
Privacy-Preserving Complex Query Evaluation
over Semantically Secure Encrypted Data

Bharath Kumar Samanthula1, Wei Jiang2, and Elisa Bertino1

1 Department of Computer Science, Purdue University
305 N. University Street, West Lafayette, IN 47907
{bsamanth,bertino}@purdue.edu

2 Department of Computer Science, Missouri S&T
500 W. 15th Street, Rolla, MO 65409

wjiang@mst.edu

Abstract. In the last decade, several techniques have been proposed to evalu-
ate different types of queries (e.g., range and aggregate queries) over encrypted
data in a privacy-preserving manner. However, solutions supporting the privacy-
preserving evaluation of complex queries over encrypted data have been devel-
oped only recently. Such recent techniques, however, are either insecure or not
feasible for practical applications. In this paper, we propose a novel privacy-
preserving query processing framework that supports complex queries over en-
crypted data in the cloud computing environment and addresses the shortcomings
of previous approaches. At a high level, our framework utilizes both homomor-
phic encryption and garbled circuit techniques at different stages in query pro-
cessing to achieve the best performance, while at the same time protecting the
confidentiality of data, privacy of the user’s input query and hiding data access
patterns. Also, as a part of query processing, we provide an efficient approach
to systematically combine the predicate results (in encrypted form) of a query to
derive the corresponding query evaluation result in a privacy-preserving manner.
We theoretically and empirically analyze the performance of this approach and
demonstrate its practical value over the current state-of-the-art techniques. Our
proposed framework is very efficient from the user’s perspective, thus allowing
a user to issue queries even using a resource constrained device (e.g., PDAs and
cell phones).

Keywords: Privacy, Complex Query, Encryption, Cloud Computing.

1 Introduction

In the past few years, there has been a significant growth in user’s interest to outsource
their data as well as operational services to the cloud. Along this direction, many small
and medium size businesses have already outsourced their daily business processes to
prominent cloud service providers such as Amazon, Google, and IBM. As privacy is
a crucial requirement for many users, applications and organizations, data are usually
encrypted before being uploaded to the cloud. By doing so, data confidentiality is still
guaranteed even when a cloud server is compromised due to a hacking attack. How-
ever, the management of encrypted data poses several challenges, the most important

M. Kutyłowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 400–418, 2014.
c© Springer International Publishing Switzerland 2014

Privacy-Preserving Complex Query Evaluation over Encrypted Data 401

of which is query processing. During query processing, we need to not only keep the
data private from the cloud, but also the users’ input queries. The question to ask is
“how can the cloud perform searches over encrypted data without ever decrypting them
or compromising the user’s privacy”. In the past decade, such question has resulted in
a specific research area, known as privacy-preserving query processing over encrypted
data (PPQED).

As mentioned in [1], there are three different approaches to perform PPQED: (i) the
query issuer downloads the entire encrypted database and performs a local search on
the decrypted database, (ii) the cloud employs custom-designed cryptographic proto-
cols to operate over encrypted data directly or indirectly, and (iii) the cloud deploys the
tamper-proof trusted hardware (which is either trusted or certified by the clients) on the
cloud-side that facilitates the cloud when operating over encrypted data inside a secure
environment. The first approach, however, is not practical as it incurs heavy cost (both
computation and communication) on the end-user (i.e., the query issuer). Techniques
based on trusted hardware (e.g., [1]), such as the IBM 4764 or 4765 cryptographic co-
processor, have gained significant attention in recent years. However, secure (or trusted)
hardware is still very expensive and may not be suitable for cloud computing which is
intended to use cheap commodity machines. Also, services based on secure hardware
may not be affordable for some small businesses. Apart from those approaches, another
widely investigated approach is based on the deployment of custom-designed crypto-
graphic techniques by the cloud to operate over encrypted data.

Along this direction, researchers from both academia and industry have proposed
several approaches (e.g., [2–8]). However, most of such approaches focus on privacy-
preserving protocols for evaluating specific queries (e.g., range and aggregate) over
encrypted data. That is, they are not directly useful to execute complex queries over en-
crypted data. As a result, privacy-preserving evaluation of complex and arbitrary queries
over encrypted data is still an open and challenging problem for data outsourcing. Some
recent approaches have addressed this problem to an extent. However, such approaches
are either insecure or not feasible for practical applications (see Section 2 for more de-
tails). In particular, as highlighted in [9–11], data access pattern information can leak
much valuable information (e.g., correspondence between plaintexts and ciphertexts) to
the cloud. We believe that the data access patterns should be protected from the cloud
which would otherwise compromise the semantic security [12] of encrypted data stored
in the cloud. Unfortunately, most of the existing PPQED methods do not address access
pattern issue (see Section 2.2 for more details).

Hence, the primary focus of this paper is to develop a secure cloud computing frame-
work that can support the evaluation of complex queries and is also efficient from an
end-user’s perspective. To obtain the best performance, our framework switches be-
tween homomorphic encryption and garbled circuit techniques based on the underlying
parametric values and the sub-task (part of query processing) at hand.

1.1 Problem Statement

In our problem setting, we consider three different parties: the data owner (also referred
to as Alice), the cloud, and the data consumer (also referred to as Bob). Let T denote
Alice’s database with n records, denoted by t1, . . . , tn, and m attributes. We assume

402 B.K. Samanthula, W. Jiang, and E. Bertino

that Alice initially encrypts T attribute-wise using her public key and outsources the
encrypted database to a cloud. In this paper, we explicitly assume that Alice’s secret key
is generated using a semantically secure1 and additive homomorphic encryption scheme
(such as the Paillier cryptosystem [13]). First, it is worth pointing out that semantic
security is necessary to ensure that the cloud cannot distinguish the encrypted data in
the first place (i.e., ciphertexts should be computationally indistinguishable from the
cloud’s perspective). Second, by encrypting the data using an additive homomorphic
encryption scheme, Alice makes it possible for the cloud to perform certain operations
directly over encrypted data, such as operations that might also be useful for other data
analytics tasks (e.g., secure clustering and classification). More details regarding the
properties of the additive homomorphic encryption scheme used in our approach are
provided in Section 3.2.

Let T ′ denote the encrypted database of Alice. Now consider an authorized user Bob
(which would typically be authorized by Alice) who wants to securely retrieve data
from T ′ in the cloud using his private (complex) queryQ. In this paper, a complex query
is defined as a query with arbitrary number of sub-queries where each sub-query can
consist of conjunctions and/or disjunctions of arbitrary number of relational predicates.
An example could be Q = ((Age ≥ 40) ∨ ((Sex = M) ∧ (Marital Status =
Married))) ∧ (Disease = Diabetes). We assume that Q is represented as a boolean
function expressed in disjunctive normal form2 (DNF) as follows.

Q : G1 ∨G2 ∨ . . . ∨Gl−1 ∨Gl → 0, 1

where the input to Q is a data record ti. Here Gj denotes the jth clause which is a
conjunction of bj predicates, for 1 ≤ j ≤ l, and l denotes the number of clauses in Q.
More specifically, Gj = Pj,1 ∧ Pj,2 ∧ . . . ∧ Pj,bj−1 ∧ Pj,bj and each predicate Pj,k is
also a boolean function that returns either 0 or 1 depending on the underlying condition.
In general, a predicate applies a relational operator (i.e., >,≥, <,≤,=) on specific
attribute values and search input. For example, consider the predicate P1,1 : AGE >
20, where AGE is an attribute in T , and a record ti from T . Then, P1,1(ti) = 1 iff the
AGE attribute value in data record ti is greater than 20. Otherwise, P1,1(ti) = 0.

Under the above system model, the goal of our approach is to facilitate Bob in ef-
ficiently retrieving the data records from T ′ (stored in the cloud) that satisfy Q in a
privacy-preserving manner. We refer to such a process as privacy-preserving query pro-
cessing over encrypted data (PPQED). More formally, we define a PPQED protocol as
follows:

PPQED(T ′, Q)→ S

where S ⊆ T denotes the output set of records that satisfy Q. That is, ∀ t′ ∈ S, Q(t′) =
1. In general, a PPQED protocol should meet the following privacy requirements:

– Data Confidentiality - during the query processing phase, neither the contents of
T nor of any intermediate results are disclosed to the cloud.

1 Precisely, if the encryption scheme is semantically secure, then the ciphertexts are random
numbers from the cloud’s perspective.

2 Note that any given boolean function can be represented in both DNF and conjunctive normal
form (CNF). In this paper, we simply choose DNF to represent Q. However, our proposed
protocol can be easily adopted to the later case upon simple modifications.

Privacy-Preserving Complex Query Evaluation over Encrypted Data 403

– End-user’s Privacy - At any point of time, Bob’s query Q should not be disclosed
to the cloud and Alice.

– At the end of the PPQED protocol, S should be revealed only to Bob.
– T − S (i.e., information other than the output) should never be disclosed to Bob.
– Data access patterns should never be disclosed to the cloud (as well as to Alice).

That is, for any two queries Q1 and Q2, the corresponding output sets S1 and S2

should be computationally indistinguishable from the cloud’s perspective.

In our proposed PPQED protocol, once Alice outsources her encrypted data to the
cloud, she does not participate in the query processing task; therefore, no information is
revealed to Alice. However, it may be required that in certain applications, Alice is able
to validate Bob’s query before forwarding it to the cloud. We claim that such extensions
can be easily incorporated into the proposed PPQED protocol upon straightforward
modifications. For simplicity, we do not consider such natural extensions to PPQED in
the rest of this paper. Also, due to space limitations, we do not discuss how our solu-
tion can be extended to protect access pattern information in this paper. However, we
refer the reader to our technical report [14] for a detailed discussion on extending our
proposed solution to hide the data access pattern information.

1.2 Main Contributions

In this paper, we propose a new two-stage PPQED protocol under the cloud computing
environment. At a high level, the main contributions of this paper are as follows.

(a). Security: The proposed PPQED protocol protects the confidentiality of data, pri-
vacy of the user’s input query and also hides the data access patterns under the
standard semi-honest model [15].

(b). Efficiency: Our proposed protocol incurs negligible computation cost on the end-
user. Also, we propose an efficient mechanism that systematically combines the
individual predicate results to compute the corresponding query evaluation re-
sult. Our theoretical analysis shows that the proposed solution improves the upper
bound compared to the naive solution constructed from the existing techniques.

(c). Flexibility: Since the proposed PPQED protocol is a hybrid approach, in that it
utilizes both homomorphic encryption and garbled circuits, it allows the developers
to switch between the two depending on the application requirements, and thus
enhancing flexibility. Specifically, our protocol can be used as a building block in
larger privacy-preserving applications. E.g., the cloud can perform data analytics
on different query results either using homomorphic encryption or garbled circuit
techniques. More details on how to convert homomorphic values to garbled values
and vice versa are presented in Section 4.

The rest of the paper is organized as follows. In Section 2, we review upon the ex-
isting work related to our problem domain. Section 3 introduces relevant background
information on the threat model assumed in this paper and on additive homomorphic
encryption scheme used in our approach. A set of security primitives that are utilized
in the proposed PPQED protocol and their possible implementations are provided in
Section 4. Also, the proposed PPQED protocol is explained in detail along with the
security and complexity analysis in this section. Finally, we conclude the paper and
highlight possible directions for future research in Section 5.

404 B.K. Samanthula, W. Jiang, and E. Bertino

2 Related Work

2.1 Query Processing over Encrypted Data

In general, the computations involved in query processing depend on the query un-
der consideration. Along this direction, several methods have been proposed to se-
curely process range (e.g., [2, 4, 6–8, 16]) and aggregate (e.g., [3, 5, 17]) queries over
encrypted data. It is worth noting that such methods are suitable for evaluating only
specific queries; thus, they are not directly applicable to solve the PPQED problem (i.e.,
combination of multiple and different sub-queries) over encrypted data. Also, they leak
different kinds of information for efficiency reasons. Due to space limitations, we refer
the reader to our technical report [14] for more details regarding their disadvantages.

2.2 Existing PPQED Methods

Unfortunately, only a very few approaches have been proposed to address the PPQED
problem. In what follows, we discuss the main differences of our work with approaches
proposed along those directions. Table 1 highlights some of the key differences between
the existing work and our solution.

Golle et al. [18] were the first to propose a protocol that can evaluate conjunctive
equality queries on encrypted documents. However, their protocol supports neither dis-
junctive queries nor predicates with inequality conditions. As an improvement, Boneh
and Waters [16] proposed a new searchable public-key system (referred to as hidden
vector encryption) that supports comparison and general subset queries over encrypted
data. We emphasize that their technique is very expensive and complex to implement.
Also, their method is suitable for conjunctive queries, but not applicable to either dis-
junctive queries or combination of both. As an alternative approach, Popa et al. [19]
proposed CryptDB, a system that executes SQL queries over encrypted data using a set
of SQL-aware encryption schemes. At a high level, their system encrypts each data item
using an onion of encryption schemes with the outermost layer providing maximum se-
curity, whereas the innermost layer provides more functionality and weak security. Dur-
ing the query processing stage, the cloud is given secret keys to decrypt the outer layers
and perform the necessary operations over encrypted data at inner layers. However,
CryptDB has some major drawbacks: (i) it uses a proxy which is a trusted third-party
and thus makes it hard to use the system in practical applications, (ii) it reveals differ-
ent types of information to the cloud server at different layers, and (iii) multiple onions
may have to be generated for each data item which makes the approach very expensive.
The actual security offered by an onion in CryptDB is the protection offered by its inner
most layer. For example, consider an onion in CryptDB for comparison operations, it re-
veals the relative ordering among the attribute values to the cloud. Thus, CryptDB does
not ensure data confidentiality in all cases. Also, none of the above PPQED methods
addressed the access pattern issue which is a crucial privacy requirement [9–11].

In the past few years, researchers have also investigated secure query processing
frameworks based on the use of tamper-proof trusted hardware on the cloud side. Along
this direction, Bajaj and Sion [1] proposed TrustedDB, an outsourced database frame-
work that allows a client to execute SQL queries by leveraging cloud-hosted tamper-
proof trusted hardware in critical query processing stages. However, as mentioned in

Privacy-Preserving Complex Query Evaluation over Encrypted Data 405

Table 1. Comparison with the existing work

Method Low Cost Data Query Hide Data CNF and DNF
on Bob Confidentiality Privacy Access Patterns Query Support

Golle et al. [18] ✖ ✔ ✔ ✖ ✖

Boneh and Waters [16] ✖ ✔ ✔ ✖ ✖

Popa et al. [19] ✔ ✖ ✖ ✖ ✔

This paper ✔ ✔ ✔ ✔ ✔

Section 1, secure hardware is very expensive and may not be suitable for cloud com-
puting which is intended to use cheap commodity machines. Also, services based on
secure hardware may not be affordable for some small businesses. Another area of re-
search is based on the use of Oblivious RAM (ORAM) techniques (e.g., [20]) to solve
the PPQED problem. However, under ORAM techniques, the query issuer need to know
the index structure before hand (which may not always be possible). In particular to the
PPQED problem, each authorized user has to efficiently maintain multiple indexes to
support complex queries. We believe that more research is needed to investigate the side
effects of using secure processors and ORAM techniques to solve the PPQED problem
and we leave this interesting open problem for future work.

We may ask whether fully homomorphic cryptosystems such as [21], which can
perform arbitrary computations over encrypted data without ever decrypting them, are
suitable to solve the PPQED problem. It is a known fact that fully homomorphic en-
cryption schemes can compute any function over encrypted data [22]. However, such
schemes are very expensive and their usage in practical applications has yet to be ex-
plored. For example, it was shown in [23] that even for weak security parameters one
“bootstrapping” operation of the homomorphic operation would take at least 30 seconds
on a high performance machine.

Based on the above discussions, it is clear that there is a strong need to develop
an efficient PPQED protocol that can protect data confidentiality, privacy of the user’s
input query and data access patterns at all times.

3 Background

3.1 Adversarial Model

In this paper, privacy/security is closely related to the amount of information disclosed
during the execution of a protocol. To maximize security guarantee, we adopt the com-
monly accepted security definitions and proof techniques in the literature of secure
multi-party computation (SMC) to analyze the security of our proposed protocol. SMC
was first introduced by the Yao’s Millionaire problem [24, 25] under the two-party set-
ting, and it was extended to multi-party computations by Goldreich et al. [26].

There are two common adversarial models under SMC: semi-honest and malicious.
Due to space limitations, we refer the reader to [15] for more details regarding their
security definitions and proof techniques. In this paper, to develop secure and efficient

406 B.K. Samanthula, W. Jiang, and E. Bertino

protocols, we assume that the participating parties are semi-honest. This implicitly as-
sumes that there is no collusion between the parties. We emphasize that this assumption
is not new and the existing PPQED methods discussed in Section 2.2 were also pro-
posed under the semi-honest model. Indeed, it is worth noting that such an assumption
makes sense especially under the cloud environment. This is because, since the current
known cloud service providers are well established IT companies, it is hard to see the
possibility for two companies, e.g., Google and Amazon, to collude to damage their rep-
utations and consequently place negative impact on their revenues. Thus, in our problem
domain, assuming that the participating parties are semi-honest is realistic. Note that,
even under the malicious two-party setting, one has to assume that there is no collusion
between the participating parties due to the theoretical limitation [27].

3.2 Paillier Cryptosystem

The Paillier cryptosystem is an additive homomorphic and probabilistic asymmetric
encryption scheme [13]. Let Epk be the encryption function with public key pk given
by (N, g), where N is a product of two large primes and g is a generator in Z

∗
N2 . Also,

let Dsk be the decryption function with secret key sk. Given two plaintexts x, y ∈ ZN ,
the Paillier encryption scheme exhibits the following properties.

a. Homomorphic Addition: Epk(x+ y)← Epk(x) ∗ Epk(y) mod N2;
b. Homomorphic Multiplication: Epk(x ∗ y)← Epk(x)

y mod N2;
c. Semantic Security: The encryption scheme is semantically secure [12]. Briefly,

given a set of ciphertexts, an adversary cannot deduce any additional information
about the plaintexts.

We emphasize that any other additive homomorphic encryption scheme (e.g., [28]) that
satisfies the above properties can be utilized to implement our proposed framework.
However, to be concrete and for efficiency reasons, this paper assumes that Alice en-
crypts her data using the Paillier cryptosystem before outsourcing them to a cloud.

4 The Proposed Framework

In this section, we first discuss a set of privacy-preserving primitives that will be later
used in the proposed PPQED protocol as building blocks. Then, we demonstrate how
to securely evaluate a predicate using homomorphic encryption and garbled circuits.
Finally, we present our novel PPQED scheme that facilitates Bob in retrieving the data
(that satisfy his query Q) from the cloud in a privacy-preserving manner.

In the proposed framework, we assume the existence of two non-colluding semi-
honest cloud service providers, denoted by C1 and C2, which together form a federated
cloud. We emphasize that such a setting is not new and has been commonly used in
the recent related works (e.g., [29, 30]). Initially, as part of the key setup stage, the
data owner Alice generates a pair of public/secret key pair (pk, sk) based on Paillier’s
scheme [13]. Suppose Alice outsources her encrypted database T ′ to C1 and the secret
key sk to C2. That is, C1 has T ′

i,j = Epk(ti,j), for 1 ≤ i ≤ n and 1 ≤ j ≤ m. In
this paper, we explicitly assume that there exist secure communication channels (e.g.,

Privacy-Preserving Complex Query Evaluation over Encrypted Data 407

SSL) between each pair of participating parties. Note that other basic mechanisms,
such as authentication and data replication, are well-studied problems under the cloud
computing model; therefore, they are outside the scope of this paper.

Though we propose the PPQED protocol under the federated cloud model, we stress
that it can also be implemented under the single cloud model with the same security
guarantees. More specifically, under the single cloud setting, the role of the second
cloud (i.e., C2) can be played by Alice with her own private server holding the key
sk. However, with limited computing resource and technical expertise, it is in the best
interest of Alice to completely outsource its data management and operational tasks
to a cloud. In general, whether Alice uses a private server or cloud service provider
C2 actually depends on her resources. In particular to our solution, after outsourcing
encrypted data to C1 and C2, Alice does not participate in any future computations.

4.1 Basic Security Primitives

In this sub-section, we discuss three basic security primitives that will be later used in
constructing our proposed PPQED protocol.

– Secure Multiplication (SMP): In this protocol, we assume that C1 holds the private
input (Epk(a), Epk(b)) and C2 holds the secret key sk, where a and b are unknown
to C1 and C2. The output of SMP is Epk(a ∗ b) and revealed only to C1. During
this process, no information regarding a and b should be revealed to C1 and C2.

– Secure Bit-OR (SBOR): In this protocol,C1 holds private input (Epk(o1), Epk(o2))
and C2 holds sk. The goal of SBOR is to securely compute Epk(o1 ∨ o2), where
o1 and o2 are two bits. The output Epk(o1 ∨ o2) should be known only to C1.

– Secure Comparison (SC): In this protocol, C1 holds private input (Epk(a), Epk(b))
and C2 holds sk such that a and b are unknown to both parties, where 0 ≤ a, b <
2w. Here w denotes the domain size (in bits) of a and b. The goal of the secure
comparison (SC) protocol is to evaluate the condition a > b. At the end of the
protocol, the output Epk(c) should be revealed only to C1, where c denotes the
comparison result. More specifically, c = 1 if a > b, and c = 0 otherwise. During
this process, no information regarding a, b, and c is revealed to C1 and C2.

The efficient implementations of SMP and SBOR are given in [14]. On the other hand,
though many SC protocols (under the two-party setting) have been proposed, we ob-
serve that they reveal the comparison result c to at least one of the participating parties.
In this paper, we extend the SC protocol proposed in [31] to address our problem re-
quirements. More details are given in the next sub-section.

4.2 Secure Evaluation of Individual Predicates (SEIP)

In this sub-section, we consider the scenario of evaluating a given predicate over T ′

stored in C1. Without loss of generality, let P : (k, α, op) be a predicate, where α
denotes the search input and k denotes the attribute index upon which the relational
operator op has to be evaluated. More specifically, ti satisfies the predicate P (i.e.,
P (ti) = 1) iff the relational operation op on ti,k and α holds. In general, the possible

408 B.K. Samanthula, W. Jiang, and E. Bertino

set for op is {>,≥, <,≥,=}. It is important to note that the value of α should not be
revealed to Alice, C1, and C2 for privacy reasons (note that Alice does not participate in
query processing, so no information is revealed to her). To evaluate P , Bob first needs
to send Epk(P) = (k,Epk(α), op) to C1. However, if the number of predicates is
large, Bob’s computation cost for encryption can be high. E.g., if Q has 100 predicates,
denoted by P1, . . . , P100, then Bob has to compute Epk(P1), . . . , Epk(P100).

We adopt the following simple strategy that incurs negligible computation cost on
Bob and at the same time preserves the privacy of his predicate. Bob generates two
random shares of α such that α1 + α2 mod N = α. A simple way to generate these
shares is to set α1 = N−r and α2 = α+r mod N , where r is a random number in ZN

known only to Bob. It is clear that α = α1 + α2 mod N . After this, he sends P 〈1〉 and
P 〈2〉 to C1 and C2, respectively, where P 〈1〉 = (k, α1, op) and P 〈2〉 = (α2, op). Here
Bob needs to send the relational operator op to both C1 and C2 in order to evaluate P .
Then, C1 with input 〈T ′

i , P
〈1〉〉 and C2 with input P 〈2〉 need to securely verify whether

the relational operation op holds between ti,k and α without revealing any information
to C1 and C2, for 1 ≤ i ≤ n. We refer to such a process as secure evaluation of
individual predicates (SEIP).

For simplicity, let op be the greater than relational comparison operator (however,
similar steps can be derived for other relational operators). Under this case, the goal is
for C1 with private input 〈T ′

i , (k, α1, >)〉 and C2 with (α2, >) to securely determine
whether ti,k > α, for 1 ≤ i ≤ n. Let the evaluation result be ci. Then the output
should be Epk(ci) such that ci = 1 if ti,k > α, and ci = 0 otherwise. At the end, the
output Epk(ci) should be revealed only to C1. Also, the values of ci and α should not
be revealed to C1 and C2. In addition, during this process, no information regarding the
contents of T should be revealed to C1 and C2.

At first sight, it is clear that the existing secure comparison (SC) protocols can be
used to solve the SEIP problem (assuming greater than relational operator). Current SC
protocols, under the two-party setting, are based on two techniques: (i) homomorphic
encryption and (ii) garbled circuits. We now discuss how to solve the SEIP problem
using SC with each of these two techniques.

SEIP Using Homomorphic Encryption. Given that C1 holds 〈T ′
i , (k, α1, >)〉 and

C2 holds (α2, >), we aim to solve the SEIP problem using the homomorphic encryp-
tion based SC protocols (denoted by SEIPh) as follows. To start with, C2 initially
sends Epk(α2) to C1. Upon receiving, C1 locally computes Epk(α) = Epk(α1) ∗
Epk(α2). Now, the goal is for C1 and C2 to securely evaluate the functionality ti,k > α
with (Epk(ti,k), Epk(α)) as input using the existing SC protocols. Remember that
(Epk(ti,k), Epk(α)) is known only to C1.

The existing SC protocols under homomorphic encryption strongly rely on encryp-
tions of individual bits rather than on simple encrypted integers [31]. However, existing
secure bit-decomposition (SBD) techniques can be utilized for converting an encrypted
integer into encryptions of the corresponding individual bits. For example, consider two
integers x and y such that 0 ≤ x, y < 2w, where w denotes the domain size (in bits)
of x and y. Let x1 (resp., y1) and xw (resp., yw) denote the most and least significant
bits of x (resp., y), respectively. Given Epk(x) and Epk(y), C1 and C2 can securely

Privacy-Preserving Complex Query Evaluation over Encrypted Data 409

convert them into 〈Epk(x1), . . . , Epk(xw)〉 and 〈Epk(y1), . . . , Epk(yw)〉 using the ex-
isting SBD techniques [32, 33]. Note that the outputs are revealed only to C1. Next, we
detail the main steps involved in the SC protocol, proposed by Blake et al. [31], that
takes the encrypted bit-wise vectors of x and y as input and outputs c = 1 if x > y, and
0 otherwise. To start with, for 1 ≤ i ≤ w, C1 performs the following operations:

– Compute an encryption of the difference between the ith bits of x and y as Epk(di)
= Epk(xi − yi).

– Compute an encryption of the XOR between the ith bits as Epk(zi) = Epk(xi⊕yi).
Note that xi⊕yi = xi+yi−2xi∗yi. Therefore, this step requires an implicit secure
multiplication (SMP) protocol as the building block to compute Epk(xi ∗ yi).

– Generate an encrypted vector γ such that γ0 = 0 and γi = 2γi−1 + zi.
– Generate an encrypted vector δ such that δi = di + ri ∗ (γi − 1), where ri is

a random number in ZN . The observation here is, if γk = 1 (denoting the first
position at which the corresponding bits of x and y differ), then δk = dk. For all
other indexes (i.e., i �= k), δi is a random number in ZN .

– Let δ′ = 〈Epk(δ1), . . . , Epk(δw)〉. C1 permutes δ′ using a random permutation
function π (known only to C1) to get τ = π(δ′) and sends it to C2.

Upon receiving,C2 decrypts τ component-wise and checks for index k. IfDsk(τk) = 1,
then x > y. Similarly, if Dsk(τk) = −1, then y > x. Note that Dsk(τj) always yields
a random value in ZN , for j �= k and 1 ≤ j ≤ w.

It is worth pointing out that we cannot directly use the SC protocol of [31] in SEIPh as
it leaks the comparison result to C2. Therefore, in order to use the method in [31], we
need to somehow prevent this information leakage. Along this direction, with the goal
of providing better security, we now provide a mechanism, as an extension to [31], that
obliviously hides the comparison result from both C1 and C2. We denote the extended
version of the SC protocol in [31] by SCobv.

The main idea of SCobv is as follows. Instead of evaluating the greater than function-
ality directly, C1 can randomly choose a functionality F (by flipping a coin), where F
is either x > y or y ≥ x, and obliviously execute F with C2. Since F is randomly cho-
sen and known only to C1, the comparison result is oblivious to C2. Also, unlike [31],
the output of SCobv is the encryption of comparison result (i.e., Epk(c)) which will be
known only to C1. Note that the comparison result (i.e., c) should not be revealed to C1

and C2. The main steps involved in the SCobv protocol are as given below:

– Initially, C1 chooses F randomly and proceeds as follows. If F : x > y, compute
Epk(di) = Epk(xi − yi). Else, compute Epk(di) = Epk(yi − xi), for 1 ≤ i ≤ w.

– C1 computes the encrypted vector δ′ using the similar steps (as discussed above) in
the SC protocol of [31]. After this, C1 sends τ = π(δ′) to C2.

– Upon receiving,C2 decrypts it component-wise and finds the index k. IfDsk(τk) =
1, then compute U = Epk(1). Else, i.e., when Dsk(τk) = −1, compute U =
Epk(0). Then, C2 sends U to C1.

– Finally, C1 computes the output Epk(c) as follows. If F : x > y, then Epk(c) = U .
Else, Epk(c) = Epk(1) ∗ UN−1.

It is important to note that, since U is in encrypted form, C1 cannot deduce any infor-
mation regarding the output c. In addition, as F is randomly chosen and known only

410 B.K. Samanthula, W. Jiang, and E. Bertino

to C1, the output is oblivious to C2. Hence, we claim that the comparison result c is
protected from both C1 and C2. Note that Epk(c) is known only to C1.

SEIP Using Garbled Circuits. In this sub-section, we discuss how to solve the SEIP
problem using the garbled circuit technique (denoted by SEIPg) [34]. For this purpose,
we first need to convert the homomorphic value Epk(ti,k) into a garbled value. Also, a
garbled value for α should be generated. To achieve this, we propose a simple solution
which is as follows. Initially, C1 generates random shares for ti,k using Epk(ti,k). That
is, C1 computes Epk(ti,k + r), where r is a random value in ZN , and sends it to C2.
Upon receiving, C2 decrypts it to get the random share ti,k + r mod N . Also, C1 sets
his/her random share as N − r. Apart from this, remember that C1 and C2 have α1 and
α2 (random shares of α), respectively. Also, C1 picks a random number r′ from ZN .
Now, C1 constructs a garbled circuit by extending the circuit corresponding to the SC
protocol of [35] based on the following steps (assuming that C2 is the circuit evaluator):

– Add the random shares of C1 and C2 (with an explicit modulo operation) to get ti,k
and α as part of the circuit.

– Compare ti,k with α. It is important to note that the comparison result c is part of
the circuit; therefore, not known to C1 and C2.

– Add r′ to c (within the circuit followed by a modulo operation). The masked com-
parison result (i.e., c + r′ mod N) is the final output of the circuit. Note that the
circuit output should be known only to C2 (i.e., the circuit evaluator).

After this, C2 sends Epk(c + r′) to C1. Finally, C1 removes the extra random factor
using homomorphic operations to get Epk(c) locally.

In summary, given any predicate (where search input is randomly shared between
C1 and C2) with relational operators {>,≥, <,≤}; C1 and C2 can securely compute
the encryption of the predicate result on record ti using either SEIPh or SEIPg, for
1 ≤ i ≤ n. In general, which technique to use actually depends on the domain size
of the attribute under consideration (more details are given in Sections 4.3 and 4.5).
Similarly, C1 and C2 can securely evaluate the predicate with an equality operator.
Once we know how to securely evaluate a given predicate, the next step is to securely
combine the results of all predicates in Q and decide whether ti satisfies Q. Along
this direction, we next present a new two-stage protocol to solve the privacy-preserving
complex query evaluation over encrypted data (PPQED) problem.

4.3 The Proposed PPQED Protocol

As mentioned in Section 1, this paper explicitly assumes that Bob’s input query Q is
represented in disjunctive normal form given by G1 ∨ G2 ∨ . . . ∨Gl−1 ∨Gl. Here Gj

is a conjunction of bj predicates given by Gj = Pj,1 ∧ Pj,2 ∧ . . . ∧ Pj,bj−1 ∧ Pj,bj .
We now propose a novel solution to the PPQED problem using Q as Bob’s input

query over encrypted data T ′ stored in C1. At a high level, the proposed PPQED proto-
col consists of the following two stages:

– Stage 1 - Secure Evaluation of Predicates (SEP): In this stage, Bob initially sends
his private query Q (using random shares) to C1 and C2. Then, C1 and C2 jointly

Privacy-Preserving Complex Query Evaluation over Encrypted Data 411

Algorithm 1. PPQED(T ′, Q)→ S

Require: C1 has T ′, C2 has sk, and Bob has Q
1: Bob, for 1 ≤ j ≤ l do:

(a). Send P
〈1〉
j = {P 〈1〉

j,1 , . . . , P
〈1〉
j,bj
} to C1 and P

〈2〉
j = {P 〈2〉

j,1 , . . . , P
〈2〉
j,bj
} to C2

2: for 1 ≤ i ≤ n do:

(a). C1 and C2, for 1 ≤ j ≤ l do:

– Li,j [h] ← SEIP
(
〈T ′

i , P
〈1〉
j,h 〉, P 〈2〉

j,h

)
, where 〈T ′

i , P
〈1〉
j,h 〉 is the private input of C1

and P
〈2〉
j,h is the private input of C2, for 1 ≤ h ≤ bj

(b). SRODs(Li,1, . . . , Li,l), where Li,j = 〈Li,j [1], . . . , Li,j [bj]〉 and 1 ≤ j ≤ l

evaluate the predicates of each clause in Q using SEIP as a sub-routine. At the end
of this stage, only C1 knows the encryptions of the evaluation results of Pj,h’s on
each data record ti, i.e., Epk(Pj,h(ti)), for 1 ≤ j ≤ l and 1 ≤ h ≤ bj .

– Stage 2 - Secure Retrieval of Output Data (SROD): C1 and C2 computeEpk(Q(ti))
using the evaluation results on the individual predicates resulted from Stage 1.
Then, Bob securely retrieves the output set S with the help of C1 and C2.

The main steps involved in the proposed PPQED protocol are given in Algorithm 1.
Next, we discuss each stage of PPQED in detail.

Stage 1 - Secure Evaluation of Predicates (SEP). The key steps involved in Stage
1 are shown as steps 1 to 2(a) in Algorithm 1. To start with, as explained in the pre-
vious sub-section, Bob initially generates the random shares for each predicate in Q
and sends them to C1 and C2. More specifically, given a predicate Pj,h, Bob sends

P
〈1〉
j,h = (kj,h, α

〈1〉
j,h, opj,h) and P

〈2〉
j,h = (α

〈2〉
j,h, opj,h) to C1 and C2, respectively, for

1 ≤ j ≤ l and 1 ≤ h ≤ bj . Here αj,h = α
〈1〉
j,h + α

〈2〉
j,h mod N is the search input, kj,h

is the attribute index to be searched, and opj,h is the relational operator of predicate
Pj,h. Upon receiving the values, C1 and C2 jointly evaluate each predicate Pj,h on T ′

i

using the SEIP solution discussed in the previous sub-section. Let the output be denoted
by Li,j [h] which will be known only to C1. Note that Li,j [h] = Epk(Pj,h(ti)), where
Pj,h(ti) = 1 iff ti satisfies Pj,h, and Pj,h(ti) = 0 otherwise.

We emphasize that, depending on the domain size of the attribute in consideration,
either SEIPh or SEIPg can be utilized in this step. As it will be clear in Section 4.5,
for attributes with smaller domain size (e.g., Age attribute), SEIPh gives better per-
formance than SEIPg. On the other hand, for attributes with larger domain sizes (e.g.,
Bank account numbers), SEIPg is more efficient than SEIPh. Hence, by conveniently
choosing between homomorphic encryption (SEIPh) and garbled circuit (SEIPg) based
solution depending on the underlying attribute domain size, our PPQED protocol takes
advantage of both techniques and significantly improves the overall performance.

412 B.K. Samanthula, W. Jiang, and E. Bertino

Stage 2 - Secure Retrieval of Output Data (SROD). Following from Stage 1, C1

has the evaluation results (in encrypted form) for all the predicates in Q on each data
record ti. The goal of Stage 2 is to utilize these predicate results and compute the query
evaluation result on ti. Since Epk(Pj,h(ti)) is an encryption of either 0 or 1 and as Q is
assumed to be in disjunctive normal form, a naive solution to compute Epk(Q(ti)) is by
using secure multiplication (SMP) and secure bit-or (SBOR) protocols as sub-routines.
More specifically, C1 and C2 can securely compute Epk(Gj(ti)) by applying the SMP
protocol on Epk(Pj,h(ti)) as inputs, for 1 ≤ j ≤ l and 1 ≤ h ≤ bj . For example,
consider the case of computing Epk(G1(ti)). In this case, C1 and C2 initially compute
Epk(P1,1(ti) ∧ P1,2(ti)) by feeding Epk(P1,1(ti)) and Epk(P1,2(ti)) as inputs to the
SMP protocol. The above result is fed as an input along with the next predicate result
of G1 to SMP and so on. At the end, C1 has Epk(G1(ti)) = Epk(P1,1(ti) ∧ . . . ∧
P1,b1(ti)). After that, in a similar fashion, they compute Epk(Q(ti)) by applying the
SBOR protocol on Epk(Gj(ti)) as inputs, for 1 ≤ j ≤ l. We refer to the above basic
solution as SRODb. However, since its complexity grows linearly with the number of
predicates in Q, we claim that SRODb is not that efficient. More details regarding the
complexities of SRODb are given in Section 4.5.

To overcome this issue, we next propose an efficient approach to systematically ag-
gregate predicate results (in encrypted form) to compute the corresponding query result
on each data record ti, where 1 ≤ i ≤ n. We denote our approach by SRODs (where the
subscript ‘s’ stands for summation). The main steps involved in SRODs are shown in
Algorithm 2. To start with, for each record T ′

i , C1 locally aggregates (in encrypted form)
the evaluation results of predicates in each clause by computingL′

i,j =
∏bj

h=1Li,j [h] =

Epk

(∑bj
h=1 Pj,h(ti)

)
, for 1 ≤ j ≤ l.

Observation 1. Since clause Gj is a conjunction of bj predicates, a record ti satisfies
Gj , i.e., Gj(ti) = 1, only if Pj,h(ti) = 1, for 1 ≤ h ≤ bj . This further implies that

Gj(ti) = 1 only if
∑bj

h=1 Pj,h(ti) = bj . In addition, if ∃ h such that Pj,h(ti) = 0, then

Gj(ti) = 0 and
∑bj

h=1 Pj,h(ti) < bj .

Following from the above observation, in order to evaluate Gj , we need to securely

check whether
∑bj

h=1 Pj,h(ti) is equal to bj or not. For this purpose, C1 with input
L′
i,j and C2 jointly involve in the SCobv protocol (i.e., the extended version of the

secure comparison protocol in [31] as discussed in Section 4.2). That is, C1 and C2

jointly check whether
∑bj

h=1 Pj,h(ti) is greater than bj − 1. If the comparison result

is 1 (in encrypted form), then
∑bj

h=1 Pj,h(ti) = bj . At the end of this step, the output
Mi,j = SCobv(L

′
i,j , bj) will be known only to C1. Remember that Mi,j = Epk(1) iff ti

satisfies Gj , and Epk(0) otherwise, for 1 ≤ i ≤ n and 1 ≤ j ≤ l.
Once C1 knows Epk(Gj(ti)), for 1 ≤ i ≤ n and 1 ≤ j ≤ l, the goal is to compute

the final evaluation result of Q on ti (in encrypted form), i.e., Epk(Q(ti)). For this
purpose, we use the following observation.

Observation 2. Given any query Q which is a disjunction of l clauses, Q(ti) = 1 only
if ∃ j such that Gj(ti) = 1. That is, if ti satisfies at least one of the clauses in Q,
then it also satisfies Q. This further implies that Q(ti) = 1 only if

∑l
j=1 Gj(ti) > 0.

Furthermore, when
∑l

j=1 Gj(ti) = 0, we have Q(ti) = 0 (i.e., ti does not satisfy Q).

Privacy-Preserving Complex Query Evaluation over Encrypted Data 413

Algorithm 2. SRODs(Li,1, . . . , Li,l)

Require: C1 has (Li,1, . . . , Li,l)
1: for 1 ≤ j ≤ l do:

(a). C1 compute L′
i,j ←

∏bj
h=1 Li,j [h]

(b). C1 and C2: Mi,j ← SCobv(L
′
i,j , bj)

2: C1 compute M ′
i ←

∏l
j=1 Mi,j

3: C1 and C2: Oi ← SCobv(M
′
i , l)

4: C1 send Oi to C2

5: C2 compute xi ← Dsk(Oi) and send xi to C1

6: C1: if xi = 1 then:

(a). Vi,j ← T ′
i,j ∗ Epk(r

′
i,j), for 1 ≤ j ≤ m, where r′i,j is a random number in ZN

(b). Send r′i,j to Bob and Vi,j to C2

7: C2, foreach Vi received do: zi,j ← Dsk(Vi,j) and send zi,j to Bob
8: Bob, foreach received entry pair (zi, r′i) do:

(a). t′j ← zi,j − r′i,j mod N, for 1 ≤ j ≤ m, and S ← S ∪ t′

Based on the above observation, C1 locally computes the encryption of sum of the
evaluation results on l clauses in Q. That is, he/she computes M ′

i =
∏l

j=1 Mi,j , for

1 ≤ i ≤ n. It is important to observe that M ′
i = Epk

(∑l
j=1 Gj(ti)

)
. After this, C1

and C2 securely verify whether the value of
∑l

j=1 Gj(ti) is greater than 0. For this
purpose, they jointly involve in the SCobv protocol. Specifically, they together compute
Oi = SCobv(M

′
i , l) = Epk(Q(ti)), for 1 ≤ i ≤ n. Note that the output of SCobv, i.e., Oi

will be known only to C1. Once C1 computes the evaluation result of Q on a data record
ti (in encrypted form), the next step is for Bob to securely retrieve only those records
that satisfy Q with the help of C1 and C2. We emphasize that there are many ways
through which Bob can obliviously retrieve the output set of records from C1. In this
paper, we present a simple approach that is very efficient from the Bob’s perspective.

For 1 ≤ i ≤ n, C1 sends Oi to C2. Upon receiving, C2 computes xi = Dsk(O
′
i) and

sends the result to C1. After this, C1 proceeds as follows:

– If xi = 1, then Q(ti) = 1. In this case, C1 randomizes T ′
i attribute-wise and sends

Vi,j = T ′
i,j ∗Epk(r

′
i,j) to C2, where r′i,j is a random number in ZN , for 1 ≤ j ≤ m.

Here m denotes the number of attributes in T ′. Also, C1 sends r′i,j to Bob.

– Else, ignore the data record corresponding to the entry xi.

Upon receiving the entry Vi, C2 computes zi,j = Dsk(Vi,j), for 1 ≤ j ≤ m, and sends
the result to Bob. Then, for each received entry pair (zi, r

′
i), Bob removes the extra

random factors attribute-wise to get t′j = zi,j − r′i,j mod N , for 1 ≤ j ≤ m. Based on
the above discussions, it is clear that t′ will be a data record in T that satisfies the input
query Q. Finally, Bob adds the data record t′ to the output set: S = S ∪ t′.

414 B.K. Samanthula, W. Jiang, and E. Bertino

 0

 1

 2

 3

 4

 0 10 20 30 40 50

T
im

e
(s

ec
on

ds
)

Domain size of attribute in bits (w)

SEIPh
SEIPg

Fig. 1. Computation costs of SEIPh and SEIPg for encryption key size 1024 bits

4.4 Security Analysis of PPQED

First of all, since Bob’s input queryQ is randomly shared between C1 andC2, search in-
put values in each predicate are never disclosed toC1 andC2. However, the PPQED pro-
tocol reveals the attribute index to be searched in each predicate to C1 (but not C2) for
efficiency reasons. Nevertheless, we stress that such information will not be useful for
C1 to deduce any meaningful information about the attribute values.

We emphasize that the SCobv protocol which is used as a building block in PPQED is
secure under the semi-honest model (security proof follows directly from [31]). As a re-
sult, the secure evaluation of individual predicates (SEIP) task at step 2(a) of Algorithm
1 do not reveal any information to C1 and C2. Thus, Stage 1 of PPQED is secure under
the semi-honest model. During Stage 2, all the intermediate results revealed to C2 are
either random or pseudo-random. On the other hand, the intermediate results seen by C1

are always in encrypted form (except at step 5 of Algorithm 2). Thus, whatever mes-
sages C1 and C2 receive in Stage 2 are computationally indistinguishable (assuming
large key size, say 1024 bits) from random numbers in ZN . Therefore, Stage 2 is secure
under the semi-honest model. Also, the outputs of Stage 1 which are passed as input to
Stage 2 are also in encrypted format. According to the Composition Theorem [15], we
claim that the sequential composition of Stages 1 and 2 leads to our PPQED protocol
that is also secure under the semi-honest model. In short, the proposed PPQED protocol
protects the confidentiality of the data as well as privacy of the user’s input query. At
the same time, it supports evaluation of complex queries over encrypted data.

In the proposed PPQED protocol, C1 and C2 know the value of xi (at step 5 of
Algorithm 2) that can reveal the data access pattern information (i.e., whether the data
record ti satisfies the input query) to C1 and C2. Nevertheless, our protocol can be
easily extended to hide the data access patterns from both C1 and C2 at an additional
cost. Due to space limitations, we do not go into any details regarding this extension.
However, we refer the reader to our technical report [14] for more details on how to
hide the access pattern information in the proposed protocol.

4.5 Complexity Analysis of PPQED

During Stage 1 of PPQED, the computation cost of the federated cloud (i.e., the com-
bined cost of C1 and C2) is bounded by O(n ∗ l ∗ s) instantiations of SEIP, where s

Privacy-Preserving Complex Query Evaluation over Encrypted Data 415

denotes the upper bound on the number of predicates in each clause. As mentioned ear-
lier, one can use either SEIPh (i.e., SEIP under homomorphic encryption) or SEIPg (i.e.,
SEIP under garbled circuits) in Stage 1. To get more insights, we implemented both
SEIPh and SEIPg, and ran experiments on a Linux machine with an Intel R©Xeon R© Six-
CoreTM CPU 3.07 GHz processor and 12GB RAM running Ubuntu 10.04 LTS. We
use the Paillier cryptosystem [13] and fix the encryption key size K to 1024 bits. In
particular to SEIPg, we constructed and evaluated the circuit under the FastGC [34]
framework (the fastest known implementation for garbled circuits). We considered at-
tributes of different domain sizes (in bits), denoted by w, and executed predicates at
random using both SEIPh and SEIPg. The results are shown in Figure 1. Note that, in
PPQED, we consider predicates with relation operators {>,≥, <,≤}. Since the under-
lying operations are almost the same for all these four relational operations, the com-
putation costs reported for SEIPh and SEIPg remain the same for any of these relational
operators.

Following from Figure 1, the computation cost of SEIPh increases from 0.79 to 3.93
seconds when w varies from 10 to 50. On the other hand, the computation cost of
SEIPg almost remains constant at 2.01 seconds. This is because the computation cost
of SEIPg mainly depends on the addition circuits (operating over 1024 bits) whose
costs remain the same for any fixed encryption key size. From the above results, we
conclude that SEIPh is more efficient than SEIPg for attributes with domain size 225

(i.e., w = 25). Note that the attribute domain size [0, 225) is realistic for most practical
applications, e.g., the attribute domain size for Age, Annual Salary, and Temperature is
less than 25 bits. Also, the categorical attributes usually take few values. However, if
the domain size of an attribute is ≥ 225, we would use SEIPg in PPQED for efficiency
reasons. Our experimental results given in Figure 1 are based on one record and it is
important to note that these results are independent of the record. Thus the reported
costs remain the same for any given data record. As a result, the cloud providers can
evaluate a predicate on multiple data records in parallel.

Next, for Stage 2, we analyze the costs associated with the query evaluation step
(using the individual predicate results) in SRODs and compare its performance with the
basic solution SRODb. For any given data record ti, the complexities of SRODb and
SRODs are shown in Table 2. From Table 2, it is clear that our approach in SRODs out-
performs (in terms of both computations and communications) SRODb if s is large.
Also, the round complexity of both approaches is bounded by O(log2 l+ log2 s). How-
ever, if the round complexity is crucial in an application, one can replace SCobv in
SRODs with the SC protocol based on garbled circuits [35] (which takes one round of
communication to perform the secure comparison). However, for practical values of l
and s, SCobv is more efficient than [35], thus providing a trade-off between efficiency
and round complexity. Due to space limitations, we refer the reader to our technical
report [14] for a more elaborated theoretical and empirical analysis of PPQED.

Nevertheless, the main advantage of the proposed PPQED protocol is that the com-
putation cost on Bob is negligible. This is especially beneficial if Bob issues queries
using a resource-constrained device (e.g., PDAs and cell phones).

416 B.K. Samanthula, W. Jiang, and E. Bertino

Table 2. SRODb vs. SRODs for any given record ti

Method Computations Communications

SRODb O(l ∗ s) encryptions O(K ∗ l ∗ s) bits

SRODs O(l ∗ log2 s) encryptions O(K ∗ l ∗ log2 s) bits

5 Conclusion and Future Work

In this paper, we proposed a novel protocol to securely evaluate complex queries over
encrypted data in the cloud. The core of our protocol is based on a hybrid approach
to evaluate the predicates in the user’s query using both homomorphic encryption and
garbled circuit techniques. Also, we developed an efficient approach to systematically
combine the evaluation results of individual predicates to compute the corresponding
query evaluation result. Our protocol protects data confidentiality, privacy of the user’s
input query and access patterns. Our empirical results show that techniques based on
homomorphic encryption are efficient for attributes of smaller domain sizes. Also, we
theoretically demonstrated the efficiency of our systematic approach to combine the
predicate results.

As future work, we will implement and evaluate our framework using the MapRe-
duce technique in a real federated cloud computing environment. We also plan to
develop a sequence diagram for the proposed protocol in our future work. Another
interesting direction is to extend our protocol to other adversary models, such as the
malicious model, and evaluate the trade-offs between security and efficiency. Though
our protocol concentrates on the relational operators, we believe that it can also support
other SQL operations, such as JOIN and GROUP BY, as they are essentially based on
the relational operations. We plan to investigate this problem in our future work.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments. The work reported in this paper has been partially supported
by the Purdue Cyber Center and by the National Science Foundation under grants CNS-
1111512, CNS-1016722, and CNS-1011984.

References

1. Bajaj, S., Sion, R.: Trusteddb: a trusted hardware based database with privacy and data con-
fidentiality. In: ACM SIGMOD, pp. 205–216 (2011)

2. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.
In: ACM SIGMOD, pp. 563–574 (2004)

3. Mykletun, E., Tsudik, G.: Aggregation queries in the database-as-a-service model. In: Dami-
ani, E., Liu, P. (eds.) Data and Applications Security 2006. LNCS, vol. 4127, pp. 89–103.
Springer, Heidelberg (2006)

4. Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.: Multi-dimensional range query
over encrypted data. In: IEEE Security & Privacy, pp. 350–364. IEEE Computer Society
(2007)

Privacy-Preserving Complex Query Evaluation over Encrypted Data 417

5. Chung, S., Ozsoyoglu, S., Anti-tamper, G.: Anti-tamper databases: Processing aggregate
queries over encrypted databases. In: ICDE Workshops, p. 98 (2006)

6. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg
(2009)

7. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional range queries
over outsourced data. The VLDB Journal 21(3), 333–358 (2012)

8. Samanthula, B.K., Jiang, W.: Efficient privacy-preserving range queries over encrypted data
in cloud computing. In: IEEE CLOUD, pp. 51–58 (2013)

9. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage. In: CCS, pp. 139–148. ACM (2008)

10. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Managing and accessing data in the
cloud: Privacy risks and approaches. In: 7th International Conference on Risk and Security
of Internet and Systems, pp. 1–9 (2012)

11. Islam, M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In: NDSS (2012)

12. Goldreich, O.: Encryption Schemes. In: The Foundations of Cryptography, vol. 2, pp. 373–
470. Cambridge University Press, Cambridge (2004)

13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg (1999)

14. Samanthula, B.K., Jiang, W., Bertino, E.: Privacy-preserving complex query evaluation over
semantically secure encrypted data. Technical Report TR 2014-05, Dept. of Computer Sci-
ence, Missouri S&T, Rolla (2014), http://web.mst.edu/˜wjiang/PPQED.pdf

15. Goldreich, O.: General Cryptographic Protocols. In: The Foundations of Cryptography,
vol. 2, pp. 599–746. Cambridge University Press, Cambridge (2004)

16. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

17. Hacıgümüş, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries over en-
crypted relational databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004.
LNCS, vol. 2973, pp. 125–136. Springer, Heidelberg (2004)

18. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over encrypted data. In:
Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–45. Springer,
Heidelberg (2004)

19. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: Protecting confi-
dentiality with encrypted query processing. In: SOSP, pp. 85–100. ACM (2011)

20. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with o((logn)3) worst-case cost.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 197–214. Springer,
Heidelberg (2011)

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178. ACM
(2009)

22. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In:
The ACM Workshop on Cloud Computing Security, pp. 113–124. ACM (2011)

23. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg
(2011)

24. Yao, A.C.: Protocols for secure computations. In: SFCS, pp. 160–164. IEEE Computer So-
ciety (1982)

25. Yao, A.C.: How to generate and exchange secrets. In: SFCS, pp. 162–167. IEEE Computer
Society (1986)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a completeness
theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)

http://web.mst.edu/~wjiang/PPQED.pdf

418 B.K. Samanthula, W. Jiang, and E. Bertino

27. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In:
STOC, pp. 11–19. ACM (1988)

28. Damgard, I., Geisler, M., Kroigard, M.: Homomorphic encryption and secure comparison.
International Journal of Applied Cryptography 1(1), 22–31 (2008)

29. Bugiel, S., Nürnberger, S., Sadeghi, A.R., Schneider, T.: Twin clouds: An architecture for
secure cloud computing (extended abstract). In: Workshop on Cryptography and Security in
Clouds (March 2011)

30. Wang, J., Ma, H., Tang, Q., Li, J., Zhu, H., Ma, S., Chen, X.: Efficient verifiable fuzzy
keyword search over encrypted data in cloud computing. Computer Science and Information
Systems 10(2), 667–684 (2013)

31. Blake, I.F., Kolesnikov, V.: One-round secure comparison of integers. Journal of Mathemat-
ical Cryptology 3(1), 37–68 (2009)

32. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier encrypted values. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg
(2006)

33. Samanthula, B.K., Jiang, W.: An efficient and probabilistic secure bit-decomposition. In:
ACM ASIACCS, pp. 541–546 (2013)

34. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled
circuits. In: Proceedings of the 20th USENIX Conference on Security, pp. 35–35 (2011)

35. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and
applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.)
CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009)

	Privacy-Preserving Complex Query Evaluation over Semantically Secure Encrypted Data
	1 Introduction
	1.1 Problem Statement
	1.2 Main Contributions

	2 Related Work
	2.1 Query Processing over Encrypted Data
	2.2 Existing PPQED Methods

	3 Background
	3.1 Adversarial Model

	3.2 Paillier Cryptosystem

	4 The Proposed Framework
	4.1 Basic Security Primitives
	4.2 Secure Evaluation of Individual Predicates (SEIP)
	4.4 Security Analysis of PPQED
	4.5 Complexity Analysis of PPQED

	5 Conclusion and Future Work
	References

