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Abstract. Existing single server Private Information Retrieval (PIR) protocols
are far from practical. To be practical, a single server PIR protocol has to be both
communicationally and computationally efficient. In this paper, we present a sin-
gle server PIR protocol that has low communication cost and is much faster than
existing protocols. A major building block of the PIR protocol in this paper is a
tree-based compression scheme, which we call folding/unfolding. This compres-
sion scheme enables us to lower the communication complexity to O(log log n).
The other major building block is the BGV fully homomorphic encryption scheme.
We show how we design the protocol to exploit the internal parallelism of the
BGYV scheme. This significantly reduces the server side computational overhead
and makes our protocol much faster than the existing protocols. Our protocol can
be further accelerated by utilising hardware parallelism. We have built a proto-
type of the protocol. We report on the performance of our protocol based on the
prototype and compare it with the current most efficient protocols.

Keywords: Private Information Retrieval, Fully Homomorphic Encryption,
Privacy.

1 Introduction

Private Information Retrieval (PIR) is an important primitive with many applications. A
PIR protocol allows a client to retrieve information from a database without revealing
what has been retrieved. We have seen PIR being applied in areas such as location-based
services [1] and e-commerce [2]. There are two types of PIR protocols: multi-server PIR
[3] and single server PIR [4]. In a multi-server PIR protocol, the database is replicated
to multiple servers and the queries will be answered jointly by the servers. In a single
server PIR protocol, only one server hosts and serves the database. In this paper, we con-
sider single server PIR. It is well-known that designing a non-trivial yet practical single
server PIR protocol is a challenging task. For single server PIR, there exists a trivial
protocol such that the server simply sends the whole database to the client. Therefore
the first design criteria for non-trivial single server PIR protocols is to have sub-linear
communication complexity. Traditionally, research in single server PIR focused almost
entirely on how to minimise the communication cost [4—12]. However, low communi-
cation cost does not mean the protocols are practical. As pointed out by Sion et al [13],
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due to costly server side computation, single server PIR protocols are often slower than
the trivial solution despite that they transmit less bits. The most computationally effi-
cient PIR protocol to date [4] requires n big integer modular multiplications, where n
is the size of the database. The computation time of each operation is often much more
significant than simply transmitting a bit. Therefore, all single server PIR protocols can
be easily beaten by the trivial solution even when the network bandwidth is only a few
hundred Kbps (300 in Sion’s experiment). How to make the server side computation
faster has become another important consideration.

There has been some work in reducing server side computation time. One approach
is to use trusted hardware [14, 15]. Another approach is to base privacy on anonymity
by mixing queries from different users [16]. Lipmaa proposed a BDD-based protocol
[17] that is very efficient when the database is sparse, but in general case it requires
O(n/logn) modular exponentiations, which is more expensive than n modular multi-
plications. Those approaches can improve performance but rely on extra assumptions.
To the best of our knowledge, the only work that can significantly reduce server side
computation time and without extra assumptions is [18]. Unfortunately as we will dis-
cuss in section 2, this protocol is not secure.

Contributions. In this paper, we present a fast single server PIR protocol with low
communication cost. Our protocol belongs to the homomorphic encryption based PIR
family [19]. Namely, we utilise the ring homomorphism provided by the BGV fully
homomorphic encryption (FHE) scheme [20] to privately retrieve the bit. Communica-
tion wise, the protocol has low communication complexity O(loglogn). To achieve
low communication, we designed a tree-based compression scheme called folding/
unfolding. Computation wise, the protocol is much faster than all previous ones. We
show how we design the PIR protocol to take advantage of the internal parallelism pro-
vided by the BGV FHE scheme, which allows us to amortise the server side computa-
tion. Most operations on the server side will be applied to 102 — 10* bits in the database
simultaneously. The amortised cost per bit is quite low: only around twelve 64-bit mod-
ular multiplications at 128-bit security. In contrast, per bit computational cost in previ-
ous protocols is one or more big integer modular multiplications (e.g. 3072-bit integers
at 128-bit security). So overall, the server side computational overhead in our protocol
is much lower. The security of our protocol is based on the security of the BGV FHE
scheme, which is based on the well studied Ring Learning with Errors assumption [21].
We have implemented a prototype. We report performance measurements based on
this prototype and make comparison with existing protocols. The performance test
shows that our protocol consumes only a few hundreds KB bandwidth and is much
faster than the previous fastest protocol by Kushilevitz et al [4]. For example, when
the database is 4MB, our protocol consumes only 372 KB bandwidth and is 12 times
faster than Kushilevitz’s protocol; when the database is 4 GB, our protocol consumes
only 423 KB bandwidth and is 90 times faster than Kushilevitz’s protocol. With some
hardware parallelism, our protocol can beat the trivial solution in 100 Mbps LAN.
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2 Related Work

There has been abundant research in multi-server PIR, e.g. [3, 22-25]. We will not
elaborate them here since our focus is single server PIR. In the single server case,
Kushilevitz et al [4] proposed a protocol based on the Goldwasser-Micali homomor-
phic encrytion with communication complexity O(n¢) for ¢ > 0. This homomorphic
approach is then generalised by Stern [5], Chang [8] and Lipmaa [10, 17] . Stern and
Chang uses the Pallier’s scheme [26] and the communication complexity is superpoly-
logarithmic. Lipmaa uses the Damgard-Jurik scheme [27]. The protocol can achieve
O(log*n) communication complexity. Our protocol follows this line and uses the BGV
FHE scheme. Cachin et al proposed a PIR protocol that has polylogarithmic commu-
nication complexity (O(log8 n)) based on the ¢-hiding assumption. Gentry et al [9]
generalised Cachin et al’s approach and proposed a very communication efficient PIR
protocol. The total communication cost of the protocol is 3 messages, each of the size of
2(log®~°Wn) bits. Kushilevitz et al [7] showed a single server PIR protocol can also
be based on one-way trapdoor permutations (TDPs). The communication complexity
isn— 9" + O(k?) bits, where c is a constant and k is the security parameter of the
one-way trapdoor permutation. Sion et al [13] showed that the trivial single server PIR
protocol often out-performed non-trivial ones. To improve computational efficiency, a
few approaches have been taken. Williams et al [14] proposed a PIR protocol that has
O(log*n) server side computational complexity. However it requires trusted temper-
resistant hardware. Similarly with trusted hardware, Ding et al [15] developed a proto-
col that requires O(n) offline computation and constant online computation. Ishai et al
[16] showed that anonymous communication could be used as a building block to imple-
ment more efficient single serve PIR protocols when there are multiple users. Melchor
et al [18] proposed a lattice-based PIR protocol. However a practical attack by Bi et al
[28] can be applied to break the security of this protocol. Namely the server can obtain
the secret matrixes used to generate the request by constructing a reduced-dimension
lattice and then recovers the index being queried.

Our protocol is based on FHE. It has been shown that PIR protocols with low com-
munication can be easily obtained by using FHE. In [11], Brakerski et al proposed a
generic PIR protocol that uses an FHE scheme with a symmetric encryption scheme. In
the protocol, the client encrypts the index bit-by-bit using a symmetric key and encrypts
the key using the FHE scheme. Then with the encrypted index and encrypted key, the
server evaluates a circuit homomorphically to retrieve from its database the requested
bit. The communication cost is O(log n) but the computational cost can be quite high
because of the deep circuit. Gentry [29] proposed a PIR protocol. In the protocol, the
client encrypts the index 7 bit-by-bit using FHE, then sends the ciphertexts to the server.
The server homomorphically evaluates Y, | x; - H]U;)% "4 — i+ 1), where £, 4
are the jth bit of indexes ¢ and . This approach is also used by Yi et al [12], instantiated
using the DGHV FHE scheme [30]. The communication complexity is O(logn) and
the computational complexity is O(n logn). Our approach is different from previous
FHE based PIR protocols, and better both in terms of computation and communication.
Yi’s paper showed better performance results than ours in their experiments. But in their
experiments, y was set to 2205, which should be at the level of 10° to prevent lattice
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based attack at the targeted security level. If the parameters were set correctly, then the
performance of the protocol would be worse than ours.

3 Preliminaries

3.1 Notation

We use bit string and bit vector interchangeably. We use lower case bold face letters
to denote vectors, e.g. q. The vector indexes always start at 1. Depending on context,
we use bit vectors as plain bit vectors or to represent binary polynomials or vectors
of binary polynomials. In the folding/unfolding algorithms, bit vectors are plain bit
vectors. On the server side, a query string is viewed as a vector of constant polynomials,
ie.0-2% or1- 2% When encoding server’s database, we view a bit vector as a binary
polynomial in its coefficient form. Namely, a bit vector a of size d represents a binary
polynomial Zle a;z' 1, whose degree is at most d — 1. We use capital letters to
denote matrices, We denote the ith row of a matrix M by M,, its jth column by M7,
and a single element at the ith row and the jth column by M;;. Naturally, each row or
column in a matrix can be viewed as a vector (not necessarily binary). The base of log
is 2 throughout the paper.

3.2 Security Definition for Single Server PIR

A single server PIR protocol is between two parties: a server that has an n-bit database
X = X1X3...Xp, a client that has some index ¢ € [1, n]. The client wants to obtain the ith
bit x; without revealing ¢. Any database can be represented in this string form by con-
catenating all records into a single bit string. The protocol consists of four algorithms:

1. Imit: Takes as input a security parameter A and the size n of the database, outputs a
set of private parameters S and a set of public parameters P, denoted as (S, P) =
Init(\, n).

2. QGen: Takes as input S, P, the size n of the database, and the index 4 of the bit to
retrieve, outputs a query @ = QGen(S, P, n, ).

3. RGen: Takes as input Q, P and x, outputs a response R = RGen(Q, P, x).

4. RExt: Takes as input R, S, P, the index ¢ and the size of the database n, extracts a
bitb = RExzt(R,S,P,i,n) such that b = x;.

In this paper, we consider a PIR protocol to be secure in the sense that it is com-
putationally infeasible for an adversary to distinguish two queries. We say a function
w(+) is negligible in n, or just negligible, if for every positive polynomial p(-) and any
sufficiently large n it holds that p(n) < 1/p(n). Formally the security of a single server
PIR protocol is defined as follows:

Definition 1. We say a single server PIR protocol is secure if for any PPT adversary
A, the advantage of distinguishing two queries is negligible:
(8,P) = Init(\,n),
io, i1 = A SP)(P x),
Pr|b =b b & {0,1}, — 5 <mnegl())
Q = QGen(S,P,n,ip),
b A2 S TP x, Q)
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3.3 The BGV Fully Homomorphic Encryption

A homomorphic encryption scheme allows certain operations to be performed on ci-
phertexts without decrypting the ciphertexts first. In 2009, Gentry [31] developed the
first FHE scheme. Following the breakthrough, several FHE schemes based on dif-
ferent hardness assumptions have been proposed, e.g. [30, 20, 32]. In this paper, we
use the BGV FHE scheme [20]. We describe it here with improvements introduced
in [33, 20, 34]. The security of this scheme is based on the ring-LWE (RLWE) [21]
problem.

Let &,,,(z) be the m-th cyclotomic polynomial with degree ¢(m), then we have a
polynomial ring A = Z[z]|/P.,(z), i.e. the set of integer polynomials of degree up to
¢(m) — 1. Here ¢(-) is the Euler’s totient function. The ciphertext space of the BGV
encryption scheme consists of polynomials over A, = A/gA, i.e. elements in A reduced
modulo ¢ where ¢ is an odd integer'. The plaintext space is usually the ring Ay =
A/2A, i.e. binary polynomials of degree up to ¢(m) — 1. We also have the following
distributions that we will use later in the key generation and encryption algorithms:

— U,: The uniform distribution over A,.

- DG,(0?): The discrete Gaussian distribution over A, with mean and variance
(0,02).

— ZO(p): For a probability p, ZO(p) draws a polynomial in A, such that each coef-
ficient is O with a probability of 1 — p, and is 1 with a probability of p/2 each.

— HWT (h): Uniformly draws a polynomial in A, with exactly h nonzero coefficient
and each nonzero coefficient is either 1 or —1.

The BGV encryption scheme has 3 basic algorithms (G, E, D):

- G(X,L): Given A and L such that ) is the security parameter and L is the depth
of the arithmetic circuit to be evaluated, the key generation algorithm chooses
&,,(x), q, 0, h, generates a secret key, the corresponding public key and a set of
public parameters. Namely, we sample

5 < HWT(h),a + Uy, e + DG,(c?)

Then the secret key is sk = s and the public key is pk = (a,b) € A2 where
b = a - s + 2e. The public parameter set param = {m, $(m),q, o, L,l}, where
m, ¢(m), q defines A, and [ is the number of plaintext slots (will explain later).

- E,i(m): Given pk = (a,b), to encrypt an element m € Aj,, we choose one small
polynomial and two Gaussian polynomials:

v 20(0.5), €p, €1 ng(O_Z)

Then we setdy = b-v+2eg+m,d; = a-v+2- ey, the ciphertextis ¢ = (dy, dy).
— Dgi(c): Given sk = s, to decrypt a ciphertext ¢ = (do,d1), we compute m =
(do — s - dy mod ¢) mod 2.

!'In the BGV encryption scheme, there are actually a chain of moduli go < ¢1 < --- < qr
defined for modulus switching. But for simplicity we just use ¢ throughout the paper.
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We denote homomorphic addition by H and homomorphic multiplication by X. At a
high level, we can express the homomorphic operations as the following:

— Homomorphic Addition: Given two ciphertexts ¢ = E,i(m) and ¢ = E,i(m’) for
m,m’ € Ay, then coqq = cB ¢ = Epi(m + m/).

— Homomorphic Multiplication: Given two ciphertexts ¢ = Epy(m) and ¢/=FE,;(m')
for m,m’ € Ag, then ¢y = c® ' = Epp(m - m’).

— Homomorphic Addition (with a plaintext): Given a ciphertext ¢ = E,;(m) and a
plaintext m’ for m, m’ € Ag, then coqq = cEBm' = Epi(m +m/).

— Homomorphic Multiplication (with a plaintext): Given a ciphertext ¢ = E,i(m)
and a plaintext m’ for m, m’ € Ao, then ¢y = c®m’ = Epp(m - m/).

Apart from the above operations, the BGV scheme also has two maintenance opera-
tions: modulus switching and key switching. These two operations are used to control
noise in cihpertexts and to keep ciphertext size down. We do not go into the details of
them because they do not change the plaintext encrypted in a ciphertext. They can be
viewed as background routines that are invoked automatically when necessary.

Another important feature of the BGV scheme is that it allows packing plaintexts
and batching homomorphic computation. It was first observed in [33] that the native
plaintext space Ao can be partitioned into a vector of plaintext slots. The idea is that
although the ring polynomial @,,, () is irreducible modulo g, it can be factorised into
distinct factors modulo 2. More specifically, we can factor @,,,(x) modulo 2 into [ ir-
reducible factors @,,,(z) = Fi(z) - Fa(z) - -+ Fi(xz) mod 2, each factor is of degree
d = ¢(m)/l. So by the Chinese Remainder Theorem, a single element a in A5 can rep-
resent an [-vector (a mod Fi(x),a mod Fy(z),...,a mod Fi(z)). In other words, we
have a mapping 7 : ]Flzd — A, that packs [ elements in field Fya into a single element
in A,. Then we can encrypt this packed plaintext as usual. The packed plaintext can
be unpacked by the inverse mapping 771 : Ay — ]Flzd. For convenience, we use c in
normal font to denote a ciphertext that encrypts a native element in Ag, and use ¢ in
Fraktur font to denote a packed ciphertext that encrypts an [-vector.

A homomorphic operation on packed ciphertexts adds or multiplies component-
wise the entire plaintext vectors in an SIMD (single instruction multiple data) fashion.
Namely, if we have two ciphertexts ¢ = E,(m(p)) and ¢/ = Ep(7w(p’)), where p
and p’ are plaintext vectors of size [. Then c,qq = ¢ B ¢ encrypts m(p™) such that
P = Pi + P}, tmur = ¢ X ¢’ encrypts 7(p*) such that p;* = p; - p}. Similarly in the
multiplication with a plaintext vector case, ;¢ = ¢Xm(p’) encrypts 7(p™ ) such that
P; =Pi P;.

We can also homomorphically rotate, i.e. circularly shift, a plaintext vector encrypted
in a ciphertext. At a high level, we have:

— Homomorphic rotation: Given an integer 7 such that 1 < ¢ < [ and a ciphertext ¢
that encrypts 7(p) where p is an [-vector, , the ciphertext ¢,,; = ¢ < i encrypts

m(pY) suchthatpY = p < i = (Pit1.--PIP1---DPi)
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4 The Single Server PIR Protocol

4.1 Some Intuitions

We start from a non-private protocol. The server has an n-bit database x, and the client
wants to retrieve the ith bit x;. Firstly, the server picks an integer ¢ < n and arranges
its database into an n/ x t matrix X, where n’ = [} ]. Now x; becomes X for
some j and k in the matrix. To retrieve the bit, it is sufficient that the client retrieves
the jth row. Each row in X is a bit vector and can be viewed as a binary polynomial
of degree at most ¢ — 1. To retrieve a row, the client creates an n’-bit query string
d = q19z2 - - . qn’ such that all bits are 0 except q;. This query string can be viewed as
a vector of constant binary polynomials. The client sends the query string to the server.
The server computes the inner product of q and X (viewed as an n’-vector of binary
polynomials) q;- X1 +q2- X2+...4+q,/-X,,/. Here - and + are polynomial multiplication
and addition operations. The server sends the inner product to the client. Clearly, since
only q; is 1, the inner product equals X ;. Given X; which is the jth row in the server’s
matrix, the client checks the kth bit. This is the bit it wants to retrieve. If we use an
FHE scheme, we can make the above protocol private. However, the communication
complexity is too high. To deal with this problem, we use a tree-based compression
scheme described in the next section to compress the query string.

4.2 Folding and Unfolding

In this section we show the folding/unfolding compression scheme we designed to com-
press query strings in the protocol’. Without loss of generality, in the following we
always assume the parameter n’ = 2¢ for some ( that is a positive integer.

Given a query string ¢, which is n’-bit long and with only one bit at index j set to 1.
To fold it, we create a d; X do matrix M. Then we fill the query string into the matrix,
starting from the top leftmost cell and wrapping at the end of each row. In the matrix,
only one bit M,z is 1, and all other bits are 0. We then obtain two strings u, v such that
u is dj-bit and v is da-bit. Both u and v have only a single bit set to 1. A toy example
is shown in Fig. 1. In this example, q is 16-bit and d; = ds = vn' = 4. We obtain u
and v such that in u the ath (o = 3 in the example) bit is 1 and in v the fth (8 = 2
in the example) bit is 1. To unfold, we create a two-dimensional matrix M, then fill it
using u and v such that foreach 1 < a < d;,1 < b < do, M), = u, - vp. Then we
concatenate the rows and get back the original query string q.

Note that since u and v are also two strings with only a single bit set to 1, what we
have done to q can be done to u and v in the same way. For each of them, we can fold it
into two shorter strings. In the example, both strings can be represented as a 2 X 2 matrix
and folded into two 2-bit strings. The four 2-bit strings can be unfolded and allows us
to get back to u and v. In general, for any bit string of size n’ with only one bit set to 1,
we can always fold it into log n’ strings that each one is only 2-bit long.

Folding a string can be done in different ways if we choose different dimensions for
the matrix in each step. In the example in Fig. 1, we can also use a 2 X 8 matrix to

2 As pointed out by a reviewer, functionally the algorithms are equivalent to the encoder and
decoder circuits as described in chapter 2 of [35].
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0100
o [0JoJo]o] q=0000000001000000
0101010101 - 010
1 [o[1]0]o0

v=0100
o [o]o]o]0

Fig. 1. Fold and unfold a query string

Fig.2. A folding tree for a 2'°-bit query string. The number in each node is the length of the
string to be folded/unfolded at the node.

fold q. To be deterministic, we define a tree structure and associated algorithms. The
tree is an auxiliary structure that directs how to fold and unfold a string recursively. To
build such a tree, the only information we need is the length of the query string. More
formally, we define a folding tree to be a binary tree, such that each non-leaf node has
exactly two children (referred to as the left child and the right child). Each node in the
folding tree stores a number that is the length of the string to be folded or unfolded at
this node. The algorithm to build a folding tree is given in Algorithm 1 and a folding
tree built from the algorithm is shown in Fig. 2. It is easy to prove that a folding tree
built from the algorithm has height log log n” and has log n’ leaf nodes.

What Algorithm 1 does is to build a tree structure. At each node, it checks the input
number n’ which is always a power of 2, if n’ > 2 then n’ can always be factored into
n' = 2% . 2¢2 To make it deterministic, we choose (; such that ¢ is an integer and
201 < n/ < 2%¢, After we find (1, we set (; = logn’ — (;. That means we can write
the n’-bit string into an 2¢* x 2°2 matrix, thus the string can be folded into two strings
of 2¢1-bit and 2¢2-bit long. Then we invoke the next level recursions with 2¢* and 2¢2.
The recursions will end when the input number is 2.

After we have built the folding tree, we can use it to fold and unfold the query string.
Each folding tree is built with an input n’ and can only fold/unfold query strings of
length n’. The algorithm to fold a query string is shown in Algorithm 2. In the algo-
rithm, we do not really need to fill the string into a matrix. As we can see in line 2,
the dimensions of the matrix are stored in the folding tree: the number stored in the left
child node is the number of rows and the number stored in the right child node is the
number of columns. With this information, then in line 3, given the index j of the 1 bit
in the input string, we can convert the index into a row index « and a column index 3 in
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Algorithm 1. buldTree(node, n’)

input : A tree node node and an integer n’ = 2¢
output: A folding tree for a query string of length n’

if node == NULL then node = new node; // a new tree
node.strLen = n';

if TL/ == 2 then return; // end condition of the recursion
¢1 = [logn' /2], ¢ = logn' — (1; // determine the dimensions

left = new node, right = new node;

node.left = left, node.right = right;

buIdTree(Ieft, 2<1); // recursion
buldTree(right, 22);

return node;

o X 9N N R W N =

Algorithm 2. fold(T, q)

input : A folding tree T and a query string q of length n’ = 2¢
output: A folded representation of q, which is a string of 2 log n’ bits
if T is a leaf node then return q;

di1=T.left.str Len, da= T.right.str Len;

j = the index of the 1 biting, & = [(j — 1)/d2] + 1, 8= ((j — 1) mod d2) + 1;
1 = new bit string of length d;, all bits are initialized to 0;

r = new bit string of length da, all bits are initialized to 0;

set the arth bitin 1to 1;

set the Sthbitinr to 1;

a = fold(T.left,1);

b = fold(T.right,r);

return al|b;

D-TEE-CHEEN N L N

—
>

the matrix. Then we can generate two strings, one with the ath bit set to 1 and one with
the Sth bit set to 1. The strings will be passed to the next recursions. At a leaf node,
the recursion ends. At the end of the algorithm, the 2-bit strings at all leaf nodes are
concatenated and returned. Since we have log n’ leaf nodes, the query string is folded
into a string of 2logn’ bits. Unfolding is essentially the inverse process. The folded
query string is broken into logn’ strings each of 2 bits long and assigned to the leaf
nodes. Then starting from the leaf nodes, the strings held by sibling nodes are unfolded
into a longer string by multiplying the bits. Eventually at the root the original query
string is fully unfolded.

The unfolding algorithm can work perfectly with an FHE scheme. Now all strings
in the algorithm are replaced by vectors of ciphertexts that encrypt the strings bit-by-
bit. The input ciphertext vector is of size 2logn’ and the output ciphertext vector is
of size n’'. The process is almost identical to the plaintext case. The only difference is
that in line 10 of Algorithm 3, the multiplication operation will be the homomorphic
multiplication operation.
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Algorithm 3. unfold(T, s)

input : A folding tree T and a folded query string s
output: A query string q of n’ bit, unfolded from s
if Tis a leaf node then return s;
di=T.left.strLen, do= T.right.str Len, (1 = 2log d1, (2 = 2log da;
Split s into two strings such that s = sl||sr, sl is (i-bit and sr is {2-bit;
1 = unfold(T.left, sl);
r = unfold(T.right, sr);
q = new bit string of length di X da;
fora = 1tod; do
for b =1todz do
it=(a—1)-d2+1b;
qi = 1o - 1p;
end
end
return q;

RIS B Y N L S

- e
W N = D

4.3 The PIR Protocol

Now we are ready to describe our PIR protocol. The protocol is the parallelised version
of the protocol described in Section 4.1. Recall that in BGV, we can pack an [-vector
of elements in F,4 in a single ciphertext and process the elements in an SIMD fashion.
We will use this feature in our protocol to run [ instances of the protocol in section
4.1 simultaneously. On the server side, the server represents its database as an n’ x [
matrix, each element in the matrix is a d-bit binary vector that can be viewed as an
element in Fyq. Later, homomorphic operations will be applied to all elements in the
[-vector simultaneously. That is, we can process [ - d = ¢(m) bits each time. In this
way, we can amortise server side computation. On the client side, the client needs to
send the query string q to the server. It uses the folding algorithm to fold q into s. The
folded query string s is short, only 2 log n’ bits. We can always find BGV parameters
such that 2logn’ < [. Therefore the client can pack s into one single ciphertext and
sends it to the server. The protocol is as follows and we will explain why this is correct
after the description:

1. Init: Given a security parameter A and the size of the database n, the client chooses
the maximum depth of circuit L, and invokes G(A, L) to generate a BGV key pair
(pk, sk) and public parameters param. The private parameter set S = {sk}, the
public parameter set S = {pk, param}. Given ¢(m) and the number of plaintext
slots [, the server arranges its database into an n’ x [ matrix X, where n’ = | q&(?:n)] .
Each element in the matrix is a bit vector of length d, where d = ¢(m)/I.

2. QGen: The client does the following to generate a query:

(a) The client converts 4 into (v, £, ), i.e. the bit x; is the yth bit of the element at
Xag- Then the client creates a query string q of length n’, which contains all 0
bits except the ath bit set to 1. The client creates a folding tree with n” as the
input. Then the client folds q into s using the folding algorithm.
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(b) The client pads s with O to [ bits. Then the client circularly right shifts s to get
anew string s’ = s > ( — 1) so that in s’ the Sth bit is the first bit in s.
Here s’ can be viewed as an [-vector of constant binary polynomials. Then the
client uses the packing feature: maps s’ to an element in A and encrypts it.
The result s = E,;(7(s')) is the query Q and is sent to the server.

3. RGen: Given Q = s, the server generates a response as follows:

(a) The server generates a vector of ciphertext ¢ that contains 2logn’ ciphertexts
after receiving Q, such that ¢; = s and for each 2 < k < 2logn/, ¢ =
s < (k — 1). The server generates a folding tree with n’ as input. Then the
server runs the unfolding algorithm homomorphically with the folding tree and
c as input. The result ¢’ is a vector of n’ ciphertexts.

(b) The server then computes a single ciphertext v = (¢} X n(X;)) B (c¢), X
m(X2))... B (¢, ®7(X,)). Then the server returns the resoponse R = t
to the client.

4. RExt: Given R = v, the client decrypts t and obtains an [-vector. The ~yth bit in the

[th element in the vector is the bit x; it wants to retrieve.

As we said earlier, in this protocol we work with packed ciphertexts. Homomorphic
operations involving packed ciphertexts are component-wise. So one major change in
this protocol compared to the protocol described in Section 4.1 is that instead of just
one single binary polynomial in a row of the matrix X, now in each row we have a
vector of [ binary polynomials. The client’s goal is to retrieve the Sth polynomial in the
ath row that contains the bit. In step 2a, the client generates a query string q that can
be used to retrieve the ath row in the server’s matrix and folds it into s. In step 2b, the
client circularly right shifts the string s by 5 — 1 positions. The reason is that s contains
only information about the row index of the element the client wants to retrieve, by
shifting it the result s’ contains information about both the row index and the column
index. This becomes clearer in step 3a. The server generates a vector of ciphertext ¢
by rotating the ciphertext from the client. The first ciphertext ¢; encrypts s’, and the
Bth bit in s’ is s1, the second ciphertext encrypts s’ < 1, and the fSth bitin s’ < 1
is s9, and so on and so forth. In fact we can view c as encrypting a bit matrix S’ of
size 2logn’ x . The fth column S? is the folded query string s generated in step 2a
by the client. The server can unfold s back to q by running the unfolding algorithm.
This is because the batched homomorphic operations are component-wise. Therefore
by running the algorithm with packed ciphertexts, the server actually runs [ instances of
unfolding simultaneously, each with the same folding tree and a distinct column from
S as input. The input string to the Sth instance is s and thus g can be unfolded. For the
other unfolding instances, it does not matter what the unfolding results are because the
client is only interested in the ath element in the Sth column of the server’s database
matrix. So as long as the Sth instance is correct then it is fine. The result ¢’ obtained
from running the unfolding algorithm can also be viewed as encrypting an n’ X [ matrix
such that the Sth column is q and the other columns contain useless bits. Then in step
3b, the server again uses batched homomorphic operations to run [/ instances of inner
product evaluation. The input to each instance is a column in the unfolding result matrix
and the corresponding column in X. The [th instance computes the inner product of
q and X7”. The result is X, which is the element the client wants to retrieve. The
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element is encrypted in the Sth slot in v and by decrypting the ciphertext, the client can
obtain the element. Then by examining the ~th bit in the element, the client knows the
bit it wants to retrieve. Fig. 3 shows a toy example. In the examplen = 32,[ =4,d = 2
and n’ = 4, so the server’s database is organised as a 4 X 4 matrix. The bit the client
wants to retrieve is the first bit in X3 o.

q = 0010,s = 0110,s’ = 0011 x = 10110110001010101110010001001100

_ s’ a =4
c1 = Ep,(0011) ¢h = Epip(#0 * %) oo 10
Co = Epk(0110) unfold C/2 = Epk(* * *) 00]/10]| 10| 10 n'=4
c3 = Epk(lloo)—'cé = Ep(+l] % %) 11 |{10][ 01 | 00
ca = By (1001) ¢ = Ep(e] v +) L2 T1]00
s \innerproduct/
of columns

lX3,2:0~1]+U<]0+]']0+U~OU
= Epk((**,**,**))

Fig. 3. An Example of the PIR Protocol (* means a bit we do not care)

Extensions. With some modifications, we can extend the PIR protocol into a PBR pro-
tocol [3] or a symmetric PIR protocol [4]. In a PBR protocol, the client retrieves a block
rather than a single bit. In a symmetric PIR protocol, the client retrieves just one bit and
learns nothing about the other bits in the server’s database. Due to limited space, we do
not discuss them here. They will be presented in the full version of the paper.

4.4 Efficiency Analysis

Communication. In the protocol, the client sends a request that is a single ciphertext
and the server returns a single ciphertext. The size of the ciphertexts depends on A,.
For each element in A, it is a polynomial of degree at most ¢(m) — 1. Therefore the
size of a ring element is at most ¢(m) - log ¢ bits. The parameters ¢(m) and ¢ are inter-
dependent. For simplicity, in our protocol we choose a large enough and fixed ¢(m) and
therefore ¢ becomes a variable independent of ¢(m). Then we have logg = a +b- L
where a, b are small constants and L is the depth of circuit to be evaluated. Since L =
loglogn’, the bit length of q is O(log logn’). Then overall, the communication cost is
O(loglogn’) = O(loglog d)(?n)) = O(loglogn).

Server Side Computation. The server side computation consists of three parts: ho-
momorphic rotations, unfolding and homomorphic inner product computation. The
complexity of the rotation operation is O(¢(m)logé(m)) multiplications modulo q.
We need in total 2logn’ — 1 rotations. To unfold the query string, the server needs

Z?folog ™21 3/n' < n' + 3+v/n’ homomorphic multiplications. The computational cost
of the inner product part is dominated by the n’ homomorphic multiplications. To un-
derstand the cost of the protocol, we need to understand the cost of homomorphic mul-

tiplication operations. We have two different homomorphic multiplication operations:
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raw multiplications and full multiplications. A raw multiplication simply computes the
tensor product of the parts in the ciphertexts, so the cost is 4 (2 if one operand is a plain-
text) multiplications over A,. A full multiplication is a raw multiplication followed by
a modulus switching and a key switching on the product. The maintenance operations
are necessary to ensure correctness and maintain the size of the ciphertext. The cost of
a multiplication over A, is ¢(m) multiplications modulo ¢. The complexity of modulus
switching and key switching is O(¢(m)log¢(m)) multiplications modulo ¢. Therefore
a full multiplication is more costly than a raw multiplication.

Our observation is that in our protocol most homomorphic multiplications can be
raw multiplications. Namely, we mean the n’ multiplications required by the last step
of the unfolding algorithm and the n’ multiplications required by the inner product
computation. The total cost of this part is 4 - n’ - ¢p(m) + 2 - n’ - ¢(m) = 6n multi-
plication modulo ¢ (q is less than 64-bit because of previous modulus switching oper-
ations). We only need less than 3v/n/ full multiplications. The total cost of this part is
O(V/n'¢p(m)logg(m)) modular multiplication operations. Each modular multiplication
here can be implemented by 1 or a few 64-bit modular multiplications.

As we can see, the overall computational complexity is O(logn’ + v/n’ +n') =
O(n). For sufficiently large n, the computational cost of the homomorphic rotation part
is insignificant compared to the the other two parts. Moreover, when n is sufficiently
large, v/n’ will be much smaller than n’. That means the number of total operations
required by full multiplication part is smaller than the raw multiplication part. Then in
this case, the server side computation is bounded by 12n 64-bit modular multiplication
operations.

Client Side Computation. The client side computation in our protocol is very light.
The client needs to do 1 encryption and 1 decryption. The cost of encryption or de-
cryption is O(¢(m)) multiplications modulo g. In practice, each encryption/decryption
needs only a couple of milliseconds.

4.5 Security Analysis

In this section, we analyse the security of our PIR protocol. We have the following
theorem:

Theorem 1. If the BGV FHE is semantically secure, then our PIR protocol is a secure
single server PIR protocol.

Proof. We show that if a PPT adversary A can distinguish two queries with a non-
negligible advantage, then an adversary A’ can use A as a subroutine to win the BGV
CPA game with a non-negligible advantage. The BGV CPA game is a standard public
key encryption CPA game, in which .4’ needs to distinguish two ciphertexts encrypted
under a BGV public key. The game is in the appendix. A’ does the following:

— A’ chooses n and generates a database x, chooses A and L, then receives the BGV
public key and parameters (pk, param). It then invokes A with x, pk, param.

— For any index i, A can generate the query by itself using the public key. At some
point of time, A outputs two indexes g, 71 and sends them to A’.
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— A’ generates mg using ig. A’ first generates a query string q from i, folds q into s
and then pads and shifts to get s’ from s. The message mg = 7(s’).

— A’ generates m; in the same way as above but using 4; as input.

— A’ sends mg and m; to the challenger in the BGV CPA game, then receives .

- A’ sends ¢; to A, and outputs whatever A outputs.

It is clear that the probability of A’ winning the BGV game is the same as the prob-
ability of A outputting b’ = b. Since the BGV encryption is semantically secure, the
probability of A" winning the game is % + 7, where 7 is negligible. Then the advantage
of A is also negligible.

5 Implementation and Performance

5.1 Implementation

We have implemented a prototype in C++. The implementation is based on HElib [36],
an open source implementation of the BGV FHE scheme. Currently in the prototype the
client and the server run in the same process. This does not affect the evaluation result.
To measure network communication, we output the ciphertexts to files and measure the
file size. We have done a few optimisations:

Delayed Unfolding. We delay the last unfolding step. Instead of fully unfolding the
query string, we combine this step with the inner product computation step. The main
reason is that if we fully unfold the query string, we need to store n’ ciphertexts. Be-
cause n’ can be large, we need enormous memory to store the ciphertexts. If we stop at
the two children of the root, then we only need to store two vectors of approximate v/’
ciphertexts. When we compute the inner product, we can unfold the bit we need on the
fly using the two vectors.

Tree Pruning. We can also prune the folding tree to lower the communication cost. The
idea is that if we do not fully fold the query string, we will end up with a longer folded
string, but we might still be able to pack it into one ciphertext. For space reason, we do
not formally present the tree pruning algorithm but use an example to explain the idea.
Consider without pruning, the client and the server use the folding tree in Fig. 2, so the
client fully folds its query string into a 30-bit string and the server can unfold the query
string. If we prune the tree to have only 3 nodes: the root node and the two children of it,
then with this tree, the client can fold the the query string into a 28 +27 = 384-bit string.
As long as the number of plaintext slot [ > 384, the client can pack the string into one
ciphertext. With this packed ciphertext, the server can obtain ¢ by 383 rotations, and
then breaks c into two vectors, the first one with 28 ciphertexts and second one with 27
ciphertexts. The encrypted query string can be unfolded from these two vectors, and the
server can then compute the inner product. The tree pruning algorithm takes a folding
tree and [ as input, scans from the root, once it finds a level such that the sum of strLen
of all nodes at this level is smaller than [, it prunes all nodes below this level. Tree
pruning requires only a minor modification to the unfolding algorithm. Tree pruning
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can reduce communication cost because lower tree height means lower circuit depth,
and then smaller q.

Multithreading. Conceptually, the server side computation in our protocol can be eas-
ily parallelised. Each step in unfolding requires d; - d2 independent homomorphic
multiplications, and the inner product computation step requires n’ independent ho-
momorphic multiplications. We can parallelise those multiplications without much ef-
fort. However, multithreading is not easy with HElib because it depends on the NTL
library that is not thread safe. After analysing the source code of HEIlib, we managed
to make the raw multiplication and addition operations independent of the NTL library
and make the prototype partially multithreaded. This enables our implementation to
take advantage of multicore hardware.

5.2 Performance

In this section, we report the performance based on our prototype implementation. All
experiments were conducted on a MacBook Pro laptop, with an Intel 2720QM quad-
core 2.2 GHz CPU and 16 GB RAM. The choice of the BGV parameters is based on
the formula given in [37]: ¢(m) > log(a/ 07)_(2)‘+110) , where ¢ is the noise variance of the
discrete Gaussian distribution and A is the security parameter. The variance 0 = 3.2
in HEIlib. We chose m = 8191 thus ¢(m) = 8190 and the number of plaintext slot
! = 630. The modulus ¢ is an odd integer of 40 4+ 20L bits, where L is the height
of the folding tree. When A = 128, the largest L supported by the chosen m is 7. In
other words, the parameters ensure 128-bit security as long as the database is less than
22" = 2128 pjt, which is more than enough in any practical settings.

We first show the communication cost (Table 1). One thing to be noticed is that HElib
outputs ciphertexts as textual strings of decimal numbers, so the measured size is bigger
than the raw bit size. We used database of size 22° bits (4 MB), 230 bits (128 MB), and
235 bits (4 GB) in our experiments. As we can see, the communication cost is low, only
a few hundred KB. The response is only one ciphertext and the size is fixed across all
cases. Most time the request is larger than the response despite that it is also just a single
ciphertext. The reason is that ¢ is not fixed in the BGV FHE scheme. We use modulus
switching to switch to smaller ¢ during the homomorphic operations. So the ciphertext
in the response uses a smaller ¢ and in consequence the size of the ciphertext is smaller.
Another fact about the response is that has 3 ring elements? because we omitted the key
switching operations in the last unfolding step. This explains why in the first experiment
with pruning (database size = 22°), the request is smaller than the response. We can also
see that tree pruning does help reduce the request size.

We then show the server side computation time (Fig. 4). In Fig. 4a, we show the
computation time for each step as well as the total time. The columns show the time
for rotation, full multiplications (unfolding except the last step) and raw multiplications
and additions (the last unfolding step plus inner product computation). The line shows
the total computation time. As we can see, the rotation step is always fast. When the size

3 The 3-part ciphertext can still be decrypted correctly, so this does not affect the correctness of
our protocols.
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Table 1. Communication cost with different database size

Without Pruning With Pruning
L Request Response L Request Response
225 336KB 192KB 2 180KB 192KB
2506 380KB 192KB 3 231KB 192KB
2556 389KB 192KB 3 231KB 192KB

of the database is small, the computation is dominated by the full multiplications. But
when the size of the database increases, the raw multiplication and addition step starts to
become dominant. From the total time, we can estimate the minimal bandwidth needed
to make the trivial solution faster. When the database is 4 MB, 128 MB and 4 GB, the
minimal bandwidth is 1.25 Mbps, 5.65 Mbps and 10.44 Mbps. With a more powerful
CPU (our experiments were done on a laptop), the minimal bandwidth would be higher.
We can make our protocol more practical by utilising hardware parallelism. In Fig. 4b,
we show the performance of our multithreaded implementation versus single threaded
one. The time compared in the diagram is the raw multiplication and addition step,
which is the only step we can currently implement in parallel. The experiments were
done with a quad-core CPU, and the performance improvement was about 2.7 - 3 times.
If with a fully thread safe BGV implementation and 2 or 3 more CPUs, the performance
of our protocol can compete with the trivial solution in 100 Mbps LAN.
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1024 ElRotation 3000 2788.098
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256 SFull Mul 2500
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k3 N 2000
2 64 22.20 N\ SRaw Mul g
8
£ » - & add Elsoo BsT
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Database size (log) Database size (log)
(a) Computation Time (b) Hardware Parallelisation

Fig. 4. Server Side Computation Time of Our PIR Protocol

5.3 Performance Comparison

Communication. We compare the communication cost with the current most efficient
protocols: Lipmaa’s protocol [10] and Gentry’s protocol [9]. The result is plotted in
Fig. 5. Note we use size of ciphertext in the raw bit representation to draw the line
for each protocols, so the numbers for our protocol are different from the numbers in
Table 1. Lipmaa’s protocol assumes that the n-bit database has n’ entries each is ¢
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bits. The smallest modulus size is 2k-bit. When ¢ = k, the total costis « - ((s + o +
1)¢/2)(n'Y/® — 1) - k bit. In the figure, we set k = 3072 for 128-bit security and let
a = logn'/,s = 1, = 1. Then as we can see, our protocol (without pruning) incurs
more communication when the database is small, but would be better when the database
is sufficiently large. This is due to the large ciphertext size in the BGV scheme. Gentry’s
protocol is very communication efficient. The communication cost is 3 10g370(1) n-bit
integers. With any practical database size, it would be always more efficient than our
protocol in terms of communication. However, the difference is less than 200 KB, which
is not significant.

-o- Lipmaa
-4 -Our P
800 —=—Gentry -

Total Communication (KB)

L L
60 70 80

20 30 40 50
Database Size (log)

Fig. 5. Communication Cost Comparison

Computation. Here we do not compare with Melchor’s protocol [18] because it is not
secure. We do not compare with other FHE based protocols [11, 12] because they are
obviously less efficient. Among all other existing protocols:

— Kushilevitz’s protocol [4] requires n modular multiplications.

— Kushilevitz’s TDP-based protocol [7] uses interactive hashing to protect the client’s
privacy against the server. It requires n TDP evaluations on the server side. Each
TDP evaluation requires at least one modular multiplication.

— Gentry’s protocol [9] requires only one modular exponentiation but the exponent is
2n-bit. The computational cost is approximately n modular multiplications.

— Cachin’s protocol [6] requires n modular exponentiations. The computational cost
is approximately [.n/2 modular multiplications, where [ is the bit length of the
exponent.

— Lipmaa’s protocol [10] requires for each 2 < j < logn/, 2!°8 n' = exponentiations.
The computational cost is at least c-n modular multiplications for some ¢ depending
onlogn/'.

- Lipmaa’s BDD based protocol [17] requires O(n/(logn)) modular exponentia-
tions. The computational cost is approximately [.n/(2logn) modular multiplica-
tions. Because the exponent size [, is larger than 2 log n, the total cost is larger than
n modular multiplications.

— Chang’s protocol [8] requires n modular multiplications and 2 log n modular expo-
nentiations.
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The most efficient protocol of all above ones is Kushilevitz’s protocol [4] that re-
quires n modular multiplications. Although the number of operations in Gentry’s pro-
tocol is similar to Kushilevitz’s protocol, in practice it would be less efficient due to the
large exponent which is twice as big as the database. Another factor that makes Kushile-
vitz’s protocol the most efficient one is the modulus size. Some protocols, e.g. Cachin’s,
Lipmaa’s (and the BDD-based), and Chang’s, require larger moduli. So the modular
multiplication operation is slower in those protocols than in Kushilevitz’s protocol.

We then compare our protocol with Kushilevitz’s protocol. For 128-bit security, the
modulus size needs to be at least 3072-bit. We measured time for a 3072-bit modular
multiplication using the GMP library [38]. This is done by averaging the time for 1
million operations. The time for a single operation is 8.269 x 10~5 second. Thus, when
the database size is 22°, 230 and 23° bits, Kushilevitz’s protocol would need 277.46,
8878.72 and 284119.04 seconds respectively. That is 12.5, 49.2 and 90.5 times slower
than our protocol in single threaded mode.

6 Conclusion

In this paper, we presented a single server PIR protocol based on the BGV FHE scheme.
The protocol is efficient both in terms of communication and computation. We have
analysed its efficiency and security. We validated its practicality by a prototype imple-
mentation. The test results show that the total communication cost is as low as a few
hundreds KB and the server side computation is much faster than existing single server
PIR protocols.

In future work, we will test and improve performance over large data. We will ex-
tend the protocol to multi-query PIR [39]. Namely to further amortise the server-side
computation complexity of PIR over multiple queries performed by a single client.
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The CPA Game

The security of the BGV scheme is captured by the following CPA game between an
adversary and a challenger:

1.

W

The adversary chooses L, then given a security parameter A, the challenger runs
G(A, L) to generate the secret key sk, the public key pk and the public parameters
param. The challenger retains sk and gives the adversary pk and param.

. The adversary may choose a polynomially bounded number of plaintexts and en-

crypts them using the public key.

. Eventually, the adversary submits two chosen plaintexts mg, m to the challenger.
. The challenger selects abitb € {0, 1} uniformly at random, and sends the challenge

ciphertext ¢ = Epi,(my) back to the adversary.

. The adversary is free to perform a polynomially bounded number of additional

computations or encryptions. Finally, it outputs a guess b’.

The adversary wins the game if &’ = b. Under the RLWE assumption, the BGV scheme
is secure which means the probability of any PPT adversary winning this game is % +n
for some negligible 7.
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