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Abstract. With the wide usage of smartphones in our daily life, new malware is
emerging to compromise the mobile OS and steal the sensitive data from the mo-
bile applications. Anti-malware tools should be continuously updated via static
and dynamic malware analysis to detect and prevent the newest malware. Dy-
namic malware analysis depends on a reliable memory acquisition of the OS
and the applications running on the smartphones. In this paper, we develop a
TrustZone-based memory acquisition mechanism called TrustDump that is capa-
ble of reliably obtaining the RAM memory and CPU registers of the mobile OS
even if the OS has crashed or has been compromised. The mobile OS is running
in the TrustZone’s normal domain, and the memory acquisition tool is running in
the TrustZone’s secure domain, which has the access privilege to the memory in
the normal domain. Instead of using a hypervisor to ensure an isolation between
the OS and the memory acquisition tool, we rely on ARM TrustZone to achieve a
hardware-assisted isolation with a small trusted computing base (TCB) of about
450 lines of code. We build a TrustDump prototype on Freescale i.MX53 QSB.
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1 Introduction

Smartphones have been widely used to perform both personal and business transactions
and process sensitive data with various OEM or third-party mobile applications. How-
ever, due to the large code size and complexity of the mobile OS kernel, a malicious
code can exploit known and unknown kernel vulnerabilities to compromise the mobile
OS and steal sensitive data from the system. It is critical to perform malware analysis
on the newest emerging malware and immediately update anti-malware tools on the
smartphones

There are two generic types of dynamic malware analysis methods: in-the-box ap-
proach and out-of-the-box approach. For the in-the-box approach, all the anti-malware
and debugging tools are installed in the same OS as the malware. This approach is ef-
ficient since it can use abundant OS context information and directly call the kernel
functions to study malware’s behaviors. However, it is vulnerable to armored malware
such as rootkits that modify kernel structures and functions to defeat the analysis. For
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the out-of-the-box approach, the malware analysis tools are installed in an isolated ex-
ecution environment, which is securely separated from the targeted OS environment.
For instance, Virtual Machine Introspection (VMI) [1–6] runs a suspicious OS in one
VM and the analysis tools in another VM. This method needs to reconstruct the inter-
nal structures of OS kernel to fill the semantic gaps. Recently, Yan et al. [7] extend the
out-of-the-box malware analysis approach to Android smartphones using a customized
QEMU emulator.

All VMI based malware analysis solutions rely on a trusted hypervisor, which should
not easily crash or be compromised. However, due to the large size of the hypervisor, it
may contain a number of bugs and vulnerabilities that may be exploited by malware to
compromise the hypervisor and then the malware analysis VM. VT-x/SVM [8–10] and
System Management Mode (SMM) [11–14] on x86 architecture can be used to create an
isolated instruction level execution environment for out-of-the-box malware analysis;
however, they are not available on mobile processors. Fortunately, the ARM processors,
which have been widely used on smartphones, provide a system level isolation solution
with a hardware security support called TrustZone [15, 16], which divides the mobile
platform into two isolated execution environments, normal domain and secure domain.
The OS running in the normal domain is usually called Rich OS, and the one running in
the secure domain is called Secure OS.

In this paper, we develop a TrustZone-based reliable memory acquisition mechanism
called TrustDump, which is capable of obtaining the RAM memory and CPU registers
of the Rich OS even if the Rich OS has crashed or has been compromised. A memory
acquisition module called TrustDumper is installed in the secure domain to perform
memory dump and malware analysis of the Rich OS. TrustZone can ensure the Trust-
Dumper is securely isolated from the Rich OS, so that a compromised Rich OS cannot
compromise the memory acquisition module.

When the Rich OS has crashed or some suspicious behaviors have been detected in
the Rich OS, TrustDump ensures a reliable system switch from the normal domain to
the secure domain by pressing a hardware button on the smartphone to trigger a non-
maskable interrupt (NMI) to the ARM processor. The NMI guarantees that a malicious
Rich OS cannot launch attacks to block or intercept the switching process. Since the
secure domain has the access privilege to the memory and registers in the normal do-
main, TrustDumper can freely access the physical RAM memory and the CPU states
of the Rich OS. When the system switches into the secure domain, the Rich OS is
frozen, so the malware has no time to clean its attacking traces. Besides checking the
OS kernel integrity and perform online malware analysis, TrustDumper can send the
memory dump and CPU states to a remote machine for further analysis. A hash value
of the memory dump is also calculated and sent to verify a correct data transmission.
The remote machine can use various powerful memory forensics tools to uncover the
malicious behaviors recorded in the memory dump.

Instead of using a hypervisor to ensure an isolation between the OS and the memory
acquisition tool, we rely on ARM TrustZone to achieve a hardware-assisted isolation
with a small trusted computing base (TCB) of about 450 lines of code. Since Trust-
Dumper is self-contained, a full-featured OS is not required to be installed in the secure
domain. Moreover, TrustDump is OS agnostic and we do not need any changes to the



204 H. Sun et al.

Rich OS, which satisfies the smartphone forensic principle of extracting the digital evi-
dence without altering the data contents. We build a TrustDump prototype on Freescale
i.MX53 QSB.

In summary, we make the following contributions in this paper.

– We design a hardware-assisted memory acquisition mechanism named TrustDump
to reliably acquire the RAM memory and CPU registers of the OS on smartphones,
even if the OS has crashed or has been compromised.

– The trusted computing base (TCB) of TrustDump is small, only consisting of a
small memory acquisition module in the secure domain. We do not need to install
a hypervisor or root the OS in the normal domain.

– We implement a TrustDump prototype on Freescale i.MX53 QSB. A non-maskable
interrupt (NMI) is constructed for ensuring a reliable switching from the normal
domain to the secure domain in 1.7 us.

The remainder of the paper is organized as follows. Section 2 introduces back-
ground knowledge. Section 3 describes the threat model and assumptions. We present
the framework in Section 4. A prototype implementation is detailed in Section 5. Sec-
tion 6 discusses the experimental results. We describe related works in Section 7 and
conclude the paper in Section 8.

2 Background

2.1 TrustZone Overview

TrustZone [15, 16] is a system-wide approach to provide hardware-level isolation on
ARM platforms. It’s supported by a wide range of processors including Cortex-A8 [17],
Cortex-A9 [18] and Cortex-A15 [19]. It creates two isolated execution domains: secure
domain and normal domain. The secure domain has a higher access privilege than the
normal domain, so it can access the resources of the normal domain such as memory,
CPU registers and peripherals, but not vice versa. There’s an NS bit in the CPU proces-
sor to control and indicate the state of the CPU - 0 means the secure state and 1 means
the normal state. There’s an additional CPU mode, monitor mode, which only runs in
the secure domain regardless of the value of the NS bit. The monitor mode serves as a
gatekeeper between the normal domain and the secure domain. If the normal domain
requests to switch to the secure domain, the CPU must first enter the monitor mode. The
system bus also contains a bit to indicate the state of the bus transaction. Thus, normal
peripherals can only perform normal transactions, but not the secure transactions.

2.2 TrustZone Aware Interrupt Controller (TZIC)

The TZIC is a TrustZone enabled interrupt controller, which allows complete and in-
dependent control over every interrupt connected to the controller. It receives interrupts
from peripheral devices and routes them to the ARM processor. The TZIC provides se-
cure and non-secure transaction access to those interrupts, restricting non-secure read-
/write transactions to only interrupts configured as non-secure and allowing secure
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transactions to all interrupts regardless of security configurations. By default, the TZIC
uses Fast Interrupt FIQ as secure interrupt and uses Regular Interrupt IRQ as non-secure
interrupt. There are three exception vector tables associated with the normal domain, the
secure domain, and the monitor mode, respectively.

2.3 General Purpose Input/Output (GPIO)

The GPIO provides general-purpose pins that can be configured as either input or out-
put. It can be connected to the physical buttons, LED lights, and other signals through
an I/O multiplexer. The signal can be either 0 or 1, and each pin of GPIO contributes a
bit in the GPIO block. The GPIO can be used to trigger interrupts to the TZIC; however,
if the source is masked off in the GPIO, the corresponding interrupt request cannot be
forwarded.

3 Threat Model and Assumptions

On a TrustZone-enabled ARM platform, when the Rich OS crashes due to system fail-
ure, the Rich OS may not be able to send a secure interrupt to switch the system into
the secure domain. When the Rich OS has been compromised, an armored malware can
intercept the switch request and fake a memory acquisition process with a “Man in the
Middle” attack. It is critical to ensure that TrustDump is securely activated to perform
reliable memory dump. Since a malicious Rich OS may target at compromising the
memory acquisition module to defeat the memory acquisition process, we must protect
the integrity of the TrustDump.

We assume the attacker has no physical access to the smartphone. The ROM code
is secure and cannot be flashed. The smartphone has the TrustZone hardware support,
which is used to protect the memory acquisition module in the secure domain.

4 TrustDump Framework

Figure 1 shows the TrustDump framework using ARM TrustZone hardware security
support. The Rich OS running in the normal domain is the target for memory acquisi-
tion, while a self-contained software module called TrustDumper in the secure domain
is responsible for data acquisition, data analysis, and data transmission of the Rich OS’s
memory and CPU registers. After a reliable switching from the normal domain to the
secure domain, a data acquisition module is responsible for reading the RAM memory
and CPU registers of the Rich OS without any support from the Rich OS. TrustDump is
capable of performing online analysis such as OS integrity checking and Rootkit detec-
tion after filling the semantics gap. Also, the acquired memory and CPU registers can
be transmitted to a remote computer for logging and further analysis.

4.1 TrustDumper Deployment

When there is only one OS running on the ARM platform, it is usually running in the
secure domain. In our system, since the Rich OS is running in the normal domain, we
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Fig. 1. The System Framework of TrustDump

need to port the Rich OS to the normal domain and then install the TrustDumper in the
secure domain. The work of porting Rich OS to the normal domain seems simple, but
the source code customized to run in the secure domain cannot be directly executed in
the normal domain. Since there is no open source Linux kernel available for running
in the normal domain on real platform, we have to port Android OS from the secure
domain to the normal domain by ourselves. We allocate a sealed memory region for the
secure domain to run the TrustDumper. TrustZone guarantees that the normal domain
cannot access the sealed memory. Since TrustDumper is self-contained, we do not need
to install a full-featured OS in the secure domain, which dramatically reduces the TCB
of the system.

4.2 Reliable Switching

A reliable switching into the secure domain is the prerequisite for a reliable memory
acquisition. We must ensure the switching will happen per the user’s requests even if
the Rich OS is compromised or simply crashes. First, the system can be safely switched
into the secure domain when the Rich OS crashes. In other words, we cannot rely on the
Rich OS to initiate the switching process even if the Rich OS is secure and trusted. Sec-
ond, our system should prevent a malicious Rich OS from launching Denial of Service
attacks to block or intercept the switching request.

TrustZone provides two ways to enter the secure domain from the normal domain:
SMC instruction and Secure Interrupt. The SMC instruction is a privileged instruction
that can only be invoked in the Rich OS’s kernel mode. However, when the Rich OS is
malicious, it can block or intercept the secure monitor call that uses the SMC instruc-
tion. Moreover, when the Rich OS crashes, the SMC instruction may not be called after
the crash happens. Alternatively, secure interrupts of TrustZone can be called to switch
from the normal domain to the secure domain. TrustZone uses the fast interrupt FIQ as
the secure interrupt and uses the normal IRQ interrupt as the normal interrupt.

Non-maskable interrupt (NMI) has been widely used and deployed on mobile plat-
forms [20, 21], which can trigger one NMI by pressing a button or a combination of
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several buttons. Since the Rich OS cannot block or intercept NMI, we can use one NMI
to enforce the system switching. However, for mobile platforms that do not have ded-
icated NMI (e.g., Freescale i.MX53 QSB [22]), we solve this problem by configuring
one secure interrupt as the NMI.

4.3 Data Acquisition and Transmission

The software module in the secure domain has access privileges to the entire physical
memory of the normal domain. Moreover, it can access all the banked CPU registers,
which are critical to fill the semantic gaps for malware analysis. When the system enters
the secure domain, the Rich OS in the normal domain is frozen.

Our system supports both online malware detection and offline malware analysis.
For online malware detection, since the analysis module runs outside the Rich OS, it
has to fill the semantic gaps. Based on the knowledge of the kernel data structures, the
analysis module can reconstruct the context of the Rich OS and then perform malware
analysis tasks in the secure domain, such as verifying the integrity of the Rich OS and
detecting rootkits. For offline analysis, since we need to transmit a large amount of
acquired RAM memory (e.g., 1GB in Freescale i.MX53 QSB) to a remote computer,
DMA is used to transfer data from RAM memory to communication peripherals such as
a serial port or a network card. A hash value of the acquired memory is also transmitted
to verify the data transmission process. Since the DMA and the peripherals may be used
by the Rich OS when the switching happens, their states should be saved and restored
afterward.

4.4 System Security

With the NMI triggered by a physical button, TrustDump can safely switch the system
from the normal domain to the secure domain no matter what state the Rich OS is
staying. Thus, a malicious Rich OS cannot launch Denial of Service attacks to block or
intercept the switching. After the NMI being triggered, TrustDump will freeze the Rich
OS, so the malware in the Rich OS has no chance to clean its traces.

The TrustDumper has the privilege to access all the memory and CPU registers of
the Rich OS, so it may check the integrity of the Rich OS and detect various malware
such as rootkits in the Rich OS. Since the TrustDumper in the secure domain is securely
isolated from the Rich OS by TrustZone, a compromised Rich OS cannot compromise
the memory acquisition modules.

5 Implementation

We implement a prototype using Freescale i.MX53 QSB, a TrustZone-enabled mobile
System on Chip (SoC) [22]. i.MX53 QSB has an ARM Cortex-A8 1 GHz application
processor with 1 GB DDR3 RAM memory and a 4GB MicroSD card. We deploy An-
droid 2.3.4 in the normal domain. The development board is connected through the
serial port to a Thinkpad-T430 laptop that runs Ubuntu 12.04 LTS. Our TrustDump
prototype contains only 450 lines of code.
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5.1 Deployment of TrustDump

Since we cannot find any open source OS working in the normal domain, we have to
port an Android OS from the secure domain to the normal domain based on the Board
Support Package (BSP) published by Adeneo Embedded [23]. Next, we deploy the
TrustDumper in the secure domain.

The OS code running in the secure domain cannot execute in the normal domain
without proper modification. Since the normal domain has a lower privilege than the
secure domain, there are some peripherals that cannot be accessed from the normal
domain. For instance, the Deep Sleep Mode Interrupt Holdoff Register (DSMINT) can
only be accessed in the secure domain. However, the Rich OS needs DSMINT to hold
off the interrupts before entering the low power mode. To run Android in the normal
domain, we develop a pair of secure I/O functions, secure write and secure read, to
enable the normal domain to access the peripherals in the secure domain.

The function definitions are shown in Listing 1. secure write writes 32-bit data
to the physical address pa. Similarly, secure read reads from the physical address pa
and returns the result. Each peripheral on the i.MX53 QSB has certain configuration
registers, which are usually accessed as physical addresses on the board. A Whitelist is
maintained in the secure domain to store all the registers that the normal domain can
access through these two secure I/O functions.

Listing 1. Definition of secure write and secure read

void secure_write(unsigned int data, unsigned int pa);
unsigned int secure_read(unsigned int pa);

5.2 Reliable Switching

To ensure the reliable switching, we reserve a secure interrupt (FIQ) of TrustZone to
serve as the non-maskable interrupt (NMI). Figure 2 shows the four steps of the switch-
ing process, which involves three components, namely, peripheral device, TZIC, and
the ARM processor. First, a peripheral device as the source of the interrupt makes the
interrupt request. Second, the interrupt request will be sent to the TZIC. Third, based
on the type of the interrupt (FIQ or IRQ), the TZIC asserts the corresponding exception
to the ARM processor. To trigger a reliable switching, the interrupt request must be an
FIQ. Finally, after receiving an FIQ, the ARM processor switches to the secure domain
according to the setting of the Secure Configuration Register (SCR) and the Current
Program Status Register (CPSR).

Note all the three components are critical to the reliable switching. The compromise
of any of the three components will result in an unreliable switching. If the source of the
interrupt can be masked by the Rich OS or the Rich OS just blocks all the FIQs to the
ARM processor, then the switching to the secure domain will be blocked. To prevent
those attacks, we construct an NMI using GPIO-2 interrupt. We first set the GPIO-
2 interrupt as a secure interrupt in TZIC. Then we use the peripheral access privilege
control in Central Security Unit (CSU) to isolate the peripheral from the normal domain.
It guarantees the normal domain cannot configure the peripheral. Moreover, through
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configuring the registers of ARM processor, we set the FIQ requests to be handled in
the secure domain.

To minimize the impacts on the access of the Rich OS to other peripherals that share
the same access privilege with GPIO-2, we propose a method to enable Fine-grained
Access Control. Also, to minimize the impacts on the functionalities of other peripher-
als, we propose a method to enable Fine-grained Interrupt Control. It can differentiate
the interrupts that share the same interrupt number and distribute them to dedicated
handlers in different domains.
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Fig. 2. The Control Flow of Reliable Switching

Non-maskable GPIO-2 Secure Interrupt. In our prototype, we use the user-defined
button 1 on the board to trigger reliable switching to the secure domain. There are seven
GPIOs from GPIO-1 to GPIO-7 on our board. The user-defined button 1 is attached to
the fifteenth pin of the second GPIO: GPIO-2.

First, the interrupt type of GPIO-2 is set as secure in Interrupt Security Registers
(TZIC INTSEC). This prevents the normal domain from accessing the GPIO-2 inter-
rupt configuration in the TZIC. Second, we set the F bit in CPSR to 0 to enable FIQ
exception. We also set the FW bit in SCR to 0 to ensure the FIQ enable (F) bit in CPSR
cannot be modified by the normal domain. After the configuration of these two bits, the
normal domain cannot block the FIQ request to the ARM processor. Third, we set the
FIQ bit in SCR to 1 to enforce the ARM processor to branch to the monitor mode on
an FIQ exception. This step ensures that the FIQ request to secure domain cannot be
intercepted or blocked by the normal domain. Finally, we disable the non-secure access
to GPIO-2 in CSU so that the interrupt unit of GPIO-2 cannot be configured by the
normal domain.

When the ARM processor branches to the monitor mode in the secure domain after
the secure interrupt happens, the CPU executes the instruction located in the vector table
of the monitor mode at the offset of 0x1C. After the memory acquisition finishes, the
CPU executes the instruction: subs pc, lr, #4 to return to the normal domain.
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Fine-Grained Access Control. The secure domain and the normal domain have dif-
ferent access control policies over the peripherals. The secure domain can access the
peripherals belonging to the normal domain, but not vice versa. CSU determines which
domain a peripheral belongs to, so we can set access control policies of peripherals by
setting the corresponding registers in CSU. We configure GPIO-2 as secure peripheral
to prevent the normal domain from accessing it.

However, this simple access control management forces several peripherals to share
the same access control policy. For instance, in our prototype, user-defined button 1 and
2 are two pins of GPIO-2 and share the same access policy. We use them in different
domains: button 1 is the source of NMI and button 2 is used as the Home Key for the
Rich OS. If we disable the non-secure access to user-defined button 1, the non-secure
access to button 2 will be denied too, which disables the Home Key in the normal
domain.

To solve this problem, we develop a fine-grained access control that sets the pe-
ripherals sharing the same policy as secure and releases those peripherals needed in
the normal domain by adding them into a Whitelist. The Rich OS uses the secure I/O
functions described in Listing 1 to access the released peripherals. In this way we can
protect the source of NMI from the normal domain without constraining the access of
the normal domain to other devices.

Fine-grained Interrupt Control. There is only one interrupt number for all the 32 pins
of GPIO-2; however, each pin will generate the same interrupt number 52. Therefore,
after we construct the NMI, button 2 will generate the same FIQ request as button 1
does. When the user-defined button 1 is dedicated to trigger an NMI, button 2 will
trigger the same NMI, instead of serving as the Home Key as designed in the Rich OS.
We solve this problem by developing a fine-grained interrupt control to distribute the
interrupts generated by these two buttons to different handlers.

No matter which button is pressed, CPU goes into the secure domain first. Because
the functions of the Rich OS cannot be called in the secure domain, the request of button
2 will be forwarded to the normal domain to call the functions of the Rich OS instead
of being processed locally as button 1 does. The FIQ exception handler of the Rich OS
receives the request and calls the corresponding operation codes in the Rich OS. The
entry of FIQ exception is at a static address 0xFFFF01C. The FIQ mode is not used
by the Rich OS, so we can freely use the FIQ exception handlers.

The program flow of hardware interrupts in TrustDump is depicted in Figure 3. The
IRQ exception asserted by non-secure interrupt is handled in the Rich OS. The IRQ
exception handler gets the number of the pending interrupt from TZIC and gives it to
the operation codes.

Upon FIQ request asserted by a secure interrupt, the system will switch to the FIQ
exception entry of the secure domain according to the configuration of the TZIC. The
FIQ exception handler of the secure domain figures out the source of interrupt through
the interrupt control unit of GPIO-2. If the interrupt is an NMI, the handler clears the in-
terrupt status in the TZIC to prevent re-entry. Next, it goes into TrustDumper to perform
memory acquisition and analysis. At last, the system returns to the Rich OS.
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If the source of the FIQ exception is for the Rich OS, the handler masks the interrupt
by setting the interrupt mask register (IMR) in GPIO-2. It stops the interrupt request to
TZIC and thus clears the interrupt status in TZIC to prevent re-entry after entering the
Rich OS. Besides, masking the interrupt in the handler keeps the interrupt status in the
interrupt control unit of GPIO-2, which is used to distinguish different pins of GPIO-2
by the Rich OS. Since the Rich OS can access the interrupt control unit of GPIO-2 to
determine which pin generates the interrupt, it can locate the source after receiving an
interrupt number 52.

Because the secure domain will not be re-entered, the context of the normal domain
stored in the secure domain must be restored before the system jumps to the FIQ han-
dler of the Rich OS. The handler is entered by changing CPU mode to FIQ mode and
jumping to the entry of FIQ exception in the normal domain.

In case of return, the FIQ exception handler saves the CPU context first. Then it calls
the operation codes in the Rich OS with the interrupt number 52. The operation codes
find the source of the interrupt and take the corresponding actions according to the
interrupt number. In our prototype, the action function is mx3 gpio irq handler,
which further checks which pin of GPIO generates the interrupt.

As we have masked off the source bit, the function ignores the interrupt and returns
directly without doing anything due to failure to pass the mask status judgment.

We enforce the function to bypass the mask status judgment when button 2 is trig-
gered by or-ing the corresponding bit with 1 in the judgment statement. With the mask
status judgment passed, the action of the user-defined button 2 is taken in the normal
domain. After the codes finish running, system returns to the handler. The handler then
recovers the stored context and starts exception return by executing the instruction:
subs pc, lr, #4.
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5.3 TrustDumper

The TrustDumper is responsible for acquiring the physical memory and the CPU reg-
isters of the Rich OS, performing simple online analysis, and then transmitting the
acquired data to a remote machine for further analysis.

Data Acquisition and Transmission. ARM processors have banked registers: one
copy for the normal domain and the other copy for the secure domain. In the monitor
mode, the processor uses the copy for the secure domain but can also access the copy
for the normal domain.

Since the secure domain can access the physical memory of the normal domain, the
TrustDumper can directly access the Rich OS’s physical address. However, to access
the virtual addresses in the Rich OS, the TrustDumper must walk the page tables of the
Rich OS to get the corresponding physical addresses. The physical base address of the
page table is saved in the Translation Table Base Register (TTBR).

Memory dumping involves transmitting RAM memory to the peripherals. Because
this data transmission is time-consuming, we take advantage of the DMA on the board.
Since DMA has its own processing core and internal memory, the application processor
can continue working on other tasks while the memory is being dumped. The DMA
core executes routines that are stored in the internal RAM to perform DMA operations.
Before transmitting, the TrustDumper saves the current state of the DMA, exporting
the state of the processing core and the routines from the internal RAM to an unused
system RAM on the board. Then it downloads the memory dumping code and the cor-
responding context to the internal RAM. After that, the TrustDumper triggers the DMA
and starts to dump memory to the peripherals. When the data transmission is done, an
interrupt will be generated for the TrustDumper to restore the core state and DMA in-
ternal RAM from the system RAM on the board. In our prototype, we use the serial port
as the peripheral to transmit the RAM memory to a remote laptop. In our future work,
we will add other peripherals such as network card in our system.

Integrity Checking and Rootkit Detection. In our prototype, the analysis module
is capable of checking the integrity of kernel code and detecting rootkits. We provide
two implementations, one hardware-based solution and one software-based solution, of
SHA-1 algorithm to check the integrity of Android kernel.

We leverage the Symmetric/Asymmetric Hashing and Random Accelerator (SA-
HARA) of i.MX53 QSB, a security co-processor that implements block encryption
algorithms (AES, DES, and 3DES), hashing algorithms (MD5, SHA-1, SHA-224, and
SHA-256), a stream cipher algorithm (ARC4) and a hardware random number gener-
ator, to perform hardware-based hash. Since not all ARM platforms have a hardware
security accelerator, we also provide a software-based SHA-1 implementation by port-
ing the open source project PolarSSL [24] to i.MX53 QSB. The memory operations
and output functions of SHA-1 algorithm in PolarSSL are modified to accommodate
the bare-metal environment of the secure domain. Since the performance of hardware
hash is better than software hash, we use the hardware to check the kernel integrity.

To calculate a hash value, the start address and length of the target code is re-
quired. Theres a static offset between the physical address and the virtual address of the
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continuous kernel code. In our prototype, the virtual start address of kernel is
0x80004000 and the offset is 0x10000000, so the physical start address is
0x70004000. The length of the kernel is case-sensitive, varying from different ver-
sions of kernel. Yet after the kernel has been compiled, the length is fixed. In Trust-
Dump, the length is 9080836 bytes.

Our prototype can also detect rootkits that hide malicious processes. Figure 4 il-
lustrates the list of process in linux kernel 2.6.35. In linux, a process is represented
by the struct named task struct, which includes the process number (pid) and
the memory descriptor of the process (mm). All the processes are linked by the struct
list head, a doubly linked list in task struct. Becasue task struct is a com-
ponent of the struct thread info, the address of the task struct corresponding
to the current running process can be located through the thread info, which is lo-
cated at (stack pointer &(0x1FFF)). Therefore, through retrieving the doubly
linked list, all the information of the processes are listed and can be checked to discover
the hidden malicious processes.

struct thread_info{
unsigned long flags;
int preempt_count;

mm_segment_t addr_limit;
struct task_struct *task;

��

��}

struct task_struct{
��

struct list_head tasks;
��

pid_t pid;
��

struct mm_struct *mm;
 ��}
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Fig. 4. Process List

6 Performance Evaluation

We evaluate the performance of TrustDump in three aspects: NMI switching time, mem-
ory dumping time, and analysis time. We use the performance monitor in the Cortex-A8
core processor to count the CPU cycles and then convert the cycle to time by multiply-
ing 1 ns / cycle. We conduct each experiment 50 times and report the average.

6.1 NMI Switching Time

We measure the time of entering TrustDump with NMI and SMC instruction for com-
parison. For NMI measurement, since the performance monitor can only be started by
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software, there is no way to start the performance monitor at the exact time when the
button is pressed. It cannot be done to directly measure the time from triggering of the
interrupt to handling it in the secure domain. To start the performance monitor right be-
fore the NMI is triggered, we assert the NMI in the software-based way. On our board,
software can trigger the NMI by writing the NMI interrupt number into the Software
Interrupt Trigger Register (TZIC SWINT) of TZIC. Therefore, we measure the time
from writing to the register to receiving the request in the secure domain to evaluate the
NMI performance. The result shows that switching time using NMI is 1.7 us, which is
neglectable. We also measure the switching time using the SMC instruction by measur-
ing the time from invoking the SMC instruction to receiving the request in the secure
domain. The average switching time using SMC instruction is 0.3 us. This is shorter
than the time of using NMI because it takes more time for the request of NMI to be
transferred to the processor. However, the switching time using NMI is still very small
and almost imperceptible. Moreover, using NMI is more reliable than using the SMC
instruction to enforce a domain switch.

6.2 Memory Dumping Time

There are two ways to read and send RAM memory content to peripherals: CPU and
DMA. In TrustDump, we choose DMA to free the burden of dumping memory from
CPU. However, our experimental results show that the memory dumping time using
DMA is almost as fast as that of using CPU.

To make the result more convincing, we pick four scales of memory content size:
10 B, 100 B, 1 KB, and 10 KB. For each scale, we conduct the experiments 50 times
for DMA and CPU, respectively. We take the average value and divide the result with
the scale to get the dumping speed: bit rates. The bit rates of each scale are shown in
Table 1. We can see that DMA performs as fast as CPU. Based on the result, it will take
approximately 13.14 minutes in average to dump Android Kernel of 9080836 bytes
to a laptop through the serial port. The bottleneck of the speed is the limited baud rate,
which is 115200, of the serial port. The performance can be improved by using other
faster peripherals, such as the Ethernet and wireless device. Since it requires to develop
new device drivers in the secure domain, we put them into our future work.

Table 1. Memory Dumping Performance

Scale (Byte)
Bit Rate (bit/s)
DMA CPU

10 92178.12 92178.49
100 92163.38 92165.45
1K 92163.01 92163.43
10K 92163.09 92163.11
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6.3 Analysis Performance

We conduct experiments on both the software-based and hardware-based implementa-
tions. The result shows that the time to calculate the kernel hash is 1.56ms by hardware,
and 578.6 ms by software. The performance of hardware hash guarantees that Trust-
Dumper can be invoked frequently to perform kernel integrity checking when using
the hardware-based solution. Though the software-based solution may be too slow for
frequent OS integrity checking, it can be used when the Rich OS crashes or is compro-
mised.

Besides kernel integrity checking, TrustDumper can detect hidden processes. We
deploy a real rootkit Suterusu [25] that can hide processes in the Rich OS for evaluation.
Suterusu performs system call inline hooking on arm platform to hide user-specified
processes. Whenever the ls or top command is called in linux terminal, Suterusu hooks
the functions and deletes the information of the hidden malicious processes from the
result. TrustDump can successfully detect the rootkit by traversing all the processes of
the Rich OS in 2.13 ms. According to the implementation in 5.3, TrustDumper running
in the monitor mode needs to access the stack pointer of the user mode to obtain the
pointer of the current thread info in Rich OS. Because the user mode and the system
mode of the CPU share the same stack pointer, and changing between the monitor mode
and the system mode can be easily done by modifying the Current Program Status
Register (CPSR), we access the stack pointer of the system mode instead. With the
stack pointer, we can traverse all the processes listed in Figure 4 as described in 5.3.
By comparing the result with what we get using command ls or top, we can find the
processes hidden by the Suterusu.

7 Related Work

Memory acquisition techniques on smartphones can be classified into two categories:
the software-based solutions and the hardware-based solutions. A software-based mem-
ory acquisition solution typically relies on either an OS running on the bare metal to
acquire its own memory or a hypervisor to acquire the memory of one VM. Without
/dev/mem support in the Android kernel, Linux Memory Extractor (LiME) has been
developed as a loadable kernel module in Android to directly dump the memory to the
SD card or over the network [26]. It requires rooted devices to insert the module into the
kernel. Based on LiME, another work called DMD [27] can acquire the volatile mem-
ory of Android. Moreover, DDMS [28] provided by Android SDK can also be used to
get memory information. On smartphones, the Android Recovery Mode [29] can give
the user a root privilege and bypass the passcodes to acquire the OS memory; however,
it requires a reboot before the memory acquisition.

In recent years, Hypervisors have been developed and enabled on ARM plat-
forms [30, 31] with hardware support. Thus, the virtual machine inspection tech-
niques [1] can also be implemented on the smartphones to protect the memory
acquisition module from being tampered by the malicious OS. All above software-
based solutions are efficient and easy to use. However, since they rely on the Android
OS or a hypervisor to acquire the RAM memory, they cannot ensure a reliable memory
acquisition when the OS/hypervisor has been compromised.
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Hardware-based techniques usually utilize dedicated hardware components to di-
rectly access the memory through physical addresses [32], where the OS has been to-
tally bypassed. JTAG [33] and chip-off technique [34] can be used to achieve memory
acquisition; however, it works only if a JTAG debug port is identified on the smart-
phones. Moreover, most deployed OSes deny the debugging requests from JTAG to
protect its own security. The cost of the equipment and the destructive nature of chip-off
technique make it difficult to be used widely. Gianluigi Me et al. [35] propose a remov-
able memory card based solution to overcome the heterogeneity of the tools adopted
to retrieve smartphone contents. The existing hardware-based solution is more secure
and reliable. However, it usually demands certain dedicated extra hardware components
that may not be available on all smartphone platforms. Fortunately, the ARM proces-
sors, which have been widely used on smartphones, now provide a system level isola-
tion solution with a hardware security support called TrustZone [15, 16]. TrustZone can
ensure a trusted execution environment to protect the memory acquisition module and
provide enough access privileges to access the Rich OS memory. Our work is based on
TrustZone.

8 Conclusions

Based on ARM TrustZone technology, we propose a reliable memory acquisition mech-
anism named TrustDump on Smartphone to perform forensic analysis and facilitate
malware analysis. TrustDump installs an Android OS in the normal domain and the
memory acquisition module in the secure domain, and it relies on TrustZone to en-
sure a hardware-assisted isolation between the two domains. TrustDump ensures the
reliability of the memory acquisition with a non-maskable interrupt, which prevents
user’s request from being intercepted or blocked by a malicious Rich OS. We propose
fine-grained access control and fine-grained interrupt control techniques to minimize
the impacts on the Rich OS. Our prototype on i.MX53 QSB can enter TrustDump and
begin memory dumping in 1.7 us and calculate a hash value of the Android kernel in
1.56 ms.
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