Who Is Touching My Cloud

Hua Deng! 23, Qianhong Wu?®, Bo Qin?, Jian Mao?,
Xiao Liu?, Lei Zhang4, and Wenchang Shi?

L School of Computer, Wuhan University, Wuhan, China
denghua@whu.edu.cn
2 School of Electronic and Information Engineering, Beihang University, Beijing, China
{gianhong.wu, maojian}@buaa.edu.cn
3 School of Information, Renmin University of China, Beijing, China
{bo.gin, wenchang}@ruc.edu.cn
4 Software Engineering Institute, East China Normal University, Shanghai, China
leizhang@sei.ecnu.edu.cn
5 The Academy of Satellite Application, Beijing

Abstract. Advanced access controls have been proposed to secure sensitive data
maintained by a third party. A subtle issue in such systems is that some access
credentials may be leaked due to various reasons, which could severely damage
data security. In this paper, we investigate leakage tracing enabled access con-
trol over outsourced data, so that one can revoke the suspected leaked credentials
or prepare judicial evidences for legal procedure if necessary. Specifically, we
propose a leaked access credential tracing (LACT) framework to secure data out-
sourced to clouds and formalize its security model. Following the framework, we
construct a concrete LACT scheme that is provably secure. The proposed scheme
offers fine-grained access control over outsourced data, by which the data owner
can specify an access policy to ensure that the data is only accessible to the users
meeting the policy. In case of suspectable illegal access to outsourced data with
leaked credentials, a tracing procedure can be invoked to tracing in a black-box
manner at least one of the users who leaked their access credentials. The tracing
procedure can run without the cloud service provider being disturbed. Analysis
shows that the introduction of tracing access credential leakage incurs little addi-
tional cost to either data outsourcing or access procedure.

Keywords: Data privacy, Access control, Cloud storage, Access credential leak-
age, Digital forensics.

1 Introduction

Cloud computing services provide an efficient and cost-effective mechanism for indi-
viduals and organizations to enforce highly scalable and technology-enabled manage-
ment on their data. This new and exciting paradigm has generated significant interests in
both industrial and academic world, resulting a number of notable theoretical and prac-
tical cloud computing models, such as Amazon EC2, Apple iCloud, Microsoft Azure
and some more complex models designed for multi-cloud [21]. In the context of cloud
storage [20, 23], users can outsource their data to a cloud storage server (maintained by

M. Kutylowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 362-379, 2014.
(© Springer International Publishing Switzerland 2014

Who Is Touching My Cloud 363

a cloud service provider, CSP), so that themselves and other authorized users can access
the outsorced data anytime and anywhere. In this way, users are able to share their data
with others without worrying about their local hardware and software limitations.

Although cloud storage brings about many benefits, the concerns on data security are
believed the major obstacles for the wide usage of cloud services. When users outsource
their data to clouds, they may worry about unauthorized data access due to the loss of
physical control of their data. Encryption is a standard approach to protect data security
but traditional cryptosystems, including symmetric and asymmetric cryptosystems, can
not support complicated access policy or suffer from complicated key management in
securing outsourced data with flexible access policies. Nevertheless, in cloud storage
scenario, users usually do not know who will request to access their data in the future,
so a flexible access control over data is desired; besides, it is not practical to issue an
access key for each authorized requestor. Attribute-based encryption (ABE, [9, 24]) is
a recently proposed promising approach to enable flexible access control on the data
outsourced to clouds. In an ABE system, data owners can specify access policies over
attributes that the potential authorized users should possess. Then the authorized users
with the attributes satisfying the specified access policy can access the outsourced data.

The attribute-based cryptosystem provides a reliable method to protect the data in
clouds, while at the same time enabling fine-grained access control over the data. This
is realized by assigning access credentials to authorized users so that the encrypted data
are only accessible to them. In practice, these access credentials may be leaked due to
various reasons, e.g., intentionally leaked by authorized users for their own benefits or
compromised by hackers. For instance, a company employs a cloud storage system to
store its data and assigns access credentials to its employees. It is possible that some
employees unsatisfied with the company disclose their access credentials to the com-
pany’s competitors who are interested in the sensitive data stored on the clouds. Once
this happens, some countermeasures should be taken to find the leaked credentials in
order to prevent illegal access in future.

There are some solutions for the purpose of tracing leaked access credentials. Boneh
et al. [4, 5] provided a traitor tracing mechanism in broadcast encryption system, while
only achieving a gross-grained access control over data. Based on the works [4, 5], the
schemes [16-18] resolved the problem of tracing leaked access credentials in attribute-
based encryption. Although these schemes achieve fine-grained access control, they
either only possess a weak tracing capability or suffer from large-size ciphertexts. A de-
sired solution in the cloud-based scenario is what on the one hand provides fine-grained
access control over outsourced data, on the other hand fulfills a strong tracing mecha-
nism to find leaked access credentials, and at the same time achieves short ciphertexts
for outsourced data.

1.1 Our Contributions

In this paper, we investigate security-enhanced access control over the data stored in
the cloud server, so that an access credential leakage tracing mechanism can be incor-
porated to find leaked access credentials used for illegal access. We propose a feasible
solution to find leaked access credentials with strong tracing capability and achieve

364 H. Deng et al.

short ciphertexts for outsourced data in a cloud-based scenario. Our contributions in-
clude the following aspects.

We present a leaked access credential tracing (LACT) framework to secure out-
sourced data in cloud storage. It allows a user to define an access policy for each file
or its any content to be outsourced. Authorized cloud clients will be given a secret
access credential for access to outsourced data. In case of illegal access with leaked
access credentials, in a black-box way, a tracing procedure can find at least one of the
leaked credentials, even if the illegal access credentials were produced with multiple
leaked credentials in an unknown way. This implies that the trusted third party does not
need to know how the illegal access credentials were forged, which captures powerful
collusion attacks in practice.

Following the generic framework, we propose a concrete LACT scheme that is prov-
ably secure. When an access credential is assigned to an authorized user associated
with his/her attributes, an unique fingerprint code is embedded into each user’s access
credential. During outsourcing a file, the file owner encrypts the file with a policy, so
that only the users having access credentials of the matching attributes can decrypt the
outsourced file, without fully trusting the cloud storage provider. When some access
credentials are leaked and used to forge illegal credentials for unauthorized access, a
trusted third party is employed to find at least one of the leaked credentials involved
in the illegal access. Surprisingly, the tracing procedure does not disturb the CSP. The
security properties are formally defined and proved by assuming the security of the
underlying ABE scheme and the fingerprint codes scheme.

We analyze our LACT scheme and compare it with some up-to-date similar works.
The analysis shows that the introduction of a black-box leakage tracing countermea-
sure does not incur any significant cost to the access control. The comparison demon-
strates that the proposed scheme achieves a strong traceability with barely expanding
the ciphertexts. Indeed, the most critical data outsourcing and access sub-protocols,
which determine the practicality of the system, are almost as efficient as the underlying
attribute-based access control model which does not provide any leakage tracing mech-
anism. Our scheme also supports any access structure admitting a linear secret sharing
and enables fine-gained access control over outsourced data. These features make our
scheme a practical solution to secure sensitive data outsourced to untrusted clouds.

1.2 Related Work

There is an increasing demand to secure data maintained by a third party in distributed
computing systems. Asokan et al. [1] proposed a framework to safely share sensitive
data among mobile devices, with the focus on the data privacy and user privacy. Huang
et al. [10] exploited the attribute-based encryption (ABE) to protect user’s privacy in
mobile systems. Considering that in the ABE applied into mobile systems a single au-
thority is too easy to be broken, Li et al. [13] proposed a multi-authority solution to
reduce the power of single authority and alleviate overheads of mobile users.

In cloud computing environments, the protection of data security is pressing because
of the scalability and easy accessibility requirements. Due to the fine-grained access
control feature, ABE has been extensively employed in cloud computing to protect data
security. Liu et al. proposed an elegant ABE scheme [15] with arbitrary attributes and

Who Is Touching My Cloud 365

security against adaptively chosen ciphertext attacks in the standard. They achieved
this goal with a novel application of Chameleon hash functions. Yu et al. [29] used
the ABE to protect the security of data stored in clouds, then flexible access control
over outsourced data is achieved. Lai ef al. [11] presented an ABE scheme with par-
tially hidden access structure to protect the access policies’ privacy. To adapt for multi-
authority scenario, where each authority may manage the attributes in its domain, Yang
and Jia [27] proposed a multi-authority access control scheme for cloud storage to re-
duce the dependance on a single authority. Recently, Deng et al. [7] presented a novel
ABE system allowing hierarchical key delegation and efficient data sharing among large
organizations.

A challenging task in access control of sensitive data is to trace access credential
leakage. Boneh and Naor presented a paradigm [3] to equip the public key cryptosys-
tems with tracing mechanism by using fingerprint codes. To find the users who leaked
their access credentials in broadcasting cryptosystems, Boneh et al. ([5, 4]) constructed
two tracing schemes built from the composite-order bilinear groups, which are less ef-
ficient than in prime-order bilinear groups. Garg et al. [8] transmitted Boneh ef al.’s
tracing schemes to being constructed in prime-order bilinear groups to achieve better
system performance in terms of encryption and decryption time. Wu and Deng [26] en-
hanced Boneh et al.’s schemes by considering the denial of tracing and farming attacks
and proposed a countermeasure on the framing attack.

A few recent efforts have been made to trace access credential leakage since the
employment of ABE for access control in clouds. Wang et al. [25] proposed the attribute-
based traitor tracing system while the allowed access policy is not expressive. The
systems in [28, 14, 12] support expressive policy, although the traceability is not
collusion-resistant, that is, the attacker is not allowed to have more than one creden-
tial when building the illegal access devices. Liu ef al. [16] proposed traceable ABE
schemes allowing more than one access credentials used in forging an illegal access de-
vice, while the tracing capability is weak, i.e., white-box tracing. The white-box model
can only capture weak attacks in which the dishonest user directly discloses his ac-
cess credential. Liu et al. [17] suggested a method to construct the black-box traceable
CP-ABE from the Boneh er al.’s schemes ([5, 4]). Their schemes require inefficient
operations in composite-order bilinear groups and have ciphertexts sub-linear with the
number of total users. Liu et al. [18] also proposed a black-box traceable CP-ABE with
full security, although it still requires that the size of ciphertext grows sub-linearly with
the number of users in the system. Recently, Deng et al. [6] achieved a very efficient
trace-and-then-revoke mechanism of illegal access credentials distribution in cloud stor-
age systems. The encryption procedure of their scheme requires to explicitly knows the
identities of the ones who may later access the encrypted data.

Data sharing calls for efficient and reliable mechanisms to protect the data security.
All the aforementioned works protect data security for different application scenarios
and most of them achieve fine-grained access control due to the employment of ABE.
In the face of access credentials leakage issue in ABE-based systems, the above coun-
termeasures either allow less expressive access policy, or only withstand weak attacks,
or incur heavy burdens. Our LACT scheme overcome these drawbacks in that it sup-
ports any access structure admitting a linear secret sharing and provides traceability in a

366 H. Deng et al.

black-box manner which is a stronger security notion than white-box manner. Besides,
it is built on prime-order bilinear groups and the computation operations thus are more
efficient than in composite-order bilinear groups. Particularly, the LACT scheme incurs
almost no extra costs for the most frequent procedures of data outsourcing and access.
These advantages make the LACT scheme a very practical and secure solution to en-
force a fine-grained access control over outsourced data and a trace mechanism to find
out leaked access credentials in cloud storage systems.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 presents the LACT framework
and a threat model. We present the LACT scheme in Section 3. In Section 4, the security
of the proposal is formally analyzed. We conduct detailed performance analysis of the
LACT system in Section 5. Section 6 concludes the paper.

2 System Model and Security

2.1 System Architecture

We consider a LACT framework for cloud storage, as depicted in Fig.1. There are four
types of entities in the system: the cloud service provider, the trusted authority (TA),
the data owner and the data consumer. The cloud service provider (CSP) stores the out-
sourced data from the data owner and responds to the data access requests from the data
consumer. The trusted authority is the key party trusted by other entities to generate sys-
tem parameters and issue access credentials (i.e., decryption keys) for data consumers.
Receiving a data owner’s forensics request, the TA executes the digital forensics proce-
dure and returns the forensic results to the data owner. The data owners define access
policies and encrypt their data with the access policies before outsourcing them to the
clouds. The data consumers are the cloud users who download the data owners’ data
from the cloud server and then decrypt them.

In our system, neither data owners nor data consumers are required to always keep
online. The CSP and the TA are always online. We assume that the TA always correctly
responds to the digital forensics requests and honestly returns the results.

2.2 Security Model

Unauthorized users and intruders may try to get the users’ data that are outside their
access privileges. We assume that the CSP is honest-but-curious in the sense that it
is curious about the content of the encrypted data but still honestly execute the tasks
assigned by data owners. To protect the security of the data stored in the clouds from
unauthorized access, cloud users need to encrypt their data before outsourcing them to
the clouds. Therefore, an encryption mechanism is preferable to make the stored data
unreadable to any unauthorized users and curious CSP.

A single encryption mechanism is not sufficient to protect data privacy. In practice,
there is an unavoidable problem that some access credentials may be leaked to unau-
thorized users, e.g., some access devices containing access credentials may be stolen

Who Is Touching My Cloud 367

Cloud server
provider

Trusted Authority

Fig. 1. System architecture

by the unauthorized users, or some users deliberately disclose their access credentials
to others for some benefits. For instance, some employees of a company could sell their
access rights to the sensitive data stored in clouds to the company’s competitors due to
economic interests. To avoid being traced, they could probably forge an illegal access
credential and sell it in a black market. The misbehavior competitors then can buy the
illegal access credential for unauthorized access to the company’s sensitive data. In this
case, we make a minimum assumption that the data owner (i.e., the sacrifice company)
can find that its sensitive data were abnormally accessed, e.g., receiving alarms from
the clouds that its data were accessed by some requestors with IP addresses out of the
domain of the company’s IP addresses, or the company find a decryption device able to
access its stored data appearing at some public network market (e.g., eBay). To fulfill
this assumption, we can enforce in the clouds an independent regulatory mechanism
which monitors the access of the stored data and alarms the data owners in case of
abnormal access.

To simplify the discussion about unauthorized access, we suppose that there exists a
pirate decoder PD, which works in a black-box manner and enables unauthorized users
to access to the stored data. The notion of black-box here means that one can access the
stored data by using PD without knowing the internal construction of PD. This captures
the realistic situation that the attacker may exploit technologies to conceal which access
credentials are involved in creating the pirate decoder. To find out the users who leaked
their access credentials, a tracing procedure is required. The tracing procedure should
be allowed to access the PD and executed in a passive way, which means that it only
needs to record and analyze the outputs of the PD on indistinguishable inputs. The
formal definition for the security of LACT will be described in Section 4.

3 Our Solution

In this section, we propose our LACT scheme in cloud storage systems. Before present-
ing our scheme, we first review some basic concepts and technologies underlying our
construction.

368 H. Deng et al.

3.1 Preliminaries

Bilinear Maps. Let G and G be two multiplicative cyclic groups of prime order p
and g be a generator of G. Let e : G x G — Gy be a bilinear map with the following
properties:

i) Bilinearity: for all u,v € G and a,b € Z,, e(u®,v*) = e(u,v)?;

i) Non-degeneracy: e(g, g) # 1;

iii) Computability: there is an efficient algorithm to compute e(u, v) forall u, v € G.

Fingerprint Codes. Following [3], we give the definition of collusion-resistant finger-
print codes.

— Letw € {0,1}% denote a L-bit codeword. We write w = wyws - - - wy, and w; is the
1-th bit of w.

—Let W = {w® w® .. w®} be a set of codewords in {0,1}*. We say that a
codeword w* € {0,1}F is feasible for W if for all i = 1,2, ..., L there exists a
j €{1,2,...,t} such that w} = w'.

— Let F(W) be a feasible set of W, if it includes all the codewords that are feasible
for W.

A t-collusion resistant fingerprint codes scheme is composed of generation algorithm
Genpc and tracing algorithm Tra . The algorithm Genp o generates aset I of N L-
bit codewords. Then each user will be assigned to a unique codeword. The ¢-collusion
traceability guarantees that if the number of colluders is no greater than ¢, i.e., |[W| < ¢,
the algorithm Trapc which takes in a feasible codeword w* € F(W) can output at
least one codeword in W, provided that W C I

We will exploit the fingerprint codes scheme of [19] which is an improvement of
the well-studied Tardos fingerprint codes [22]. To provide e-security against ¢ collud-
ers in IV users, the length L of this fingerprint codes is required to be no less than

c

_1og%F(t) (log 12/ +log ¢, +loglog 6), where T'(t) < 1 is parameterized by ¢, a
fixed ¢ > 1 and € denotes the probability that one innocent has been accused.

Access Structure and LSSS [2]. In the following, we review the formal definitions for
access structures and LSSS, which are extensively used in ABE schemes [9, 24, 16-18]
and will still be adopted in our proposal.

Definition 1. Let {Py, Py, --- , P,)} be a set of parties. A collection A C 2172, Pn}
is monotone if for VB, C, we have that C € A holds if B € A and B C C. An access
structure (respectively, monotone access structure) is a collection (respectively, mono-
tone collection) A of non-empty subsets of { Py, Ps, ..., P, }, i.e., A C 28P1:P20 . Pad\ [(31
The sets in A are called the authorized sets, and the sets not in A are called the unau-
thorized sets.

In our LACT scheme, the role of the parties is played by the attributes. Then an
access structure is a collection of sets of attributes. The monotone access states that, if
a user’s attribute set S satisfies an access structure A, i.e., S € A, then another user

Who Is Touching My Cloud 369

associated a larger attribute set S’ D S also satisfies the access structure, i.e., S’ € A.
Note that in most applications, the access policy has this monotone feature. Hence, we
will only consider the monotone access structures in this paper.

Definition 2. A secret-sharing scheme II over a set of parties P is called linear (over

L) if

1. The shares for each party form a vector over Z,,.
2. There exists a matrix A called the share-generating matrix for I, where A has |

rows and n columns. For alli = 1,--- |1, the i-th row of A is labeled by a party
p(i), where p is a function from {1,--- |1} to P. We consider the column vector
s =(s,82, - ,Sn), where s € Z, is the secret to be shared, and sz, - - , s, € Ly,

are randomly chosen. Then \; = A;s is the share belonging to party p(i), where
Aj; is the i-th row of A.

In practice, an LSSS scheme is employed to realize an access structure in an ABE
scheme. For an access structure A, it generates a share-generating matrix A with [rows
and n columns and define a function that map each row of the matrix to an attribute
involved in A. Then for a secret s to be shared, the LSSS scheme forms an n-dimension
vector with the first entry equal to s and rests randomly picked. It then computes the
inner product of this vector and each row of the matrix, and takes the product as the
share for the attribute associated with that row. The following linear reconstruction
property guarantees that an LSSS scheme for an access structure A can recover the
secret s if there exists a set S composed by some attribute associated with the rows of
A, satisfying that S € A.

Linear Reconstruction. It has been shown in [2] that every LSSS IT enjoys the linear
reconstruction property. Suppose I7 is the LSSS for access structure A and S is an
authorized set in A, i.e., A contains S. There exist constants {w; € Z,} which can be
found in time polynomial in the size of the share-generating matrix A such that if {;}
are valid shares of s, then), w;\; = s, where I = {i : p(i) € S} C {1,--- ,l}.

3.2 The LACT Scheme

We first provide a high-level view of our LACT construction. To fulfill fine-grained
access control over the data stored in cloud, we apply the Ciphertext-Policy Attribute-
based Encryption (CP-ABE) in [24]. The data owners encrypt their files with some
access policies they specified and upload the encrypted files to the CSP. Authorized
data consumers will obtain access credentials, serving as decryption keys, issued by
the trusted authority. A data consumer can access a file stored in clouds only if his/her
associated attribute set satisfies the access policy specified in the file. In practice, some
users’ access credentials may be stolen or leaked. These leaked credentials might be
used to forge an illegal functional access credential. To address this problem, by ex-
ploiting the tracing technology of [3], we label each user with a distinct fingerprint such
that each functional access credential corresponds to a feasible codeword. The tracing
procedure first finds the feasible codeword associated with the illegal access credential
used by PD and then takes this feasible codeword as the input of the tracing algorithm

370 H. Deng et al.

of the underlying fingerprint codes scheme. Then the tracing algorithm will output at
least one of the codewords of the access credentials used in forging the illegal functional
access credential.

The LACT scheme works as follows. First, the system is set up by the TA to gen-
erate and publish public parameters. For any user qualified to join the system, the TA
generates a user credential (i.e., decryption key) with the set of attributes describing the
user and embeds a fingerprint codeword into the credential. Before outsourcing data
to the clouds, the data owner encrypts the data with an access structure so that only
the users with attribute sets meeting this access structure can access the data. At some
point, some user credentials are leaked and used to create a pirate decoder PD. This PD
then can be sold on network market such as eBay for anyone interested in the sensitive
data that can be decrypted by PD. Once this pirate decoder is found and reported to the
data owner, the TA can be called to execute the digital forensics procedure to find out at
least one of the user credentials in creating PD. Specifically, our LACT scheme consists
of the following procedures.

System Setup: In this procedure, the TA setups the system. It runs the following al-
gorithm to generate system public parameter PP, a set of fingerprint codewords I" and
system master secret key M SK. It keeps M SK secret while publishes PP for other
entities.

(PP, MSK) «+ Setup: This algorithm selects a bilinear group G of prime order p.
It chooses a random generator g € G and two random elements «,y € Zj,. It chooses
a hash function H : {0,1}* — G that will be modeled as a random oracle in the
security proof. By calling the generation algorithm Gengc on inputs N and L, this
algorithm also generates a set of codewords I' = {w(, ...,w(™}, where N denotes
the maximum number of cloud users in this system and L denotes the length of each
codeword. The public parameter and master secret key are set as

PP =(g, g9, elg,9)*,H), MSK = g“.

User Admission: In this procedure, a user requests to join the system. The TA checks
whether the requestor is qualified, if so, it works as follows. First, the TA randomly se-
lects a codeword w € I" and specifies an attribute set S which describes the requestor.
Then the TA generates a user credential UC, serving as a decryption key, for the re-
questing user by calling the following credential generation algorithm.

UC «+ CreGen(M SK, S,w): This algorithm takes as inputs M SK, an attribute set
S and a codeword w. Recall that w = wy - - - wp,. First, for each attribute z € S, this
algorithm uses the hash function H to compute H (z||j||w;), where j = 1,2, ..., L and
the symbol “||” represents the operation of concatenation. Next, the algorithm picks a
random exponent r € Z, and computes:

Ko=g%g"", Ki=g",

{Dz,j = H(z[|jl|lw;)" Yvaes,j=1,....L-

The access credential of this user associated with S and w is set as (including S)

UC = (Ko, K1,{Dys j}vees,j=1,...L) -

Who Is Touching My Cloud 371

Here, the codeword w is embedded in the user credential and distinctly associated with
the user. Then in the tracing procedure, tracing a user is identical to tracing the user’s
codeword.

File Creation: Before outsourcing data to the CSP, the data owner encrypts his/her
data as follows. First, the data owner encrypts the data using a symmetric session key

ME Gr of a symmetric encryption, e.g., AES. The encrypted data under the sym-
metric encryption forms the body of the file stored in clouds. Second, the data owner
specifies an access structure A over a group of attributes which indicate what attributes
the potential decryptors should possess. Then the data owner encapsulates the key M
with the A (that is represented by an LSSS (A, p)) by calling the following algorithm.
The ciphertexts H dr output by this algorithm is the header of the file stored in clouds.

Hdr + Encapsulate(PP, M, (A, p)): This algorithm takes as inputs PP, an LSSS
(A, p) and an element M € Gy, where M is the symmetric session key used in the
symmetric encryption. To enable traceability in the system, the algorithm picks a ran-
dom j € {1,2,..., L} and runs the following algorithm twice on input b = 0 and b = 1,
respectively.

Hdr;p + Enc (PP, M, (A, p), (j,b)): In the LSSS (A, p), p is a function mapping
each row of the matrix A to an attribute. In this construction, we limit p to be an in-
jection function, that is, an attribute is associated with at most one row of A (note that
this requirement can be relaxed to allow multiple use of one attribute by taking multiple
copies of each attribute in the system, similar with the work [24]). Let A be an ! x n
matrix. This algorithm first chooses a random vector

v = (5,02,..,Un) € Zy

where s is the secret exponent needed to be shared by all involved attributes. For each @
from 1 to [, the algorithm computes the hash value H(p(2)||j||b) for attribute p(7) and
calculates the share \; = A; - v, where A; is the vector corresponding to the i-th row
of A. It then computes

C = Me(g,9)**, Co=g"

and
Ci = g" M H(p(i)|lj]Ib)*

for each ¢ = 1, ..., [. The algorithm outputs
Hdrj, = (C,Co,{Ci}_,).

After running twice Enc’ respectively on input (4,0) and (j,1), the algorithm
Encapsulate obtains Hdr; o and Hdr; 1. It finally outputs

Hdr = (], Hd’l“j,o, Hd’l“jﬁl).

File Access: In this procedure, a data consumer requests a file stored in CSP. CSP gives
the requested file to the data consumer. Then, the data consumer decapsulates the file’s
header to recover the symmetric session key by calling the following algorithm and then
uses this key to decrypt the file’s body.

372 H. Deng et al.

M/ 1 + Decapsulate(Hdr, UC): This algorithm takes as inputs the file’s header
Hdr = (j,Hdrj0, Hdr; 1) associated with LSSS (A, p) and the data consumer’s cre-
dential UC associated with attribute set S. If S does not satisfy the access structure,
this algorithm returns a false symbol L. If S satisfies the access structure, i.e., S € A,
due to the the linear reconstruction property of LSSS, the algorithm can find constants

w; € Zy, such that
Z wi/\i =S,
iel
where I = {i : p(i) € S} C {1,2,...,1}. This algorithm only needs to know A and I
to determine these constants.
Recall that w is associated with the credential UC'. If the j-bit w; = 0, the algorithm
picks Hdr;j o (otherwise, chooses Hdr; 1) and computes

e(C(), K())
[es (G(Cz‘a Ky) '6(007Dp(i),j)>
_ elg®,9%elg% 97)
e(g7, gr)Zemes ik
It recovers M as M = C/M’.
In the above decapsulation algorithm, if the user’s codeword has the value O at the
Jj-th position, then he can only decapsulate the header Hdr; o since his credential only
has the component H (p(i)||7]|0) which is required to cancel out the same blind factor

in Hdr; o; otherwise, he can only decapsulate Hdr; ; in the same way. This is the key
point in the execution of the tracing procedure.

M =

w;

=e(g,9)™".

Digital Forensics: In this procedure, when a data owner finds that his/her file stored in
clouds can be accessed by a pirate decoder PD, he can request the TA to find out the
misbehavior users who have leaked their access credentials in forging the PD. Recall
that in the file creation procedure all files stored in clouds are encrypted by symmetric
keys which were encapsulated with specific access policies, thus the data owner can
identify the access policy associated with his file that was illegally accessed. Note that
a PD could possess accessability to different stored files, which means it holds the
attribute sets that satisfy different access policies of these files. However, as for this
data owner, he/she may only care about the access policy he/she specified for the file
accessed by PD. Given this access policy, denoted by App, as well as PD, the data
owner then can ask the TA to proceed a forensics procedure.

When we consider the pirate decoder PD, it is possible that it correctly decrypts a
file with a probability less than 1. This issue has been extensively studied in [3]. In this
paper, to simplify the discussion about the tracing procedure, we assume that PD can
correctly decrypt a file with probability 1.

Upon a request for digital forensics, the TA responds by calling the following algo-
rithm.

C + Find(PP, PD,App): This algorithm takes as inputs PP, the pirate decoder
PD and the access structure A p satisfied by an attribute set involved in PD. It generates
an LSSS (A, p)pp for App and works in two steps to find out the users who leaked
their access credentials in forging PD.

Who Is Touching My Cloud 373

The first step is to find the feasible codeword w™* associated with the illegal access
credential used by PD to access the data owner’s file. This algorithm chooses each j
from 1 to L and conducts the following experiment:

1. Choose two distinct random symmetric keys M; # M]’ € Gr.
2. Compute the header

Hdlr'j,O — EHCI(PPa Mja (Aap)PDa (]ao))a

Hdrl;) Enc'(PP, M}, (A, p)pp; (j,1)).

3. Take the header Hdr' = (j, Hdrjo, Hdr’; ;) as the input of PD and define PD’s
output as MJ’-*. If M;‘ = Mj, set w;‘ = 0; otherwise, set w;‘ =1.

Finally, the algorithm defines w* = wjws - - - w7.

The second step is to find out the users involved in leaking their access credentials.
This algorithm runs the tracing algorithm Geng¢ of the underlying fingerprint codes
scheme on input w* to obtaina set C C {1, ..., N}.

The TA returns the set C, as the set of the users who are accused of leaking their
access credentials, to the data owner.

4 Security Analysis

In this section, we formally analyze the security of our LACT scheme. At a high level,
we show that the LACT scheme is secure against any number of unauthorized accesses
colluding with CSP. We also demonstrates that when some users leaked their access
credentials to forge an illegal access credential, which was then used to access the files
stored in clouds, our LACT scheme can find out at least one of these users with a high
probability. Formally, the security of the LACT scheme is defined by the following
SS-Game and T-Game.

the security of LACT is composed of semantical security and traceability. The se-
mantic security states that without the access credential, no one can get any useful
information about the file outsourced by the data owner. The traceability demonstrates
that if one uses an unauthorized access credential to access the file stored in clouds, TA
can find out at least one of the access credentials involved in forging the unauthorized
one.

SS-Game: To capture the unauthorized access to a file, we define an adversary which
can query for any access credential except the authorized one that is able to access
that file. We also define a challenger responsible for simulating the system procedures
to interact with the adversary. In this game, the adversary is able to choose an access
structure A* to be challenged and ask for any user’s credential for a set .S of attributes
on the condition that S does not satisfy A*. This game is formally defined as follows.

Init: The adversary A outputs the access structure A* to be challenged.

Setup: The challenger runs the setup algorithm and gives the system public parameter,
PP to the adversary A.

374 H. Deng et al.

Phase 1: The adversary A queries the challenger for user credentials corresponding to
attribute sets S, So, ..., Sq,,

Challenge: The adversary A outputs two equal-length messages M, and M; and an
access structure A*. The restriction is that A* can not be satisfied by any of the queried
attribute sets in phase 1. The challenger flips a coin 5 € {0, 1}, and encapsulates M3
with A*, producing header Hdr*. It then returns Hdr* to A.

Phase 2: The adversary .4 queries the challenger for user credentials corresponding to
attribute sets Sg, 11, ..., ¢, with the added restriction that none of these sets satisfies
A,

Guess: The attacker outputs a guess 5’ € {0,1}.
The advantage of the adversary A in this game is defined as Adv3® = |Pr[8 =

Al =1/2|.

Definition 3. Our LACT scheme is semantically secure if all polynomial-time adver-
saries have at most negligible advantages in the above game.

In this semantic security, the adversary is able to query for users’ access credentials,
which means it can collude with any user, as well as the CSP. When it is challenged,
there is a requirement that it cannot trivially win the challenge. The semantic security
states that given any user’s credential, there is no polynomial time adversary which can
distinguish the encapsulations of two symmetric keys, provided that it does not have the
access credential able to decapsulate any of these encapsulations.

T-Game: In this game, we define an adversary which can collude with users by query-
ing their access credentials. The adversary can use some or all of the queried access
credentials to forge a pirate decoder PD. The adversary outputs the PD as a challenge
and terminates the credential queries. This game is formally defined as follows.

Setup: The challenger runs the setup algorithm and gives the system public parameter
PP to the adversary A.

Query: The adversary adaptively makes credential queries for attribute sets. In re-
sponse, the challenger runs the credential generation algorithm and gives the queried
credentials to A.

Challenge: The adversary A stops the credential queries and gives the challenger a
pirate decoder PD able to access the file associated with access structure App.

Trace: The challenger runs the tracing algorithm on inputs PD and A pp to obtain the
set C C {1,..., N}. Let S denote the set of users whose access credentials have been
queried by A. We say that the adversary .A wins in this game if:

1. The set C is empty, or not a subset of S.

2. The pirate decoder can decapsulate any valid header with probability 1.

3. There are at most ¢ credential queries for the attribute sets which can satisfy the
access structure App.

We briefly explain the correctness of the three conditions above. The first condi-
tion is straightforward and the second condition is required by the assumption about

Who Is Touching My Cloud 375

PD discussed in the digital forensics procedure. The third condition is implied by the
underlying fingerprint codes scheme. The pirate decoder was created by various creden-
tials for attribute sets, some of which satisfy the access structure A pp. The underlying
fingerprint codes scheme that is secure against ¢-collusion attack restricts that there are
at most ¢ queried credentials that can be used to directly decapsulate the header asso-
ciated with App. Then in the traceability definition above, it is also required that at
most ¢ credentials associated with the attribute sets satisfying App can be queried by
the adversary. Specially, when ¢ = IV, our scheme is fully resistant.

We define the advantage of the adversary A in winning in this game as Advz; =
| Pr[A wins]|.

Definition 4. A LACT scheme is t-collusion resistant if all polynomial-time adversaries
have at most negligible advantages in both SS-Game and T-Game.

The following theorem claims the semantic security and traceability of the LACT
scheme. The proof of this theorem is given in the full version.

Theorem 1. Our LACT scheme is semantically secure if the underlying CP-ABE scheme
[24] is secure. It is also t-collusion resistant with the additional condition that the un-
derlying fingerprint codes scheme [19] is t-collusion resistant, where t is the maximum
number of colluders. In particular, let M denote the message space, L denote the length
of fingerprint codes and e denote the probability that one innocent has been accused,
then any polynomial-time adversary breaks the LACT system with the advantage at most

L
T 7. 55 .

Advy < L-Advy” + e+ M|

The LACT scheme is semantically secure if the underlying CP-ABE scheme is se-
cure. Hence, the advantage Adv5® is negligible. In the ¢-collusion resistant fingerprint
codes scheme, the error probability € is negligible too. Moreover, since the size of mes-
sage space M is much larger than the codes length L, then L/| M| is very close to 0.
Hence, the advantage Advz of the adversary in breaking the traceability of our LACT
scheme is negligible, which means that the LACT scheme is ¢-collusion resistant.

5 Performance Analysis

In this section, we analyze the computation cost of each procedure of the LACT scheme.
We view the underlying fingerprint codes scheme as a black-box. We use O(Gen) ¢
and O(Tra)r¢ to denote the computation complexity of the generation algorithm and
tracing algorithm of the fingerprint codes respectively. Tardos proposed a fingerprint
codes scheme which is a milestone in this area and has been well studied, while the
codes length is a bit long. Nuida et.al’s fingerprint codes [19] achieves a shorter length,
about 1/20 of Tardos codes for the same security level. Thus we suggest Nuida et.al’s
codes to be used. Their fingerprint codes scheme has the length

1

L>—
— logT(t)

N
(log + log ¢ + log log C> @))]
€ c—1 €

376 H. Deng et al.

where T'(t) is a function of ¢ and valued in (0, 1), ¢ an auxiliary variable larger than 1,
N the number of users and ¢ is the error probability of tracing an innocent user.

Our LACT scheme is built on the bilinear groups G and G7. We evaluate the time
consumed by the basic groups operations, i.e., exponentiation and bilinear pairing map.
Although the multiplication operation is also involved, its cost time is negligible com-
pared to the former two operations. We use 7. and 7, to denote the time consumed by
exponentiation and bilinear pairing map, respectively, without discriminating exponen-
tiation operations in G and Gr.

Table 1 gives the computation cost of each procedure in our LACT scheme. In this
table, L denotes the length of the fingerprint codes, | S| the number of attributes of the set
associated with a credential, [the number of attributes involved in the access structure
associate with a file and |S*| the number of attributes of the set S* which satisfies
the access structure. From Table 1, we can see that only the user admission procedure
and the digital forensics procedure are affected by the introduction of tracing access
credential leakage. Specially, adding the traceability functionality does not affect the
file creation and file access procedures. This is a desirable property in practice because
the most frequent operations in cloud environments are uploading and downloading
files while the user admission operation is only carried out once by the TA.

Table 2 compares our LACT scheme with other similar works in terms of public
and secret key size, ciphertext size, the number of pairings required in decryption, fine-
grained access control (supported or not), tracing capability (black-box tracing or not)
and the type of based bilinear groups (composite order or prime order). In this table,
the schemes of [4] and [5] are proposed for the broadcast encryption systems, where
the number of total users is denoted by N. The two schemes are built from composite
order groups, thus the efficiency of cryptographic operations is much lower (about one-
order) than in prime order groups. The scheme of [6] is devised for the identity-based
broadcast encryption which assumes the maximal size of the set with each member as
a decryptor to be m. This scheme achieves a constant-size ciphertext at the expense of
secret key size linear with the length L of codes. The schemes [4—6] all provides black-
box tracing, but due to the property of broadcast encryption, they do not support the
fine-grained access control. The rest schemes in the table are proposed in the attribute-
based encryption systems and support fine-grained access control. The schemes of [16—
18], as well as ours, require that the number of pairings in a decryption is linear with the
cardinality of the set S* satisfying the access policy of a ciphertext, which is inevitable
in almost all ABE schemes. In the scheme of [16], the size of public key is linear with
the size of attribute universe I/ and the size of secret key is linear with the size of
the attribute set S, while this scheme only provides the weak white-box tracing. The
schemes in [17] and [18] achieve black-box tracing, while the size of public key grows
linearly with the attribute universe size |{/| and the quadratic root of the number of total
users. Besides, the ciphertexts of these two schemes are sub-linear with the number of
the users, which results larger amount of data to be uploaded/stored and more bandwidth
consumption for the communication between the cloud server and cloud clients.

Table 2 also reveals the better practicality for the LACT scheme to be employed in
cloud storage systems. Compared to the schemes [4—6], our scheme achieve the fine-
grained access control but still retains the black-box tracing capability. Compared to

Who Is Touching My Cloud 377

Table 1. Computation

Operation Computation Cost
System Setup 17, + 27 + O(Genrc)
User Admission (L-|S|+2)7e
File Creation 41+ 1)7e
File Access (215" |+ 1) + |S™|7e
Digital Forensics 4L(! + 1)7. + O(Trarc)

Table 2. Comparison with related works

Public key Private key Ciphertext e(-,-)in Fine-grained Black-box Prime-order

size size size decryption control tracing groups
[41 3+4VN 1 6V N 3 X Vv X
51 5+9vYN 14++vVN 7/N 4 X i X
[6] 3+m L 6 2 X Vv 4
[16] U] + 4 S|+4 2043 2|S*|+1 Vv X x
[17] [U| +7+8VN |S|+3 20+8VN 2|S*|+5 v v X
[18] U| +3+4VN [S|+4 20+ 9VN 2|S*|+6 v v X
Ours 3 [SIL+2 204+4 2[S7|+1 V Vv Vv

the similar works [17, 18], the ciphertext of the LACT scheme is independent of the
number of total users in the system. In addition, the LACT scheme achieves constant-
size public key. Moreover, the LACT scheme is based on prime order groups, thus the
cryptographic operations are much more efficient than those of schemes [17, 18] that
are built from composite order bilinear groups. Although the secret keys are linear with
the product of the size | S| of the attribute set and the length L of codes, this will not
severely impact the system practicality since the key generation operation is run by the
TA in offline phase. All these advantages render our scheme as an efficient solution to
enable leaked access credentials finding mechanism in cloud storage systems.

6 Conclusion

In this paper, we investigated the access credentials leakage problem in cloud storage
systems. The proposed LACT scheme not only offers fine-grained access control over
outsourced data, but also provides a tracing mechanism to find the leaked access cre-
dentials. Formal proofs show the security and traceability of the LACT scheme. We
also conducted detailed performance analysis on the LACT scheme and compared it
with similar works. The analysis and comparisons show that our LACT scheme has en-
joyable performance and provides an efficient solution to find leaked access credentials
in data outsourced environments.

378 H. Deng et al.

Acknowledgments and Disclaimer. We appreciate the anonymous reviewers for their
valuable suggestions. Dr. Bo Qin is the corresponding author. This paper was sup-
ported by the National Key Basic Research Program (973 program) under project
2012CB315905, the Natural Science Foundation of China through projects 61370190,
61173154,61003214, 60970116, 61272501, 61321064 and 61202465, the Beijing Nat-
ural Science Foundation under projects 4132056 and 4122041, the Shanghai NSF under
Grant No. 12ZR 1443500, the Shanghai Chen Guang Program (12CG24), the Science
and Technology Commission of Shanghai Municipality under grant 13JC1403500, the
Fundamental Research Funds for the Central Universities, and the Research Funds(No.
14XNLF02) of Renmin University of China, the Open Research Fund of The Academy
of Satellite Application and the Open Research Fund of Beijing Key Laboratory of
Trusted Computing.

References

1. Asokan, N., Dmitrienko, A., Nagy, M., Reshetova, E., Sadeghi, A.-R., Schneider, T., Stelle,
S.: CrowdShare: Secure mobile resource sharing. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 432-440. Springer, Heidelberg
(2013)

2. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis, Israel Insti-
tute of Technology, Technion, Haifa, Israel (1996)

3. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: ACM CCS 2008, pp.
501-510. ACM Press, New York (2008)

4. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short cipher-
texts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
573-592. Springer, Heidelberg (2006)

5. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In:
ACM CCS 2006, pp. 211-220. ACM Press, New York (2006)

6. Deng, H., Wu, Q., Qin, B., Chow, S.S.M., Domingo-Ferrer, J., Shi, W.: Tracing and revoking
leaked credentials: accountability in leaking sensitive outsourced data. In: ASIACCS 2014,
pp. 425-434. ACM Press, New York (2014)

7. Deng, H., Wu, Q., Qin, B., Domingo-Ferrer, J., Zhang, L., Liu, J., Shi, W.: Ciphertext-policy
hierarchical attribute-based encryption with short ciphertexts. Information Sciences 275,
370-384 (2014)

8. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully collusion-
resilient traitor tracing and revocation schemes. In: ACM CCS 2010, pp. 121-130. ACM
Press, New York (2010)

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted Data. In: ACM CCS 2006, pp. 89-98. ACM Press, New York
(2006)

10. Huang, D., Zhou, Z., Xu, L., Xing, T., Zhong, Y.: Secure data processing framework for
mobile cloud computing. In: IEEE Conferenc on Computer Communications Workshops,
pp. 614-618. IEEE (2011)

11. Lai, J., Deng, R.H., Li, Y.: Expressive cp-abe with partially hidden access structures. In:
ASIACCS 2012, pp. 18-19. ACM Press, New York (2012)

12. Li, J., Huang, Q., Chen, X., Chow, S.S.M., Wong, D.S., Xie, D.: Multi-authority ciphertext-
policy attribute-based encryption with accountability. In: ASIACCS 2011, pp. 386-390.
ACM Press, New York (2011)

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Who Is Touching My Cloud 379

. Li, F., Rahulamathavan, Y., Rajarajan, M., Phan, R.C.W.: Low complexity multi-authority

attribute based encryption scheme for mobile cloud computing. In: IEEE 7th International
Symposium on Service Oriented System Engineering, pp. 573-577. IEEE (2013)

. Li, J., Ren, K., Kim, K.: A2BE: accountable attribute-based encryption for abuse free access

control. JACR Cryptology ePrint Archive, Report 2009/118 (2009),
http://eprint.iacr.org/

. Liu, W, Liu, J., Wu, Q., Qin, B., Zhou, Y.: Practical direct chosen ciphertext secure key-

policy attribute-based encryption with public ciphertext test. In: Kutylowski, M., Vaidya, J.
(eds.) ESORICS 2014. LNCS, vol. 8713, pp. 91-108. Springer, Heidelberg (2014)

. Liu, Z., Cao, Z.F., Wong, D.S.: White-box traceable ciphertext-policy attribute-based encryp-

tion supporting any monotone access structures. IEEE Transaction on Informaction Forensics
and Security 8(1), 76-88 (2013)

. Liu, Z., Cao, Z.F., Wong, D.S.: Expressive black-box traceable ciphertext-policy attribute-

based encryption. IACR Cryptology ePrint Archive, Report 2012/669 (2012),
http://eprint.iacr.org/

. Liu, Z., Cao, Z.F., Wong, D.S.: Blackbox traceable cp-abe: how to catch people leaking their

keys by selling decryption devices on eBay. In: ACM CCS 2013, pp. 475-486. ACM Press,
New York (2013)

. Nuida, K., Fujitsu, S., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K., Imai, H.:

An improvement of discrete tardos fingerprinting codes. Designs, Codes and Cryptogra-
phy 52(3), 339-362 (2009)

Qin, B., Wang, H., Wu, Q., Liu, J., Domingo-Ferrer, D.: Simultaneous authentication and
secrecy in identity-based data upload to cloud. Cluster Computing 16(4), 845-859 (2013)
Singhal, M., Chandrasekhar, S., Ge, T., Sandhu, R., Krishnan, R., Ahn, G.J., Bertino, E.:
Collaboration in multicloud computing environments: framework and security issues. IEEE
Computer 46(2), 76-84 (2013)

Tardos, G.: Optimal Probabilistic Fingerprint Codes. In: STOC 2003, pp. 116-125. ACM
Press, New York (2003)

Wang, Y., Wu, Q., Wong, D.S., Qin, B., Chow, S.S.M., Liu, Z., Tan, X.: Securely outsourcing
exponentiations with single untrusted program for cloud storage. In: Kutylowski, M., Vaidya,
J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 323-340. Springer, Heidelberg (2014)
Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and prov-
ably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 53-70. Springer, Heidelberg (2011)

Wang, Y.T., Chen, K.F,, Chen, J.H.: Attribute-based traitor tracing. J. Inf. Sci. Eng. 27(1),
181-195 (2011)

Wu, Y., Deng, R.H.: On the security of fully collusion resistant taitor tracing schemes. IACR
Cryptology ePrint Archive, Report 2008/450 (2008), http://eprint.iacr.org/
Yang, Y., Jia, X.: Attributed-based access control for multi-authority systems in cloud stor-
age. In: IEEE 32nd International Conference on Distributed Computing Systems, pp. 536—
545. IEEE (2012)

Yu, S., Ren, K., Lou, W., Li, J.: Defending against key abuse attacks in KP-ABE en-
abled broadcast systems. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm 2009.
LNICST, vol. 19, pp. 311-329. Springer, Heidelberg (2009)

Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: 2010 Proceedings of IEEE INFOCOM, pp. 1-9. IEEE (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	Who Is Touching My Cloud
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	1.3 Paper Organization

	2 System Model and Security
	2.1 System Architecture
	2.2 Security Model

	3 Our Solution
	3.1 Preliminaries
	3.2 The LACT Scheme

	4 Security Analysis
	5 Performance Analysis
	6 Conclusion
	References

