8], Sedghi et al. proposed an HVE scheme
that has constant decryption key size and short (but still not constant-size)
ciphertext. In [9], Hattori et al. introduced a formal definition for CP-HVE and
proposed a CP-HVE scheme based on the anonymous HIBE proposed in [24]
and the wildcarded IBE proposed in [16]. Hattori et al.’s CP-HVE scheme also
has a linear cipertext size. To the best of our knowledge, there is no HVE scheme
proposed in the literature that can achieve constant-size ciphertext.
Our Contributions. We propose two ciphertext policy hidden vector encryption
schemes with constant-size ciphertext.

• Our first proposed scheme (CP-HVE1) is constructed on bilinear groups
with a composite order n = pq where p, q are prime numbers. The secu-
rity of the scheme is proven in the standard model under three complexity
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assumptions: the Decisional L-composite Bilinear Diffie-Hellman Exponent
(L-cBDHE) assumption, the L-composite Decisional Diffie Hellman (l-cDDH)
assumption, and the Bilinear Subspace Decision (BSD) assumption.
• Additionally, we also construct our second scheme (CP-HVE2), which is built
on bilinear groups with a prime order. We note that our second scheme is
more efficient compared to the scheme converted from CP-HVE1 by applying
the conversion tool from a composite order to a prime order bilinear group.
Our second scheme is proven under the Decisional L-Bilinear Diffie-Hellman
Exponent (L-BDHE) assumption.

We highlight the differences between our schemes and the previous HVE
schemes in Table 1. A more detailed comparison among these schemes is given
in Sec. 7.

Table 1. A Comparison on Ciphertext Size and Key Size among HVE Schemes

Scheme Type Constant Ciphertext Size Constant Key Size

Katz et al. [6] Key Policy No No

Shi, Waters [20] Key Policy No No

Ivovino and Persiano [21] Key Policy No No

Sedghi et al. [8] Key Policy No Yes

Lee and Dong [25] Key Policy No Yes

Park [23] Key Policy No Yes

Hattori et al. [9] Ciphertext Policy No No

Ours Ciphertext Policy Yes No

2 Preliminaries

2.1 Bilinear Map on Prime Order Groups

Let G and GT be two multiplicative cyclic groups of same prime order p, and
g a generator of G. Let e : G × G → GT be a bilinear map with the following
properties:

1. Bilinearity : e(ua, vb) = e(ub, va) = e(u, v)ab for all u,v ∈ G and a,b ∈ Zp.
2. Non-degeneracy : e(g, g) �= 1

Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

Decision L-BDHE Assumption. The Decision L-BDHE problem in G is
defined as follows: Let G be a bilinear group of prime order p, and g, h two
independent generators of G. Denote −→y g,α,L = (g1, g2, . . . , gL, gL+2, . . . , g2L) ∈
G2L−1 where gi = gα

i

for some unknown α ∈ Z∗
p. We say that the L-BDHE

assumption holds in G if for any probabilistic polynomial-time algorithm A

|Pr[A(g, h,−→y g,α,L, e(gL+1, h)) = 1]− Pr[A(g, h,−→y g,α,L, T ) = 1]| ≤ ε(k)
where the probability is over the random choive of g, h in G, the random choice
α ∈ Z∗

p, the random choice T ∈ GT , and ε(k) is negligible in the security
parameter k.
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2.2 Bilinear Map on Composite Order Groups

Let p, q be two large prime numbers and n = pq. Let G,GT be cyclic groups of
order n, We say e : G×G→ GT is bilinear map on composite order groups if e
satisfies the following properties:

1. Bilinearity : e(ua, vb) = e(ub, va) = e(u, v)ab. for all u,v ∈ G and a,b ∈ Zp.
2. Non-degeneracy : e(g, g) �= 1

Let Gp and Gq be two subgroups of G of order p and q, respectively. Then
G = Gp ×Gq, GT = GT,p × GT,q. We use gp and gq to denote generators of Gp
and Gq, respectively. e(hp, hq) = 1 for all elements hp ∈ Gp and hq ∈ Gq since
e(hp, hq) = e(gap , g

b
q) = e(gqa, gpb) = e(g, g)pqab = 1 for a generator g of G.

Below are three complexity assumptions defined on composite order bilinear
groups: the decisional L-composite bilinear Diffie-Hellman exponent (L-cBDHE)
assumption, the L-composite Decisional Diffie-Hellman (L-cDDH) assumption,
and the bilinear subspace decision (BSD) assumption.

The Decisional L−cBDHE Assumption

Let gp, h
R←− Gp, gq

R←− Gq, α
R←− Zn

Z = (gp, gq, h, g
α
p , . . . , g

αL

p , gα
L+2

p , . . . , gα
2L

p ),

T = e(gp, h)
αL+1

, and R← GT,p

We say that the decisional L−cBDHE assumption holds if for any probabilistic
polynomial-time algorithm A

|Pr[A(Z, T ) = 1]− Pr[A(Z,R) = 1]| ≤ ε(k)
where ε(k) denotes an negligible function of k.

The L− cDDH Assumption

Let gp
R←− Gp, gq, R1, R2, R3

R←− Gq, α, β
R←− Zn

Z = (gp, gq, g
α
p , . . . , g

αL

p , gα
L+1

p R1, g
αL+1β
p R2)

T = gβpR3, and R← G

We say that the L− cDDH assumption holds if for any probabilistic polynomial-
time algorithm A

|Pr[A(Z, T ) = 1]− Pr[A(Z,R) = 1]| ≤ ε(k)
where ε(k) denotes an negligible function of k.

The BSD Assumption

Let gp ← Gp, gq ← Gq

Z = (gp, gq)
T ← GT,p, and R← GT,p
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We say that the BSD assumption holds if for any probabilistic polynomial-time
algorithm A

|Pr[A(Z, T ) = 1]− Pr[A(Z,R) = 1]| ≤ ε(k)
where ε(k) denotes an negligible function of k.

2.3 The Viète’s Formulas

Both of our schemes introduced in this paper are based on the Viète’s formulas
[8] which is reviewed below. Consider two vectors −→v = (v1, v2, . . . , vL) and

−→z =
(z1, z2, . . . , zL). Vector v contains both alphabets and wildcards, and vector z
only contains alphabets. Let J = {j1, . . . , jn} ⊂ {1, . . . , L} denote the positions
of the wildcards in vector −→v . Then the following two statements are equal:

vi = zi ∨ vi = ∗ for i = 1 . . . L
L∑

i=1,i/∈J
vi

∏

j∈J
(i − j) =

L∑

i=1

zi
∏

j∈J
(i− j). (1)

Expand
∏

j∈J
(i−j) =

n∑

k=0

aki
k, where ak are the coefficients dependent on J , then

(1) becomes:
L∑

i=1,i/∈J
vi

∏

j∈J
(i− j) =

n∑

k=0

ak
L∑

i=1

zii
k (2)

To hide the computations, we choose random group elemen Hi and put vi, zi
as the exponents of group elements: Hvi

i , H
zi
i . Then (2) becomes:

L∏

i=1,i/∈J
H
vi

∏
j∈J (i−j)

i =
n∏

k=0

(
L∏

i=1
Hzii

k

i )ak (3)

Using Viète’s formulas we can construct the coefficient ak in (2) by:

an−k = (−1)k
∑

1≤i1<i2<...<ik≤n
ji1ji2 . . . jik , 0 ≤ k ≤ n. (4)

where n = |J |. If we have J = {j1, j2, j3}, the polynomial is (x−j1)(x−j2)(x−j3),
then:

a3 = 1
a2 = −(j1 + j2 + j3)
a1 = (j1j2 + j1j3 + j2j3)
a0 = −j1j2j3.

3 Ciphertext-Policy Hidden Vector Encryption

A ciphertext-policy hidden vector encryption (CP-HVE) scheme consists of the
following four probabilistic polynomial-time algorithms:
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• Setup(1k, Σ, L): on input a security parameter 1k, an alphabet Σ, a vector-
length L, the algorithm outputs a public key PK and master secret key
MSK.
• Encryption(PK,−→v ,M): on input a public key PK, a messageM , a vector
v ∈ Σ∗

L where Σ∗ denotes Σ ∪ {∗}, the algorithm outputs a ciphertext CT .
• KeyGen(MSK,−→x ): on input a master secret keyMSK , a vector −→x ∈ ΣL,
the algorithm outputs a decryption key SK.
• Decryption(CT, SK): on input a ciphertext CT and a secret key SK, the
algorithm outputs either a message M or a special symbol ⊥.

Security Model. The security model for a CP-HVE scheme is defined via the
following game between an adversary A and a challenger B.

• Init: The adversary A chooses two target patterns,

−→
v∗0 = (v0,1, v0,2, . . . , v0,L) and

−→
v∗1 = (v1,1, v1,2, . . . , v1,L)

under the restriction that the wildcards ‘*’ must appears at the same posi-
tions.
• Setup: The challengerB run Setup(k,Σ, L) to generate the PK andMSK.
PK is then passed to A.
• Query Phase 1: A adaptively issues key queries for −→σ = (σ1, . . . , σL) ∈ ΣL
under the restriction that −→σ does not match

−→
v∗0 or

−→
v∗1 . That is, there exist

i, j ∈ {1, . . . , L} such that v∗0,i �= ∗ ∧ v∗0,i �= σi, and v∗1,j �= ∗ ∧ v∗1,j �=
σj . The challenger runs KeyGen(MSK,−→σ ) and returns the corresponding
decryption key to A.
• Challenge: A outputs two equal-length messages M∗

0 ,M
∗
1 . B picks β ←

{0, 1} and runs Encrypt(PK,
−→
v∗β, M

∗
β) to generate a challenge ciphertext C∗.

B then passes C∗ to A.
• Query Phase 2: same as Learning Phase 1.
• Output: A outputs a bit β′ as her guess for β.

Define the advantage of A as

AdvCP−HVE
A (k) = Pr[β′ = β]− 1/2.

4 CP-HVE Scheme 1

In this section, we present our first CP-HVE under composite order bilinear
groups. Let −→v denote the attribute vector associated with the ciphertext and −→z
the attribute vector associated with the user secret key. The expression of these
two vectors is designed based on the idea The Viète’s formulas. To do encryption,

we represent each component of the vector−→v by (gvi)

∏

j∈J

(i−j)
where J denotes all

the wildcard positions and is attached to the ciphertext. Notice that
∏

j∈J
(i−j) =

n∑

k=0

aki
k according to the Viète’s formulas. In the decryption process, based on
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J , the decryptor can reconstruct the coefficients ak, and generate
∏

j∈J
gzii

kak =

(gzi)

∏

j∈J

(i−j)
for each component of −→z . In this way, whether vi = zi will not

affect the decryption if i ∈ J .
� Setup(1k, Σ, L): The setup algorithm first chooses N << L where N is the

maximum number of wildcards that are allowed in an encryption vector. It
then picks large primes p, q, generates bilinear groups G,GT of composite
order n = pq, and selects generators gp ∈ Gp, gq ∈ Gq. After that, it selects
random elements:

g, f, v, v′, h1, . . . , hL, h
′
1, . . . , h

′
L, w ∈ Gp,

Rg, Rf , Rv, Rv′ , Rh1 , . . . , RhL , Rh′
1
, . . . , Rh′

L
∈ Gq,

and computes :

G = gRg, F = fRf , V = vRv, V
′ = v′Rv′ ,

H1 = h1Rh1 , . . . , HL = hLRhL ,
H ′

1 = h′1Rh′
1
, . . . , H ′

L = h′LRh′
L
,

E = e(g, w).

Then it creates the public key and master secret key as:

PK = {gp, gq, G, F, V, V ′, (H1, . . . , HL), (H
′
1, . . . , H

′
L), E},

MSK = {p, q, g, f, v, v′, (h1, . . . , hL), (h
′
1, . . . , h

′
L), w}.

� Encrypt(PK,M,−→v = (v1, . . . , vL) ∈ Σ∗
L): Suppose that −→v contains τ ≤ N

wildcards which occur at positions J = {j1, . . . , jτ}. The encryption algo-
rithm first chooses:

s ∈R Zn, and Z1, Z2, Z3, Z4 ∈R Gq.

Using formulas (3) and (4), compute ak for k = 1, 2, · · · , τ , and t = a0. Then
set:

C0 =M · Es, C1 = G
s
tZ1, C2 = F sZ2,

C3 = ((
L∏

i=1

V Hvi
i )

τ∏

k=1

(i−jk)
)

s
t · Z3, C4 = ((

L∏

i=1

V ′(H ′
i)
vi)

τ∏

k=1

(i−jk)
)

s
t · Z4,

J = {j1, j2, . . . , jτ},
and ciphertext CT = {C0, C1, C2, C3, C4, J}.

� KeyGen(MSK,−→z = (z1, . . . , zL) ∈ ΣL): The key generation algorithm
chooses r1, r

′
1, r2 randomly in Zn, and computes:

K1 = gr1 ,K2 = gr
′
1 ,K3 = gr2 ,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K4,0 = w(
L∏

i=1

hzii v)
r1(

L∏

i=1

(h′i)
ziv′)r

′
1f r2 ,

K4,1 = (
L∏

i=1

hzii v)
ir1(

L∏

i=1

(h′i)
ziv′)ir

′
1 ,

. . .

K4,N = (
L∏

i=1

hzii v)
iN r1(

L∏

i=1

(h′i)
ziv′)i

N r′1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The secret key is SK = {K1,K2,K3,K4,0, . . . ,K4,N}.
� Decrypt(CT, SK): The decryption algorithm first applies the Viète’s for-

mulas to compute

aτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ
ji1ji2 . . . jik , 0 ≤ k ≤ τ

and then outputs:

M =
e(K1, C3) · e(K2, C4) · e(K3, C2)

e(
τ∏

k=0

Kak
4,k, C1)

· C0.

Correctness

e(K1, C3) = e(gr1 , ((
L∏

i=1

VH
vi
i )

τ∏

k=1
(i−jk)

)
s
a0 · Z3)

=
L∏

i=1

e(g, v)

sr1
τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1
τ∏

k=1
(i−jk)vi

a0 .

e(K2, C4) = e(gr
′
1 , ((

L∏

k=1

V ′(H′)vii )

τ∏

k=1
(i−jk)

)
s
a0 · Z4)

=
L∏

i=1

e(g, v′)

sr′1
τ∏

k=1
(i−jk)

a0 · e(g, h′
i)

sr′1
τ∏

k=1
(i−jk)vi

a0 .

e(K3, C2) = e(gr2 , F sZ2) = e(g, f)r2s.

e(
τ∏

k=0

K
ak
4,k, C1) = e(wa0 (

τ∏

k=0

L∏

i=1

vi
kakh

zii
kak

i vi
kak )r1(

τ∏

k=0

L∏

i=1

(h′
i)

zii
kakv′i

kak )r
′
1fr2a0 , G

s
a0 Z1)

= e(g, w)
sa0
a0 · e(g, f)

sr2a0
a0 ·

L∏

i=1

e(g, hi)

sr1
τ∏

k=1
(i−jk)zi

a0 e(g, v)
sr1

∑τ
k=0 ikak
a0

·
L∏

i=1

e(g, h′
i)

sr′1
τ∏

k=1
(i−jk)zi

a0 e(g, v′)
sr′1

∑τ
k=0 ikak
a0

= e(g, w)s · e(g, f)sr2 ·
L∏

i=1

e(g, v)

sr1
τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1
τ∏

k=1
(i−jk)zi

a0

·
L∏

i=1

e(g, v′)

sr′1
τ∏

k=1
(i−jk)

a0 · e(g, h′
i)

sr′1
τ∏

k=1
(i−jk)zi

a0 .

Then we have

e(K1 , C3) · e(K2 , C4) · e(K3, C2)

=
L∏

i=1
e(g, v)

sr1
τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1
τ∏

k=1
(i−jk)vi

a0 ·
L∏

i=1
e(g, v′)

sr′1
τ∏

k=1
(i−jk)

a0 · e(g, h′
i)

sr′1
τ∏

k=1
(i−jk)vi

a0 ,

e(
τ∏

k=0
K

ak
4,k

, C1)

=
L∏

i=1
e(g, v)

sr1
τ∏

k=1
(i−jk)

a0 · e(g, hi)

sr1
τ∏

k=1
(i−jk)zi

a0 ·
L∏

i=1
e(g, v′)

sr′1
τ∏

k=1
(i−jk)

a0 · e(g, h′
i)

sr′1
τ∏

k=1
(i−jk)zi

a0

·e(g, w)s · e(g, f)sr2 ,
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and can recover message M by:

e(K1, C3) · e(K2, C4) · e(K3, C2)

e(
τ∏

k=0

K
ak
4,k, C1)

· C0 =
e(g, f)r2s ·M · e(g,w)s

e(g,w)s · e(g, f)sr2 = M.

Theorem 1. Our CP-HVE Scheme 1 is secure if the Decisional L−cBDHE
assumption, the L− cDDH assumption, and the BSD assumption hold.

We prove Theorem 1 by the following sequence of games.

Game0 : [C0, C1, C2, C3, C4]

Game1 : [C0 ·Rp, C1, C2, C3, C4]

Game2 : [R0, C1, C2, C3, C4]

Game3 : [R0, C1, C2, R3, C4]

Game4 : [R0, C1, C2, R3, R4],

where Rp is a randomly chosen from GT,p, R0 is uniformly distributed in GT ,
and R0, R3, R4 are uniformly distributed in G.

We will prove the following Lemmas. Notice that in Game4 the challenge
ciphertext is independent of the message and the encryption vector, which means
the adversary has no advantage in winning the game over random guess.

Lemma 1. Assume that the Decisional L−cBDHE assumption holds, then for
any PPT adversary, the difference between the advantages in Game0 and Game1

is negligible.

Lemma 2. Assume that the BSD assumption holds, then for any PPT adver-
sary, the difference between the advantages in Game1 and Game2 is negligible.

Lemma 3. Assume that the L−cDDH assumption holds, then for any PPT
adversary, the difference between the advantages in Game2 and Game3 is negli-
gible.

Lemma 4. Assume that the L−cDDH assumption holds, then for any PPT
adversary, the difference between the advantages in Game3 and Game4 is negli-
gible.

(The proof is given in the full version of the paper).

5 CP-HVE Scheme 2

One straightforward approach to obtain a new CP-HVE scheme under prime-
order bilinear groups is to apply the conversion technique introduced by Lewko
[26]. In this section, we present a new prime-order CP-HVE scheme that is more
efficient than the converted scheme.
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� Setup(1k, Σ, L): The setup algorithm chooses N << L to be the maxi-
mum number of wildcards that are allowed in an encryption vector. Then it
generates other system parameters including:

e : G×G→ GT ,
L+ 1 random elements V,H1, . . . , HL ∈R G,
Then chooses randomly generator g, w, f ∈ G,
Y = e(g, w).

The public key and master secret key are set as:

PK = (Y, V, (H1, . . . , HL), g, f, p,G,GT , e),
MSK = w.

� Encrypt(PK,M,−→v = (v1, . . . , vL) ∈ Σ∗
L): Assume that −→v = (v1, . . . , vL)

contains τ ≤ N wildcards which occur at positions J = {j1, . . . , jτ}. The
encryption algorithm chooses s ∈R Zp, and computes using Viete’s formulas
t = a0. It then computes:

C0 =MY s, C1 = g
s
t , C2 = f s, C3 = (

L∏

i=1

VHvi
i )

∏τ
k=1(i−jk)s

t ,

and set the ciphertext CT = (C0, C1, C2, C3, J = {j1, j2, . . . , jτ}).

� Key Generation(MSK,−→z = (z1, . . . , zL) ∈ ΣL): given a key vector −→z =
(z1, . . . , zL), the key generation algorithm chooses r, r1 ∈R Zp, then it creates
secret key SK as:

K1 = gr,K2 = gr1 ,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K3,0 = w(
L∏

i=1

(Hzi
i V )rf r1

K3,1 = (
L∏

i=1

Hzi
i V )ir

. . .

K3,N = (
L∏

i=1

Hzi
i V )i

N r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

� Decrypt(CT, SK): The decryption algorithm first applies the Viete formu-
las on J = {j1, . . . , jτ} included in the ciphertext to compute:

aτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ
ji1ji2 . . . jik , for 0 ≤ k ≤ τ

and then outputs:

M =
e(K1, C3) · e(K2, C2)

e(
τ∏

k=0

Kak
3,k, C1)

· C0.
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Correctness

e(K1, C3) = e(gr , ((
L∏

i=1
V H

vi
i )

τ∏

k=1
(i−jk)

)
s
a0 )

=
L∏

i=1
e(g, V )

sr
τ∏

k=1
(i−jk)

a0 · e(g,Hi)

sr
τ∏

k=1
(i−jk)vi

a0 .

e(K2, C2) = e(gr1 , fs) = e(g, f)r1s

e(
τ∏

k=0
K

ak
3,k, C1) = e(wa0(

τ∏

k=0

L∏

i=1
H

zii
kak

i V ikak )rfr1a0 , g
s
a0 )

= e(g,w)
sa0
a0 · e(g, f)

sr1a0
a0 ·

L∏

i=1
e(g, V )

sr
τ∏

k=1
(i−jk)

a0 e(g,Hi)

sr
τ∏

k=1
(i−jk)zi

a0

= e(g,w)s · e(g, f)sr1 ·
L∏

i=1
e(g, V )

sr
τ∏

k=1
(i−jk)

a0 · e(g,Hi)

sr
τ∏

k=1
(i−jk)zi

a0 .

Then we have:

e(K1,C3)·e(K2,C2)·C0

e(
τ∏

k=0
K

ak
3,k

,C1)

=
M·e(g,w)s ·

L∏

i=1
e(g,V )

sr
τ∏

k=1
(i−jk)

a0 ·e(g,Hi)

sr
τ∏

k=1
(i−jk)vi

a0 ·e(g,f)r1s

e(g,w)s ·e(g,f)sr1 ·
L∏

i=1
e(g,V )

sr
τ∏

k=1
(i−jk)

a0 ·e(g,Hi)

sr
τ∏

k=1
(i−jk)zi

a0

= M.

6 Security Proof of CCP-HVE2 Scheme

Theorem 2. Assume decision L-BDHE assumption holds in G, then our CP-
HVE Scheme 2 is secure.

Proof. Suppose that there exists an adversary A which can attack our scheme
with non-negligible advantage ε, we construct another algorithm B which uses A
to solve the decision L-BDHE problem. On input (g, h,−→y g,α,L = (g1, g2, . . . , gL,

gL+2, . . . , g2L), T ), where gi = gα
i

and for some unknown α ∈ Z∗
p. The goal of

B is to determine whether T = e(gL+1, h) or not.
In the rest of the proof, we denote W (−→v ) = {1 ≤ i ≤ L|vi = ∗} and W (−→v ) =
{1 ≤ i ≤ L|vi �= ∗}, and W (−→v )|kj as {i ∈ W (−→v )|j ≤ i ≤ k}.
B simulates the game for A as follows:

• Init: A declares two challenge alphabet vectors
−→
v∗0 ∈ Σ∗

L and
−→
v∗1 ∈ Σ∗

L under

the restriction that W (
−→
v∗0) =W (

−→
v∗1). B flips a coin μ ∈ {0, 1}. For simplicity

we denote
−→
v∗μ = (v∗1 , v

∗
2 , · · · , v∗L).

• Setup: B chooses N << L, and random values γ, y, ψ, u1, . . . , uL ∈R Zp

and sets
Y = e(gα, gα

L

gγ), f = gψ,

V = gy
∏

i∈W (
−→
v∗μ)

gα
L+1−iv∗μ,i

{Hi = gui−αL+1−i}
i∈W (

−→
v∗μ)
, {Hi = gui}

i∈W (
−→
v∗μ)
.
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The master key component w is gα
L+1+αγ . Since B does not have gα

L+1

, B
cannot compute w directly.

• Query Phase 1: A queries the user secret key for −→σu = (σ1, σ2, . . . , σu)

that does not match the challenge patterns. Let k ∈ W (
−→
v∗μ) be the smallest

integer such that σk �= v∗μ,k.
B needs to simulate the user key generation process. We start from K3,i.

K3,0 = w(
L∏

i=1

Hσi
i V )rfr1

= gα
L+1+αγ(

∏

W (
−→
v∗
μ)|k1

gui−αL+1−i · ∏

W (
−→
v∗
μ)|k1

(gui))σi · g
y+

∑

W(
−→
v∗μ)

αL+1−iv∗
μ,i

)rfr1 .

def
= gα

L+1+αγ(gX)rfr1

where

X =
∑

W (
−→
v∗μ)

αL+1−iv∗μ,i + y +
∑

W (
−→
v∗μ)|k1

(ui − αL+1−i)σi +
∑

W (
−→
v∗μ)|k1

uiσi.

Since

∑

W (
−→
v∗μ)|k1

(ui − αL+1−i)σi +
∑

W (
−→
v∗μ)|k1

uiσi =
∑

W (
−→
v∗μ)|k1

(−αL+1−iσi) +
k∑

i=1

uiσi

and recall σi = v∗μ,i for i ∈ W (
−→
v∗μ)|k−1

1 and σk �= v∗μ,k. Hence, we have

X = αL+1−kΔk +
∑
W (

−→
v∗μ)|Lk+1

αL+1−iv∗μ,i +
∑k

i=1 xiσi + y

where Δk = v∗μ,k − σk. Then we choose r̂, r1 randomly in Zn, and set r =
−αk

Δk
+ r̂. K3,0 can be represented as

K3,0

= gα
L+1+αγ · g−αL+1 · g

∑

i∈W (
−→
v∗μ)|Lk+1

−αL+1−i+kv∗μ,i
Δk

· ga
k(−

∑k
i=1 xiσi+y.

Δk
) · (V

k∏

i=1

h
σi
i )r̂ · fr1

= gαγ · g

∑

i∈W (
−→
v∗μ)|Lk+1

−αL+1−i+kv∗μ,i
Δk

· ga
k(−

∑k
i=1 xiσi+y.

Δk
) · (V

k∏

i=1

H
σi
i )r̂ · fr1 .

For k̂ = 1 to N , we compute

K3,k̂ = (g

y+
∑

W(
−→
v∗μ)

αL+1−iv∗
μ,i

· ( ∏

W (
−→
v∗
μ)|k−1

1

gui−αL+1−i · ∏

W (
−→
v∗
μ)|k−1

1

(gui)σi)
−αkik̂

Δk
+r̂ik̂

.
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Table 2. Performance Comparison

Scheme Group Order Ciphertext Size Decryption Cost Assumption

Katz et al. [6] pqr (2L+ 1)|G|+ 1|GT | (2L+ 1)p c3DH

Shi–Waters [20] pqr (L+ 3)|G|+ 1|GT | (L+ 3)p c3DH

Ivovino–Persiano[21] p (2L+ 1)|G|+ 1|GT | (2L+ 1)p DBDH + DLIN

Sedghi et al. [8] p (N + 3)|G|+ 1|GT | 3p DLIN

cBDH
Lee–Dong [25] pqr (L+ 2)|G|+ 1|GT | 4p BSD

c3DH

Park [23] p (2L+ 3)|G|+ 1|GT | 5p DBDH+DLIN

L− wDBDHI
Hattori et al. [9] pq (2L+ 3)|G|+ 1|GT | 3p BSD

L− cDDH

L−cBDHE
CP-HVE1 pq 4|G|+ 1|GT | 4p BSD

L− cDDH

CP-HVE2 p 3|G|+ 1|GT | 3p L-BDHE

Other elements in the key can also be simulated:

K1 = gr = (gαk)−1/Δk · gr̂,K2 = gr1 .

• Challenge: A sends to messageM0,M1 to B, then sets using Viete formulas

aτ−k = (−1)k
∑

i≤i1<i2<...<ik≤τ
ji1ji2 . . . jik , 0 ≤ k ≤ τ.

Let t = a0. It creates ciphertext as:

C0 =Mb · T · e(gα, h)γ , C1 = h1/t, C2 = hψ, C3 = ((h
y+

L∑

i=1

uiv
∗
μ,i

)

τ∏

k=1

(i−jk)
)

1
t

If T = e(g, h)α
L+1

, the challenge ciphertext is a valid encryption of Mb. On
the other hand, when T is uniformly distributed in GT , the challenge ci-
phertext is independent of b.

• Query Phase 2: Same Phase 1.

• Guess: A output b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs
0.

If b′ = 0, then the simulation is the same as in the real game. Hence, A will
have the probability 1

2 + ε to guess b correctly. If b′ = 1, then T is random in G,
then A will have probability 1

2 to guess b correctly. Therefore, B can solve the
decision L-BDHE assumption also with advantage ε. �
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7 Performance Comparison

We give a detailed comparison among all the HVE schemes in Table 2. The
schemes are compared in terms of the order of the underlying group, ciphertext
size, decryption cost, and security assumption. In the table, p denotes the pairing
operation, L the length of the vector, and N denotes the maximum number of
wildcards.

Remark : In Table 2, we do not count the wildcard positions when measuring the
ciphertext size. To indicate those wildcard positions, a naive way is to use an
L-bit string, which has the same size as several group elements when L is linear
in the security parameter. When N  L, then a more efficient way is to use the
index for the first wildcard position and the offsets for the remaining wildcard
positions.

8 Conclusion

We proposed two efficient ciphertext policy Hidden Vector Encryption schemes
in this paper. Both of our encryption schemes can achieve constant ciphertext
size, which forms the major contribution of this work. We proved the security
of our schemes in a selective security model which captures both plaintext and
attribute hiding properties. One of our future work is to extend our schemes so
that they can achieve adaptive security.
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