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Abstract. This paper presents StealthGuard, an efficient and provably secure
proof of retrievabillity (POR) scheme. StealthGuard makes use of a privacy-
preserving word search (WS) algorithm to search, as part of a POR query, for
randomly-valued blocks called watchdogs that are inserted in the file before out-
sourcing. Thanks to the privacy-preserving features of the WS, neither the cloud
provider nor a third party intruder can guess which watchdog is queried in each
POR query. Similarly, the responses to POR queries are also obfuscated. Hence
to answer correctly to every new set of POR queries, the cloud provider has to
retain the file in its entirety. StealthGuard stands out from the earlier sentinel-
based POR scheme proposed by Juels and Kaliski (JK), due to the use of WS and
the support for an unlimited number of queries by StealthGuard. The paper also
presents a formal security analysis of the protocol.
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1 Introduction

Nowadays outsourcing, that is, delegating one’s computing to external parties, is a well
established trend in cloud computing. Along with unprecedented advantages such as
lower cost of ownership, adaptivity, and increased capacity, outsourcing also raises new
security and privacy concerns in that critical data processing and storage operations
are performed remotely by potentially untrusted parties. In this paper we focus on data
retrievability, a security requirement akin to outsourced data storage services like Drop-
box! and Amazon Simple Storage Service?. Data retrievability provides the customer of
a storage service with the assurance that a data segment is actually present in the remote
storage. Data retrievability is a new form of integrity requirement in that the customer
of the storage or the data owner does not need to keep or get a copy of the data segment
in order to get the assurance of retrievability thereof. A cryptographic building block
called Proof of Retrievability (POR) was first developed by Juels and Kaliski [1] (JK)
to meet this requirement. In the definition of [1], a successful execution of the POR
scheme assures a verifier that it can retrieve F' in its entirety. Classical integrity tech-
niques such as transferring F' with some integrity check value are not practical since

! Dropbox - https: //www.dropbox.com/
2 Amazon Simple Storage Service - http: //aws .amazon.com/fr/s3/
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they incur very high communication or computational costs that are linear with the size
of F'. POR schemes aim at much lower cost both in terms of communications and pro-
cessing by avoiding transmission or handling of F' in its entirety. To that effect, POR
schemes require the prover to perform some operations on some randomly selected
parts of F' and the verifier is able to check the result returned by the prover with the
knowledge of very brief reference about the data like a secret key. Most POR schemes
thus are probabilistic and their performance is measured in the trade-off between the
bandwidth and processing overhead and the rate of retrievability assurance.

In this paper we develop StealthGuard, a new POR scheme that achieves good re-
trievability assurance with acceptable costs. The main idea behind the new scheme is a
combination of a privacy-preserving word search (WS) algorithm suited to large data-
stores with the insertion in data segments of randomly generated short bit sequences
called watchdogs. In StealthGuard, the user inserts these watchdogs in randomly cho-
sen locations of the file F' and stores the resulting file in the cloud. In order to check
the retrievability of F' the user issues lookup queries for selected values of watchdogs
using the WS scheme. The user decrypts the WS replies from the cloud server in order
to get the proof of retrievability for each segment targeted by the WS queries. Each pos-
itive result is the proof of presence for the corresponding data segment. Thanks to the
features of the WS, neither the cloud server nor a third party intruder can guess which
watchdogs are targeted by each WS query or response.

Even though there is an analogy between the watchdogs used in StealthGuard and
the sentinels akin to the JK scheme [1], there is a major difference between the two
schemes due to the use of WS by StealthGuard: the number of POR queries that can
be issued in StealthGuard without requiring any update of the watchdogs is unbounded
whereas in the JK scheme a given set of sentinels can be used for a finite number of POR
queries only. StealthGuard only requires the transfer of some additional data that is a
small percentage of F' in size and a good POR rate can be achieved by only processing
a fraction of F'. In addition to the description of our proposal, we give a new security
model that enhances existing security definitions of POR schemes [1, 2]. We state a
generic definition of the soundness property that applies to any POR scheme.

Contributions. To summarize, this paper offers two main contributions:

— We present StealthGuard, a new POR scheme based on the insertion of watchdogs
that requires a light file preprocessing and on a privacy-preserving WS that allows a
user to issue an unbounded number of POR queries. Besides, the user is stateless since
it only needs to keep a secret key to be able to run the POR protocol.

— We propose a new security model which improves existing security definitions [1, 2].
We also provide a formal proof of our proposal under this new security model.

The rest of the paper is organized as follows. Section 2 defines the entities and the
algorithms involved in a POR scheme. Section 3 describes the adversary models that are
considered in this paper. Section 4 provides an overview of StealthGuard and Section
5 gives details of the protocol. Section 6 analyses its security properties. Section 7
evaluates its security and its efficiency. We review the state of the art in Section 8.



StealthGuard: Proofs of Retrievability with Hidden Watchdogs 241

2 Background

Before presenting the formal definition of PORs and the related security definitions, we
introduce the entities that we will refer to in the remainder of this paper.

2.1 Entities
A POR scheme comprises the following entities:

— Client C: It possesses a set of files F that it outsources to the cloud server S. With-
out loss of generality, we assume that each file F' € F is composed of n splits
{51, 52, ...,S,} of equal size L bits. In practice, if the size of F' is not a multi-
ple of L, then padding bits will be added to F'. We also suppose that each split S;
comprises m blocks of [ bits {b; 1,b;.2,...,bim}, 1.e., L=m -l

— Cloud Server S (a potentially malicious prover): For each file /' € F, the cloud
server S stores an “enlarged” verifiable version F of that file, that enables it to
prove to a verifier ) that the client C can still retrieve its original file F'.

— Verifier V: It is an entity which via an interactive protocol can check whether the
cloud server S (i.e., the prover) is still storing some file ' € F or not. The verifier
can be either the client itself or any other authorized entity, such as an auditor.

2.2 POR
A POR scheme consists of five polynomial-time algorithms (cf. [1, 2]):

— KeyGen(17) — K: This probabilistic key generation algorithm is executed by
client C. It takes as input a security parameter 7, and outputs a secret key K for C.

- Encode(K, F) — (fid, F)): 1t takes the key K and the file F' = {S1, S, ..., Sn}
as inputs, and returns the file ' = {Sl, So, ... Sn} and F’s unique 1dent1ﬁer fid.
Cloud server S is required to store F' together with fid. F' is obtained by first apply-
ing to F' an error-correcting code (ECC) which allows client C to recover the file
from minor corruptions that may go undetected by the POR scheme, and further
by adding some verifiable redundancy that enables client C to check whether cloud
server S still stores a retrievable version of F' or not.

Note that the Encode algorithm is invertible. Namely, there exists an algorithm
Decode that allows the client C to recover its original file F' from the file E.

— Challenge(K, fid) — chal: The verifier V calls this probabilistic algorithm to gen-
erate a challenge chal for an execution of the POR protocol for some file F'. This
algorithm takes as inputs the secret key K and the file identifier fid, and returns the
challenge chal that will be sent to cloud server S.

— ProofGen(fid, chal) — P: On receiving the challenge chal and the file identifier
fid, cloud server S executes ProofGen to generate a proof of retrievability P for the
file I whose identifier is fid. The proof P is then transmitted to verifier V.

- ProofVerif (K, fid, chal, P) — b € {0,1}: Verifier V runs this algorithm to check
the validity of the proofs of retrievability sent by cloud server S. On input of the
key K, the file identifier fid, the challenge chal, and the proof P, the ProofVerif
algorithm outputs bit b = 1 if the proof P is a valid proof, and b = 0 otherwise.
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3 Adversary Models

A POR scheme should ensure that if cloud server S is storing the outsourced files, then
the ProofVerif algorithm should always output 1, meaning that ProofVerif does not
yield any false negatives. This corresponds to the completeness property of the POR
scheme. PORs should also guarantee that if S provides a number (to be determined) of
valid proofs of retrievability for some file F', then verifier V can deduce that server S is
storing a retrievable version of F'. This matches the soundness property of POR. These
two properties are formally defined in the following sections.

3.1 Completeness

If cloud server S and verifier V are both honest, then on input of a challenge chal and
some file identifier fid sent by verifier V, the ProofGen algorithm generates a proof of
retrievability P that will be accepted by verifier }V with probability 1.

Definition 1 (Completeness). A POR scheme is complete if for any honest pair of
cloud server S and verifier V, and for any challenge chal < Challenge(K, fid):

Pr(ProofVerif (K, fid, chal, P) — 1 | P + ProofGen(fid, chal)) = 1

3.2 Soundness

A proof of retrievability is deemed sound, if for any malicious cloud server S, the only
way to convince verifier V that it is storing a file F' is by actually keeping a retrievable
version of that file. This implies that any cloud server S that generates (a polynomial
number of) valid proofs of retrievability for some file F', must possess a version of that
file that can be used later by client C to recover F'. To reflect the intuition behind this
definition of soundness, Juels and Kaliski [1] suggested the use of a file extractor algo-
rithm & that is able to retrieve the file F by interacting with cloud server S using the
sound POR protocol. Along these lines, we present a new and a more generic soundness
definition that refines the formalization of Shacham and Waters [2] which in turn builds
upon the work of Juels and Kaliski [1]. Although the definition of Shacham and Waters
[2] captures the soundness of POR schemes that empower the verifier with unlimited
(i.e. exponential) number of “possible” POR challenges [2—4], it does not define prop-
erly the soundness of POR schemes with limited number of “possible” POR challenges
such as in [1, 5] and in StealthGuard?®. We recall that the formalization in [2] consid-
ers a POR to be sound, if a file can be recovered whenever the cloud server generates a
valid POR response for that file with a non-negligible probability. While this definition
is accurate in the case where the verifier is endowed with unlimited number of POR
challenges, it cannot be employed to evaluate the soundness of the mechanisms intro-
duced in [1, 5] or the solution we will present in this paper. For example, if we take
the POR scheme in [5] and if we consider a scenario where the cloud server corrupts

3 Note that having a bounded number of POR challenges does not negate the fact that the verifier
can perform unlimited number of POR queries with these same challenges, cf. [5].
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randomly half of the outsourced files, then the cloud server will be able to correctly
answer half (which is non-negligible) of the POR challenges that the verifier issues, yet
the files are irretrievable. This implies that this POR mechanism is not secure in the
model of Shacham and Waters [2], still it is arguably sound.

The discrepancy between the soundness definition in [2] and the work of [1, 5]
springs from the fact that in practice to check whether a file is correctly stored at the
cloud server, the verifier issues a polynomial number of POR queries to which the server
has to respond correctly; otherwise, the verifier detects a corruption attack (the corrup-
tion attack could either be malicious or accidental) and flags the server as malicious.
This is actually what the PORs of [1, 5] and StealthGuard aim to capture. In order to
remedy this shortcoming, we propose augmenting the definition of Shacham and Waters
[2] (as will be shown in Algorithm 2) with an additional parameter  that quantifies the
number of POR queries that verifier should issue to either be sure that a file is retrievable
or to detect a corruption attack on that file.

Now in accordance with [2], we first formalize soundness using a game that describes
the capabilities of an adversary A (i.e., malicious cloud server) which can deviate arbi-
trarily from the POR protocol, and then we define the extractor algorithm &.

To formally capture the capabilities of adversary A, we assume that it has access to
the following oracles:

— Okncode: This oracle takes as inputs a file F' and the client’s key K, and returns a
file identifier fid and a verifiable version F of F' that will be outsourced to A.
Note that adversary A can corrupt the outsourced file F' either by modifying or
deleting Fs blocks.

— Ochallenge: On input of a file identifier fid and client’s key K, the oracle Ochalienge
returns a POR challenge chal to adversary A.

— Overity: When queried with client’s key K, a file identifier fid, a challenge chal and
a proof of retrievability P, the oracle Overify returns bit b such that: b = 1if Pis a
valid proof of retrievability, and b = 0 otherwise.

Adversary A accesses the aforementioned oracles in two phases: a learning phase and a
challenge phase. In the learning phase, adversary .A can call oracles Ogncode, Ochallenges
and Overify for a polynomial number of times in any interleaved order as depicted in
Algorithm 1. Then, at the end of the learning phase, the adversary A specifies a file
identifier fid* that was already output by oracle Ogncode.

We note that the goal of adversary A in the challenge phase (cf. Algorithm 2) is to
generate 7y valid proofs of retrievability )" for file [™* associated with file identifier
fid*. To this end, adversary A first calls the oracle Ochallenge that supplies A with
challenges chal, then it responds to these challenges by outputting  proofs P;*. Now,
on input of client’s key K, file identifier fid*challenges chal; and proofs P}, oracle

y
Overify outputs +y bits b}. Adversary A is said to be successful if b* = A b = 1. That
i=1

is, if A is able to generate «y proofs of retrievability P* for file F™* thatZ are accepted by
oracle Overify -

Given the game described above and in line with [1, 2], we formalize the soundness
of POR schemes through the definition of an extractor algorithm £ that uses adversary
A to recover/retrieve the file F™* by processing as follows:
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— £ takes as inputs the client’s key K and the file identifier fid*;

— £ is allowed to initiate a polynomial number of POR executions with adversary A
for the file F'*;

— £ is also allowed to rewind adversary A. This suggests in particular that extractor
£ can execute the challenge phase of the soundness game a polynomial number of
times, while the state of adversary .A remains unchanged.

Intuitively, a POR scheme is sound, if for any adversary A that wins the sound-
ness game with a non-negligible probability J, there exists an extractor algorithm &
that succeeds in retrieving the challenge file F™* with an overwhelming probability. A
probability is overwhelming if it is equal to 1 — ¢, where ¢ is negligible.

Algorithm 1. Learning phase of the sound- Algorithm 2. Challenge phase of the
ness game soundness game
// Aexecutes the following in any interleaved for i = 1to v do
// order for a polynomial number of times chal? <+ Ochalienge (K, fid*);
(f|d7 F) — OEncode(F7 K)s ,P:( — A;
chal <= Ochalienge (K, fid); by«
77 <— .A; Overify(K, fldf, chalf y 'P:),
b« Overify(K, fid,chal,'P); end
// A outputs a file identifier fid* LT,
fid* « A; b = i/—\l b;

Definition 2 (Soundness). A POR scheme is said to be (0,~)-sound, if for every ad-
versary A that provides v valid proofs of retrievability in a row (i.e., succeeds in the
soundness game described above) with a non-negligible probability 6, there exists an
extractor algorithm & such that:

Pr(&(K,fid*) — F* | £(K, fid") 5 A) > 1 ¢
Where ¢ is a negligible function in the security parameter .

The definition above could be interpreted as follows: if verifier V issues a sufficient
number of queries (> <) to which cloud server S responds correctly, then ) can as-
certain that S is still storing a retrievable version of file F'* with high probability. It
should be noted that while v characterizes the number of valid proofs of retrievability
that £ has to receive (successfully or in a row) to assert that file F™* is still retrievable, &
quantifies the number of operations that the extractor £ has to execute and the amount
of data that it has to download to first declare F'* as retrievable and then to extract it.
Actually, the computation and the communication complexity of extractor £ will be of
order O(7).

4 Overview

4.1 Idea

In StealthGuard, client C first injects some pseudo-randomly generated watchdogs into
random positions in the encrypted data. Once data is outsourced, C launches lookup
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queries to check whether the watchdogs are stored as expected by the cloud. By relying
on a privacy-preserving word search (WS), we ensure that neither the cloud server S nor
eavesdropping intruders can discover which watchdog was targeted by search queries.
As a result, C can launch an unbounded number of POR queries (even for the same
watchdog) without the need of updating the data with new watchdogs in the future. The
responses are also obfuscated thanks to the underlying WS scheme. This ensures that
the only case in which S returns a valid set of responses for the POR scheme is when it
stores the entire file and executes the WS algorithm correctly (soundness property).

Besides, as in [1], in order to protect the data from small corruptions, StealthGuard
applies an ECC that enables the recovery of the corrupted data. Substantial damage to
the data is detected via the watchdog search.

4.2 StealthGuard Phases

A client C uploads to the cloud server S a file F which consists of n splits {51, ..., Sp }.
Thereafter a verifier V checks the retrievability of F using StealthGuard.
The protocol is divided into three phases:

— Setup: During this phase, client C performs some transformations over the file and
inserts a certain number of watchdogs in each split. The resulting file is sent to
cloud server S.

— WDSearch: This phase consists in searching for some watchdog w in a privacy-
preserving manner. Hence, verifier }V prepares and sends a lookup query for w; the
cloud § in turn processes the relevant split to generate a correct response to the
search and returns the output to V.

— Verification: Verifier V checks the validity of the received response and makes the

decision about the existence of the watchdog in the outsourced file.
We note that if V receives at least y (7y is a threshold determined in Section 6.2)
correct responses from the cloud, then it can for sure decide that F' is retrievable.
On the other hand, if V receives one response that is not valid, then it is convinced
either the file is corrupted or even lost.

5 StealthGuard

This section details the phases of the protocol. Table 1 sums up the notation used in the
description. We also designed a dynamic version of StealthGuard that allows efficient
POR even when data is updated. Due to space limitations, we only present in Section
5.4 an overview of dynamic StealthGuard.

5.1 Setup

This phase prepares a verifiable version E of file F' = {51, 52, ..., S, }. Client C first
runs the KeyGen algorithm to generate the master secret key K. It derives n + 3 addi-

tional keys, used for further operations in the protocol: Kepne = Hene(K), Kwdog =
deog(K)7 er’r‘mF - Hpe’r‘mF(K) and for i € ﬂlan]]a errmS,i = Hpe’r‘mS(K,i)
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Table 1. Notation used in the description of StealthGuard

Index Description
number of splits S; in F’
number of blocks in a split .S;
number of blocks in an encoded split 5'1
number of watchdogs in one split
number of blocks in a split S; with watchdogs
index of a split € [1, n]
index of a block in S; € [1,C]
index of a watchdog € [1, v]
size of a block
index of a block in F' € [1,n - D]
number of cloud’s matrices
index of a cloud’s matrix € [1, ¢]
(s,t) size of cloud’s matrices
(z,y) coordinates in a cloud’s matrix € 1, s] x [1,¢]

TRW ~s.xeQOeyI 3

with Hepe, Hydog, Hpermrp and Hperp, s being four cryptographic hash functions. K
is the single information stored at the client.

Once all keying material is generated, C runs the Encode algorithm which first gen-
erates a pseudo-random and unique file identifier fid for file F', and then processes F' as
depicted in Figure 1.

1. Error correcting: The error-correcting code (ECC) assures the protection of the
file against small corruptions. This step applies to each split .S; an ECC that operates
over [-bit symbols. It uses an efficient [m+d—1, m, d]-ECC, such as Reed-Solomon
codes [6], that has the ability to correct up to g errors®. Each split is expanded with
d — 1 blocks of redundancy. Thus, the new splits are made of D = m +d — 1
blocks.

2. File block permutation: StealthGuard applies a pseudo-random permutation to
permute all the blocks in the file. This operation conceals the dependencies between
the original data blocks and the corresponding redundancy blocks within a split.
Without this permutation, the corresponding redundancy blocks are just appended
to this split. An attacker could for instance delete all the redundancy blocks and
a single data block from this split and thus render the file irretrievable. Such an
attack would not easily be detected since the malicious server could still be able
to respond with valid proofs to a given POR query targeting other splits in the file.
The permutation prevents this attack since data blocks and redundancy blocks are
mixed up among all splits. Let [T : {0,1}" x [1,n- D] — [1,n- D] be a pseudo-
random permutation: for each p € [1,n - D], the block at current position p will
be at position ITp(Kpermr,p) in the permuted file that we denote F. F is then
divided into n splits {31, So, e, Sn} of equal size D.

* dis even.
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Fesl sl DL s ]

—
l Split-level ECC m blocks

File-level permutation [1p

Encryption E(Kepe, S;)

Watchdog creation and insertion

—
Split-level permutation I1g C v watchdogs

Fig. 1. Setup phase in StealthGuard

3. Encryption: StealthGuard uses a semantically secure encryption E that operates
over [-bit blocks’ to encrypt the data. An encryption scheme like AES in counter
mode [7] can be used. The encryption F is applied to each block of F using Kene.

4. Watchdog creation: For each encrypted split, v [-bit watchdogs are generated us-
ing a pseudo-random function @ : {0,1}7 x [1,n] x [1,v] x {0,1}* — {0,1}".
Hence, for j € [1,v], w;; = P(Kwdog, i, J,fid). The use of fid guarantees that
two different files belonging to the same client have different watchdogs. Since the
watchdogs are pseudo-randomly generated and the blocks in the split are encrypted,
a malicious cloud cannot distinguish watchdogs from data blocks.

5. Watchdog insertion: The v watchdogs are appended to each split. Let C' = D +
v be the size of the new splits. A split-level pseudo-random permutation Ilg :
{0,1}" x [1,C] — [1,C] is then applied to the blocks within the same split
in order to randomize the location of the watchdogs: for ¢ € [1,n], the block at
current position k& will be at position ITs(K perms,i, k) in the permuted split. Note
that in practice, the permutation is only applied to the last v blocks: for k& € [D, C1,
this step swaps block at current position & for block at position ITs(Kperms.i, k).
We denote S;, i € [1,n], the permuted split and b; 1., k € [1, C] its blocks.

These operations yield file F. The client uploads the splits {5”,»}?:1 and fid to the cloud.

5.2 WDSearch

Verifier V wants to check the retrievability of F'. Hence, it issues lookup queries for
randomly selected watchdog, one watchdog for one split in one query. Cloud server
S processes these queries without knowing what the values of the watchdogs are and
where they are located in the splits. We propose WDSearch, a privacy-preserving WS
solution derived from PRISM in [8]. Our proposal is a simpler version of PRISM and

5 Practically, [ will be 128 or 256 bits.
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improves its performance in the particular context of StealthGuard. Note that this
proposed building block is only an example and any existing privacy-preserving WS
mechanism assuring the confidentiality of both the query and the result can be used in
StealthGuard. PRISM and thus WDSearch are based on Private Information Retrieval
(PIR). To process a query, S constructs ¢ (s, t)-binary matrices such that s - t = C.
Each element in the matrices is filled with the witness (a very short information) of the
corresponding block in the split. Based on the PIR query sent by the verifier, the server
retrieves in the matrices the witnesses corresponding to the requested watchdogs. We
insist on the fact that WDSearch is not a PIR solution: the server does not retrieve the
watchdog itself but only the witness.
WDSearch consists of two steps:

— WDQuery: Verifier V executes the Challenge algorithm to generate a challenge
chal that is transmitted to cloud server S. Challenge takes as input master key K and
file identifier fid and it is executed in three phases. In the first phase, Challenge ran-
domly selects a split index ¢ and a watchdog index j (i € [1,n] and j € [1,v]), and
computes the position pos; of the watchdog w; ; in the split S by applying the per-
mutation performed during the watchdog insertion step: pos; = ITs(Kperms,i, D+
7). Then, Challenge maps the position pos; to a unique position (z;,y;) in an (s, t)-
matrix: pos;

zg=[","

In the second phase, given (z;, y;) and using any efficient PIR algorithm, Challenge
computes a PIR query, denoted WitnessQuery, to retrieve the witness (and not the
watchdog) at position (z;,y;) in the matrix. In the last phase, Challenge gen-
erates a random number r (this nonce will be used by the cloud when filling
the binary matrices to guarantee freshness), and outputs the challenge chal =
(WitnessQuery, 7, 7). Eventually, verifier V sends the challenge chal and file iden-
tifier fid to cloud server S.

- WDResponse: Upon receiving the challenge chal = (WitnessQuery, r,¢) and

file identifier fid, cloud server S runs ProofGen to process the query. The cloud
creates ¢ binary matrices of size (s, t). For each block l;Z E in SZ the cloud com-
putes h; , = H(b; ,7), where k € [1,C]. Here, H denotes a cryptographic hash
function. The use of r forces the cloud to store the actual data block. Otherwise it
could drop the block, only store the hash and respond to the query using that hash.
Let h; |, be the first g bits of h; ;. For k € [1, ¢], let M, be one of the matrices
created by the cloud. It fills the " matrix with the x'" bit of h; x|, as Algorithm 3
shows. It should be noted that according to the assignment process described in
Algorithm 3, the witness at position (z;,y;) in M, is associated with watchdog
Wi, j: it is the " bit of H(w,’,j, ’I“).
Once all the ¢ binary matrices are filled, the cloud processes WitnessQuery by
executing a PIR operation that retrieves one bit from each matrix M, k € [1,q].
We denote WitnessResponse,, the result of the PIR on matrix M. The ProofGen
algorithm outputs P, i.e. the proof of retrievability that consists in the set P =
{WitnessResponse,, ..., WitnessResponse, }. Cloud server S sends the proof P to
verifier V.

0S;i
| yj:posjf[ptht—l-t
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Algorithm 3. Filling the cloud matrices

/I For a given (s, t)-matrix M., a given split S;and a given random number r
/I k is the index of a block in split S'Z
k=1,
for x = 1to s do
fory=1totdo
M [z, y] + & bitof H (b g, r);
k=k+1;
end
end

5.3 Verification

Verifier V runs ProofVerif to analyze the received proof P. This algorithm takes as
input master key K, proof P, split index ¢, watchdog index j, and file identifier fid.
ProofVerif outputs a bit equal to 1 if the proof is valid or 0 otherwise.

V processes the ¢ WitnessResponse,, in order to retrieve the g bits €, at position
(x,y;) in the matrix M, for k € [1,¢] . Let h denote €1 €3...€4.

We recall that verifier VV queried watchdog w; ; for split S; and that by having access
to the master key K, V can recompute the value of w; ; = ®(Kydog, 1, J, fid) and its
position in the split S;, posj = IIs(Kperms,i, D + j). Thereafter, V computes the hash
of the watchdog h; pos; = H (w;s ;,7), with the same 7 chosen during the challenge and
considers the g first bits of h; pos;. Based on the value of h = €1€3...¢4 and hj pos;, V
checks whether h = hi,posj |- If it is the case, then V judges the proof valid and returns
1, otherwise it interprets the invalid proof as the occurrence of an attack and outputs 0.

As mentioned in section 4.2, in order to acknowledge the retrievability of F', verifier
V needs to initiate at least y POR queries® from randomly selected splits in order to
either ascertain that F' is retrievable or detect a corruption attack: if )V receives y valid
POR responses, then it can conclude that cloud server S stores a retrievable version of
F, otherwise, it concludes that S has corrupted part of the file.

5.4 Dynamic StealthGuard

The previously described protocol does not consider update operations that the client
can perform over its data. Similarly to the work in [5, 9-17], we propose a scheme that
handles these updates. Due to space limitations we present only an idea of how dynamic
StealthGuard operates. Any update in the data impacts the security of our protocol. For
example, if the client modifies the same block several times then the cloud can discover
that this particular block is not a watchdog. Therefore, dynamic StealthGuard updates
the watchdogs in a split each time an update occurs on that split. Besides, the verifier
must be ensured that the file stored at the server is actually the latest version. Dynamic
StealthGuard offers a versioning solution to assure that the cloud always correctly ap-
plies the required update operations and that it always stores the latest version of the

® The value of -y will be determined in Section 6.2.
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file. Our proposal uses Counting Bloom Filters [18] and Message Authentication Codes
(MAC) [19]. Each time a split is updated, some information regarding the split number
and the version number is added into the counting Bloom filter which is authenticated
using a MAC that can only be computed by the client and the verifier. Additionally,
to guarantee the freshness of the response at each update query, a new MAC key is
generated. This protocol does not imply any additional cost at the verifier except of
storing an additional MAC symmetric key.

Another challenging issue is that updating a data block requires to update the cor-
responding redundancy blocks, resulting in the disclosure to the cloud server of the
dependencies between the data blocks and the redundancy blocks. Therefore, the file
permutation in the Setup phase becomes ineffective. Some techniques are available to
conceal these dependencies such as batch updates [5] or oblivious RAM [16]. How-
ever, these approaches are expensive in terms of computation and communication costs.
Hence, we choose to trade off between POR security and update efficiency by omitting
the file permutation.

6 Security Analysis

In this section, we state the security theorems of StealthGuard.

6.1 Completeness
Theorem 1. StealthGuard is complete.

Proof. Without loss of generality, we assume that the honest verifier V runs a POR
for a file F'. To this end, verifier V sends a challenge chal = (WitnessQuery, r, %) for
watchdog w; ;, and the file identifier fid of F'. Upon receiving challenge chal and file
identifier fid, the cloud server generates a proof of retrievability P for F'.

According to StealthGuard, the verification of POR consists of first retrieving the
first g bits of a hash hi,posj, then verifying whether hi,posj |¢ corresponds to the first
g-bits of the hash H (w; ;,). Since the cloud server S is honest, then this entails that it
stores wj_;, and therewith, can always compute hi,posj = H(w; j,r).

Consequently, ProofVerif (K, fid, chal, P) = 1.

6.2 Soundness

As in Section 5, we assume that each split S; in a file F' is composed of m blocks,

and that the Encode algorithm employs a [D, m, d]-ECC that corrects up to ;l errors

per split (i.e., D = m + d — 1). We also assume that at the end of its execution, the

Encode algorithm outputs the encoded file F' which consists of a set of splits S; each

comprising C' = (D + v) blocks (we recall that v is the number of watchdogs per split).
In the following, we state the main security theorem for StealthGuard.

Theorem 2. Let T be the security parameter of StealthGuard and let p denote 2%.
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StealthGuard is (0,)-sound in the random oracle model, for any & > Oneg and
Y 2 “Vneg, Where

1
6neg = o7
In(2)7
Yreg = | 1
e Pneg
p 3In(2)T
(1- pneg)2pneg =" andpag <p

Actually if v > “Yneg, then there exists an extractor £ that recovers a file F' with a proba-
bility 1— ., such that n is the number of splits in F, by interacting with an adversary A
against StealthGuard who succeeds in the soundness game with a probability § > 217 .

Due to space limitations, a proof sketch of this theorem is provided in our long report
[20]. We note that the results derived above can be interpreted as follows: if verifier
V issues ¥ > neg POR queries for some file F' to which the cloud server S responds
correctly, then V' can declare F' as retrievable with probability 1 — J. . Also, we recall
that a POR execution for a file F' in StealthGuard consists of fetching (obliviously)
a witness of a watchdog from the encoding F' of that file. Consequently, to ensure a
security level of 217 , the client C must insert at least yneg Watchdogs in F'. That is, if file

F' comprises n splits, then nv > yneg (v is the number of watchdogs per split).

7 Discussion

StealthGuard requires the client to generate v > ngg watchdogs per split where n is
the number of splits and 7neg is the threshold of the number of queries that verifier V
should issue to check the retrievability of the outsourced data. As shown in Theorem
2, this threshold does not depend on the size of data (in bytes). Instead, yneg is defined
solely by the security parameter 7, the number D = m + d — 1 of data blocks and
redundancy block per split and the rate p = 2% of errors that the underlying ECC
can correct. Namely, neg i inversely proportional to both D and p. This means that
by increasing the number of blocks D per split or the correctable error rate p, the
number of queries that the client should issue decreases. However, having a large p
would increase the size of data that client C has to outsource to cloud server S, which
can be inconvenient for the client. Besides, increasing D leads to an increase of the
number of blocks C' = s-t per split S; which has a direct impact on the communication
cost and the computation load per query at both the verifier VV and the cloud server S.
It follows that when defining the parameters of StealthGuard, one should consider the
tradeoff between the affordable storage cost and the computation and communication
complexity per POR query.

To enhance the computation performances of StealthGuard, we suggest to use the
Trapdoor Group Private Information Retrieval which was proposed in [21] to im-
plement the PIR instance in WDSearch. This PIR enables the verifier in StealthGuard
to fetch a row from an (s, ¢) matrix (representing a split) without revealing to the cloud
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which row the verifier is querying. One important feature of this PIR is that it only
involves random number generations, additions and multiplications in Z, (where p is
a prime of size |p| = 200 bits) which are not computationally intensive and could be
performed by a lightweight verifier. In addition, we emphasize that PIR in Stealth-
Guard is not employed to retrieve a watchdog, but rather to retrieve a g-bit hash of the
watchdog (typically ¢ = 80), and that it is not performed on the entire file, but it is in-
stead executed over a split. Finally, we indicate that when employing Trapdoor Group
Private Information Retrieval, the communication cost of StealthGuard is minimal

when s ~ /Cqgand t ~ \/ 2. This results in a computation and a communication com-

plexity (per query) at the verifier of O(y/Cq) and a computation and communication
complexity at the server of O(C) and O(1/Cq) respectively.

Example. A file F' of 4GB is divided into n = 32768 splits F' = {S1, Sa,...,Sn},
and each split .S; is composed of 4096 blocks of size 256 bits. StealthGuard inserts 8
watchdogs per split and applies an ECC that corrects up to 228 corrupted blocks (i.e.,
p = 5%). We obtain thus F' = {S, Sa, ..., S,, }, where S; is composed of 4560 blocks
of size 256 bits. This results in a redundancy of ~ 11.3%, where 11.1% redundancy is
due to the use of ECC, and 0.20% redundancy is caused by the use of watchdogs.

If (s,t) = (570, 8), ¢ = 80 and StealthGuard implements the Trapdoor Group PIR
[21] where |p| = 200 bits, then the verifier’s query will be of size ~ 13.9 KB, whereas
the cloud server’s response will be of size ~ 15.6KB. In addition, if the cloud server
still stores the file ', then the verifier will declare the file as retrievable with probability
1— 60 ~1-— 2}15 by executing the POR protocol 1719 times. That is, by downloading
26.2MB which corresponds to 0.64% of the size of the original file F.

8 Related Work

The approach that is the closest to StealthGuard is the sentinel-based POR introduced
by Juels and Kaliski [1]. As in StealthGuard, before outsourcing the file to the server,
the client applies an ECC and inserts in the encrypted file special blocks, sentinels, that
are indistinguishable from encrypted blocks. However, during the challenge, the verifier
asks the prover for randomly-chosen sentinels, disclosing their positions and values to
the prover. Thus, this scheme suggests a limited number of POR queries. Therefore,
the client may need to download the file in order to insert new sentinels and upload it
again to the cloud. [1] mentions, without giving any further details, a PIR-based POR
scheme that would allow an unlimited number of challenges by keeping the positions
of sentinels private, at the price of high computational cost equivalent in practice to
downloading the entire file. In comparison, StealthGuard uses a PIR within the WS
technique to retrieve a witness of the watchdog (a certain number of bits instead of the
entire watchdog), and does not limit the number of POR verifications.

Ateniese et al. [22] define the concept of Provable Data Possession (PDP), which
is weaker than POR in that it assures that the server possesses parts of the file but
does not guarantee its full recovery. PDP uses RSA-based homomorphic tags as check-
values for each file block. To verify possession, the verifier asks the server for tags for
randomly chosen blocks. The server generates a proof based on the selected blocks and



StealthGuard: Proofs of Retrievability with Hidden Watchdogs 253

their respective tags. This scheme provides public verifiability meaning that any third
party can verify the retrievability of a client’s file. However, this proposal suffers from
an initial expensive tag generation leading to high computational cost at the client. The
same authors later propose in [3] a robust auditing protocol by incorporating erasure
codes in their initial PDP scheme [22] to recover from small data corruption. To prevent
an adversary from distinguishing redundancy blocks from original blocks, the latter are
further permuted and encrypted. Another permutation and encryption are performed
on the redundancy blocks only which are then concatenated to the file. This solution
suffers from the fact that a malicious cloud can selectively delete redundant blocks and
still generate valid proofs. Even though these proofs are valid, they do not guarantee
that the file is retrievable.

Shacham and Waters in [2] introduce the concept of Compact POR. The client ap-
plies an erasure code and for each file block, it generates authenticators (similar to tags
in [22]), with BLS signatures [23], for public verifiability, or with Message Authenti-
cation Codes (MAC) [19], for private verifiability. The generation of these values are
computationally expensive. Moreover, the number of authenticators stored at the server
is linear to the number of data blocks, leading to an important storage overhead. Xu
and Chang [4] propose to enhance the scheme in [2] using the technique of polynomial
commitment [24] which leads to light communication costs. These two schemes em-
ploy erasure codes in conjunction with authentication tags, which induces high costs at
the time of retrieving the file. Indeed, erasure coding does not inform the verifier about
the position of the corrupted blocks. Thus, the verifier has to check each tag individu-
ally to determine whether it is correct or not. When a tag is detected as invalid, meaning
that the corresponding block is corrupted, the verifier applies the decoding to recover
the original data block.

A recent work of Stefanov et al. [5], Iris, proposes a POR protocol over authenticated
file systems subject to frequent changes. Each block of a file is authenticated using a
MAC to provide file-block integrity which makes the tag generation very expensive.

Compared to all these schemes, StealthGuard performs computationally lightweight
operations at the client, since the generation of watchdogs is less expensive than the gen-
eration of tags like in [2, 22]. In addition, the storage overhead induced by the storage
of watchdogs is less important than in the previous work. At the cost of more bits trans-
mitted during the POR challenge-response, StealthGuard ensures a better probability
of detecting adversarial corruption.

Table 2 depicts the performance results of StealthGuard and compares it with previ-
ous work. We analyze our proposal compared to other schemes [1-4] with respect to a file
of size 4 GB. The comparison is made on the basis of the POR assurance of 1 — 2}15 com-
puted in Section 7. We assume that all the compared schemes have three initial operations
in the Serup phase: the application of an ECC, the encryption and the file-level permuta-
tion of data and redundancy blocks. Since these three initial operations have comparable
costs for all the schemes, we omit them in the table. Computation costs are represented
with exp for exponentiation, mul for multiplication, PRF for pseudo-random function
or PRP for pseudo-random permutation. For StealthGuard, we compute the different
costs according to the values provided in Section 7. For the other schemes, all initial
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Table 2. Comparison of relevant related work with StealthGuard

Scheme Parameter Setup cost Storage Server cost Verifier cost Communication
overhead cost
Robust PDP [3]  block size: 4.4 x 10 exp tags: 764 PRP challenge: 1 exp challenge: 168 B
2KB 2.2 x 10® mul 267 MB 764 PRF verif: 766 exp response: 148 B
tag size: 765 exp 764 PRP
128 B 1528 mul
JK POR [1] block size: 2 x 106 PRF  sentinels: 1 challenge: challenge: 6 KB
128 bits 30.6 MB 1719 PRP response:26.9 MB
number of sen- verif: L
tinels: 2 X 106
Compact  POR block size: 1 enc tags: 7245 mul challenge: challenge: 1.9 KB
2] 80 bits 5.4 x 10 PRF 51 MB 1 enc, 1 MAC response: 1.6 KB
number of 1.1 x 10° mul verif: 45 PRF,
blocks in one 160 + 205 mul
split: 160
tag size:
80 bits
Efficient  POR block size: 2.2 x 10% mul tags: 160 exp challenge: L challenge: 36 KB
[4] 160 bits 1.4 x 10° PRF 26 MB 2.6 % 10° mul  verif: 2 exp, 1639 response: 60 B
number of PRF, 1639 mul
blocks in one
split: 160
StealthGuard  block size: 2.6 x 10° PRF watchdogs: 6.2 x 10% mul challenge: challenge:  23.3
256 bits 2.6 x 10° PRP 8 MB 2.0 x 10° mul MB
number of verif: response: 26.2 MB
blocks in one 1.4 x 10° mul
split: 4096

parameters derive from the respective papers. In [2] since the information on the num-
ber of blocks in a split is missing, we choose the same one as in [4].

Setup. In our scheme, the client computes 32768 x 8 ~ 2.6 x 10° PRF and 2.6 x
105 PRP for the generation and the insertion of watchdogs. One of the advantages of
StealthGuard is having a more lightweight setup phase when the client preprocesses
large files. Indeed, the setup phase in most of previous work [2-5] requires the client to
compute an authentication tag for each block of data in the file which is computationally
demanding in the case of large files.

Storage Overhead. The insertion of watchdogs in StealthGuard induces a smaller
storage overhead compared to other schemes that employ authentication tags.

Proof Generation and Verification. For StealthGuard, we consider the PIR opera-
tions as multiplications of elements in Z, where |p| = 200 bits. To get the server and
verifier computational costs of existing work, based on the parameters and the bounds
given in their respective papers, we compute the number of requested blocks in one chal-
lenge to obtain a probability of 1 — 2}15 to declare the file as irretrievable: 764 blocks
in [3], 1719 sentinels in [1], 45 blocks in [2] and 1639 blocks in [4]. StealthGuard
induces high cost compared to existing work but is still acceptable.

Communication. Even if its communication cost is relatively low compared to Stealth-
Guard, JK POR [1] suffers from the limited number of challenges, that causes the
client to download the whole file to regenerate new sentinels. Although we realize that



StealthGuard: Proofs of Retrievability with Hidden Watchdogs 255

StealthGuard’s communication cost is much higher than [2-4], such schemes would
induce additional cost at the file retrieval step, as mentioned earlier.

To summarize, StealthGuard trades off between light computation at the client,
small storage overhead at the cloud and significant but still acceptable communication
cost. Nevertheless, we believe that StealthGuard’s advantages pay off when processing
large files. The difference between the costs induced by existing schemes and those
induced by StealthGuard may become negligible if the size of the outsourced file
increases.

9 Conclusion

StealthGuard is a new POR scheme which combines the use of randomly generated
watchdogs with a lightweight privacy-preserving word search mechanism to achieve
high retrievability assurance. As a result, a verifier can generate an unbounded number
of queries without decreasing the security of the protocol and thus without the need for
updating the watchdogs. StealthGuard has been proved to be complete and sound.

As future work, we plan to implement StealthGuard in order to not only evaluate
its efficiency in a real-world cloud computing environment but also to define optimal
values for system parameters.
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