DroidMiner: Automated Mining and Characterization
of Fine-grained Malicious Behaviors in Android
Applications

Chao Yang!, Zhaoyan Xu', Guofei Gu', Vinod Yegneswaran?, and Phillip Porras?

! Texas A&M University, College Station, TX, USA
{vangchao, z0x0427,guofei}@cse. tamu.edu
2 SRI International, Menlo Park, CA, USA
{vinod, porras}@csl.sri.com

Abstract. Most existing malicious Android app detection approaches rely on
manually selected detection heuristics, features, and models. In this paper, we
describe a new, complementary system, called DroidMiner, which uses static
analysis to automatically mine malicious program logic from known Android
malware, abstracts this logic into a sequence of threat modalities, and then seeks
out these threat modality patterns in other unknown (or newly published) An-
droid apps. We formalize a two-level behavioral graph representation used to
capture Android app program logic, and design new techniques to identify and
label elements of the graph that capture malicious behavioral patterns (or ma-
licious modalities). After the automatic learning of these malicious behavioral
models, DroidMiner can scan a new Android app to (¢) determine whether it con-
tains malicious modalities, (i¢) diagnose the malware family to which it is most
closely associated, (#7¢) and provide further evidence as to why the app is con-
sidered to be malicious by including a concise description of identified malicious
behaviors. We evaluate DroidMiner using 2,466 malicious apps, identified from a
corpus of over 67,000 third-party market Android apps, plus an additional set of
over 10,000 official market Android apps. Using this set of real-world apps, we
demonstrate that DroidMiner achieves a 95.3% detection rate, with only a 0.4%
false positive rate. We further evaluate DroidMiner’s ability to classify malicious
apps under their proper family labels, and measure its label accuracy at 92%.

Keywords: Mobile Security, Android Malware Analysis and Detection.

1 Introduction

Analysis of Android applications (apps) is complicated by the nature of the interaction
between the various entities in its component-based framework. Existing static analysis
approaches for detecting Android malware rely on either matching against manually-
selected heuristics and pre-defined programming patterns [1,2] or designing detection
models that use coarse-grained features such as permissions registered in the apps [3].
Some studies [4,5] design detection models by calculating the frequencies of isolated
framework API calls, which still miss capturing the important programming logic of
Android malware.

In this work, we introduce DroidMiner, a new approach to detect and charac-
terize Android malware through robust and automated learning of fine-grained

M. Kutylowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 163-182, 2014.
(© Springer International Publishing Switzerland 2014

164 C. Yang et al.

programming logic and patterns in known malware. Specifically, DroidMiner extends
traditional static analysis techniques to map the functionalities of an Android app into a
two-tiered behavior graph. This two-tiered behavior graph is specialized for modeling
the complex, multi-entity interactions that are typical for Android applications. Within
this behavior graph, DroidMiner automatically identifies modalities, i.e., programming
logic segments in the graph that correspond to known suspicious behavior. The set of
identified modalities is then used to define a modality vector. DroidMiner then uses
common modality vectors to offer a more robust classification scheme, in which variant
applications can be grouped together based on their shared patterns of suspicious logic.
While DroidMiner also relies on analyzing Framework API calls, different from exist-
ing approaches that merely analyze the isolated usage of Framework APIs, DroidMiner
relies on the modalities that robustly capture the semantic relationships across multiple
APIs and proposes new techniques to automatically extract them. Rather than simply
examining whether or not the target app is malicious (a binary answer), DroidMiner
also provides specific app behavior traits (modalities) to support detection decisions.

We present DroidMiner’s algorithm for discovering and automatically extracting
malware modalities. We evaluate DroidMiner using 2,466 malicious apps, identified
from a corpus of over 67,000 third-party market apps, plus an additional set of over
10,000 official market apps from GooglePlay. We measure the utility of DroidMiner
modalities with respect to three specific use cases: (¢) malware detection, (i¢) malware
family classification, and (¢i¢) malware behavioral characterization. Our results valid-
ate that DroidMiner modalities are useful for classification and capable of isolating a
wide range of suspicious behavioral traits embedded within parasitic Android applic-
ations. Furthermore, the composite of these traits enables a unique means by which
Android malware can be identified with a high degree of accuracy. We anticipate that
programs identified as sharing common modalities with known malicious apps would
then be subject to more in-depth scrutiny through, potentially more expensive, dynamic
analysis tools.

The contributions of our paper include the following:

— A description of our new two-tiered behavioral graph model for characterizing An-
droid application behavior, and labeling its logical paths within known malicious
apps as malicious modalities.

— The design and implementation of DroidMiner, a novel system for automated ex-
traction of robust and fine-grained Android app program behaviors into modalities,
as well as automated characterization of such behaviors to support detection de-
cisions.

— An in-depth evaluation of DroidMiner including its run-time performance and ef-
ficacy in malware detection, family classification, and behavioral characterization.

2 Motivation and System Goals

2.1 Motivations

We motivate our system design by introducing the inner working of a real-world An-
droid malware (MD5: c05c¢25b 769919fd7f1b12b4800e374b5). It attempts to perform

DroidMiner 165

the following malicious behaviors in the background after the phone is booted: stealing
users’ personal sensitive information (e.g., IMEI and IMSI) and sending them to remote
servers, sending and deleting SMS messages, downloading unsolicited apps, and issu-
ing HTTP search requests to increase websites’ search rankings on the search engine.

As illustrated in Figure 1, once the phone is booted, the receiver will send out an
alarm every two minutes and trigger another receiver (named ‘“MyAlarmReceiver”)
by using three API calls: AlarmManager(), getServiceSystem(), and getBroadcast().
Then, MyAlarmReceiver starts a background service (named “MyService”) by calling
startService() in its lifecycle call onReceive(). Once the service is triggered, it will read
the device ID (getDeviceld()) and subscriber ID (getSubscriberld()) in the phone, and
register an object handler to access the short message database (content://sms/). Mean-
while, the service monitors changes to the SMS Inbox database (content://sms/inbox/)
by calling ContentObserver.onChange() and deleting particular messages using delete(),
and also attempts to download unsolicited APK files (e.g., “myupdate.apk’). More de-
tails can be found in our extended technical report [6].

Intent: android.intend.action.Boot_Complete |

onReceive()—
(.- t
[Recciver:MyBoolService |—AlarmManager(:‘l‘:r'; e
ochcclvc()
....ne,m,,(startServiee(—] Receiver M,Alarmnmavero]
Send

sendTextMessage(
Create
Service

onStart() SMS
content://sms/ getDeviceld()

reate() !
SmsManager.getDefault()

Start . nerypt
Clphcr.gctlnslacc()
DefaultHttpClient.execute()
2e() Send
DefaultHttpClient.exceute() Data
getSubscriberld() content://***/preferapn | Content: //sms/mbox
$ getActiveNetworkInfo()

$ Conten |Resol ver. delel?()
$ earc nwnloa
ommaj cbsll APK

Fig. 1. Capabilities embedded in malware from the ADRD family. The sample achieves its mali-
cious functionalities by mainly invoking a series of framework APIs in order.

ContentObserver.
ConnectivityManager()

.onChan;

The above description motivates an important design premise that when malware
authors design malicious apps to achieve specific malicious behaviors, they typically
require the use of sets of framework API calls and specific resources (e.g., content
providers). More specifically, although attackers may attempt to launch malicious be-
haviors in a more surreptitious way, they would still have to use those framework APIs
or access those important resources.

2.2 Goals and Assumptions

The goal of DroidMiner is to automatically, effectively and efficiently mine Android
apps and interrogate them for potentially malicious behaviors. Given an unknown app,
DroidMiner should be able to determine whether or not it is malicious. Going beyond
just providing a yes or no answer, our system should be able to provide further evid-
ence as to why the app is considered as malicious by including a concise description
of identified malicious behaviors. This kind of information is typically considered the
hallmark of a good malware detection system. For example, DroidMiner can inform

166 C. Yang et al.

us that a given app is malicious, and that it contains behaviors such as sending SMS
messages and blocking certain incoming SMS messages.

Currently, we do not analyze native Android apps implemented using the Android
Native Develop Kit (Android NDK). According to our observations, an overwhelming
majority of Android apps today are developed using the Android SDK. Furthermore,
the vast majority of malicious behaviors in Android apps are achieved by using An-
droid SDK rather than Android NDK. Even for those malicious apps that use the NDK
to achieve some malicious behaviors, they typically also use certain Android Frame-
work APIs to obtain some auxiliary information. For example, “rooting” malware (e.g.,
samples in the family of DroidKungFu), which utilizes native code to achieve privilege
escalation, still needs to use specific Framework APIs to obtain auxiliary information
(e.g., the version of the operating system) to successfully root the phone. Hence, the
presence of such APIs in the Dalvik bytecode could still provide hints for detecting
such malware. Extending our system to include complete analysis of native code in
Android apps is future work and outside the scope of this paper.

3 System Design

DroidMiner contains two phases: Mining and Identification. As illustrated in Figure
2, in the mining phase, DroidMiner takes both benign and malicious Android apps as
input data and automatically mines malicious behavior patterns or models, which we
call modalities. In the identification phase, our system takes an unknown app as input,
extracts a Modality Vector (MV) based on our trained modalities, and outputs whether
or not it is malicious, and which family it belongs to. In addition to a simple yes/no
answer, our system can also characterize the behaviors of the app given the Modality
Vector representation.

Mining sehavior — — Identification
Sranh g%ﬁ géw
Generation Behavior

Graph

Behavior Graphs chy
- &\ &\ Candidate Android app
R 2

/ sensitive Behavior Graphs

Wl B, _
9% Extraction Generation Malware Detection
" -
Malicious and Benign \ Modality -
Android apps for mining Vector e
G)t - f
enerdion P _y| Malware Family
— <0,1,1,0,1,0> -7 == e
\1 — 011010 | __em=== Classification
— onLone - Use Cases
N 0,1,1,0,1,0: -
Function Resource | | = [2RROOY el
Modalities Modalities Modality Vectors ===/ Behavior Characterization |

Fig. 2. DroidMiner System Architecture

An important component in our system is the Behavior Graph Generator, which takes
an app as input and outputs a behavior graph representation. As illustrated in Figure 1,
although Android malware authors have significant flexibility in constructing malicious
code, they must obey certain specific rules, pre-defined by the Android platform, to

DroidMiner 167

realize malware functionality (e.g., using particular Android/Java framework APIs and
accessing particular content providers). These framework APIs and content providers
capture the interactions of Android apps with Android framework software or phone
hardware, which could be used to model Android apps’ behaviors. With this intuition,
DroidMiner builds a behavior graph based on the analysis of Android framework APIs
and content providers used in apps’ bytecode.

In the Mining phase, DroidMiner will attempt to automatically learn the malicious
behaviors/patterns from a training set of malicious applications. The basic intuition
is that malicious apps in the same family will typically share similar functionalities
and behaviors. DroidMiner will examine the similarities from the behavior graphs of
these malicious apps and automatically extract common subsets of suspicious behavior
specifications, which we call modalities. From an intrusion detection perspective, these
modalities are essentially micro detection models that characterize various suspicious
behaviors found in malicious apps (in Section 3.1).

In the Identification phase, DroidMiner transforms an unknown malicious app into
its behavior graph representation (using Behavior Graph Extractor) and extract a
Modality Vector (based on all trained modalities), described in Section 3.3. Then, Droid-
Miner applies machine-learning techniques to detect whether or not the app is mali-
cious. DroidMiner also has a data-mining module that implements Association Rule
Mining to automatically learn the behavior characterization (in Section 3.4).

3.1 Behavior Graph and Modalities

Behavior Graph. DroidMiner detects malware by analyzing the program logic of sens-
itive Android and Java framework API functions and sensitive Android resources. To
represent such logic, we use a two-tiered graphical model. As shown in Figure 3, at
upper tier, the behaviors (functionalities) of each Android app could be viewed as the
interaction among four types of components (Activities, Services, Broadcast Receiv-
ers, and Content Observers). We represent this tier using a Component Dependency
Graph (CDG). At the lower tier, each component has its own semantic functionalities
and a relatively independent behavior logic during its lifetime. Here, we represent this
independent logic using Component Behavior Graphs (CBG).

Component Dependency Graph (CDG) (upper tier of Figure 3) represents the in-
teraction relationships among all components in an app. Each node in the CDG is a
component (Activity, Service, or Broadcast Receiver). (Note that multiple nodes could
belong to the same type of component.) There is an edge from one node v; to another
node v;, if the component v; could activate the start of component v;’s lifecycle.

The Component Behavior Graphs (CBG) (lower tier of Figure 3) represents each
component’s lifetime' behavior logic (functionalities), i.e., each CBG represents the
control-flow logic of those permission-related Android and Java API functions, and
actions performed on particular resources of each component. Specifically, as illustrated
in Figure 3, a CBG contains four types of node:

! Lifetime, as defined by Android, is time between the moment when the OS considers a com-
ponent to be constructed and the moment when the it considers the component to be destroyed.

168 C. Yang et al.

StdrtALthlty() intent

startServiceQO

|on(reateQ | | onResumeQ | [onStartQ | [onDestroyO] [onReceiveO |

6:;;
G@rD :t:f.:’;;:::

CFD @ @%
@ Rcsourcc

(content)

AT Y31

0

AL
pm o] |

Fig. 3. Two-tier behavior graph

— A root note (v,,0t), denoting the component itself (e.g., an Activity).

— Lifecycle functions (Vi.r), used to achieve the runtime programming logic (e.g.,
onCreate() in activities, onReceive() in receivers, and onStart() in services).

— Permission-related API functions (V,,y), representing those permission-related (An-
droid SDK or Java SDK) API functions (e.g., Java API Runtime.execute() or An-
droid API sendTextMessage()). For simplicity, in the rest of paper, we refer both
lifecycle functions and API functions as framework API functions.

— Sensitive resource (V,.s), 1.€., sensitive data (files or databases) that are accessed
by the component. In this work, we consider resources as content providers (e.g.,
content://sms/inbox/), which could be extended to any other type of sensitive data.
The usage of framework API functions and sensitive resources in an app essentially
captures the interactions of an app with the Android platform hardware and sensit-
ive data. Hence, the control-flow logic of framework API functions and the actions
performed on those sensitive resources reflect an application’s range of capabilities.

The edges in CBG represent the control-flow logic of framework API functions and
sensitive resources. In terms of framework API functions, we consider that there is a
direct edge from function node v; to v; in the CBG, if (1) when v; and v; are in the
same control-flow block, v; is executed just after v; with no other functions executed
between them; or (2) when v; and v; are in two continuous control-flow blocks B; and
B; respectively (i.e., B; follows B;), v; is the last function node in B; and v; is the
first node in B;. Then, we call v; “is a successor of” v;. For example, in terms of the
malware sample illustrated in Figure 1, there is an edge from smsManager.getDefault()
to sendTextMessage(). In terms of sensitive resources, since our work mainly focuses
on analyzing the control-flow of sensitive functions rather than the data flow of sensitive
data, we simply consider that there is an edge from the root to the resource v,., if the

component uses that sensitive resource’.

Modality. We use the term, modalities to refer to malicious behavior patterns that are
mined from behavior graphs of Android malware. More specifically, each modality is
an ordered sequence (reserving the control-flow order) of framework API functions
(function modality) or a set of sensitive resources (resource modality) in commonly

2 We could also choose to build an edge from a framework API function (that uses that resource)
to the resource, which relies on the data flow analysis.

DroidMiner 169

shared in malicious apps’ behavior graphs®, which could be used to implement sus-
picious activities (e.g., sending SMS messages to premium-rate numbers or stealing
sensitive information). As an example, the malware sample illustrated in Figure 1 re-
lies on a function modality with an ordered sequence of two framework functions (on-
Change() — ContentResolver.delete()), and a resource modality (content://sms/inbox/)
to partially achieve the malicious behavior of deleting messages in the SMS inbox.

3.2 Mining Modalities

Based on previous concepts, DroidMiner’s approach to efficient mining of modalities
from large malware corpora involves the following three steps: Behavior Graph Gener-
ation, Sensitive Node Extraction, and Modality Generation.

Behavior Graph Generation. The generation of the behavior graph of an app con-
tains two phases: generating CDG and generating CBG. Due to the page limitation,
we mainly introduce the details of generating CBG (Details of generating CDG can
refer [6].) Since Android is component driven, and each component has its own life-
time execution logic, the extraction of control-flow logic of framework API functions
is more complex than traditional program analysis. DroidMiner generates the behavior
graph by using the following three steps.

(¢) Transformed CFG (d) CBG with API functions

Fig. 4. Illustration of generating a CBG with framework API functions

Step 1: Generate Method Call Graph. For each component, our system generates a
method call graph (MCG) containing two types of nodes: Android lifecycle functions
and user-defined methods. Since each type of component has fixed lifecycle functions
(e.g., onCreate() in an Activity), DroidMiner extracts lifecycle functions by analyzing
method names in the component. Those user-defined methods are identified by using a
static analysis tool. As illustrated in Figure 4(a), the directed edge from method M to
M implies that M calls M;.

3 Although modalities described in this paper are localized within a CBG, our work could be
extended to include cross CBG modalities with the usage of CDG.

170 C. Yang et al.

Step 2: Generate Control-Flow Graph. To extract the program logic corresponding
to the usage of framework APIs, DroidMiner extracts each method’s control-flow graph
(CFG) by identifying branch-jump instructions in the method’s bytecode (e.g., if-nez
or packed-switch). Each node is a block of Dalvik bytecode without any jump-branch
instructions. For example, M, with five blocks is illustrated in Figure 4(b). The directed
edge from block By to B; implies that B is a successor block of By. Then, each block
is represented as an ordered sequence of framework API functions and user-defined
methods, which are extracted from the Dalvik bytecode with function call instructions
(e.g., invoke-direct). We label a block as “null”, if it does not contain any function call
instructions . For example, in the method My, if (1) By contains two API functions and
user-defined method M7, with the execution order of fy1, M7 and foo; (2) By and Bsg
do not contain any function calls; (3) B> contains method M5 and one API function fo1;
(4) B3 contains one API function fy41, then the control-flow graph of M is formed as
Figure 4(c).

Step 3: Replace User-Defined Methods. As illustrated in Figure 4(c), since each leaf
in the method-call graph does not call any other user-defined method, the leaf either
contains a subgraph of framework API functions or is “null”. Then, our approach re-
places its position in its parents’ control-flow graphs with that subgraph. This process
is recursively performed, until all user-defined methods are replaced with framework
API functions. For example, if (1) M; contains three framework API functions (f,,1,
fms, and f,,4) and one “null” node after replacing its children methods M3 and M, as
illustrated in the middle of Figure 4(d), and M5 does not contain any function nodes,
then after replacing its children methods M35 and Mg, the graph will be transformed
to Figure 4(d). Finally, the CBG will be generated by removing those leaves that are
“null”. After the above three steps, each app’s CBG could be generated that represents
the control flow of its framework API calls.

Sensitive Node Extraction. A modality is an ordered sequence of framework API
functions and a set of sensitive resources that are commonly observed in malware’s
behavioral graphs. We denote those framework API functions and sensitive resources
as sensitive nodes (the former are called sensitive function nodes, and the latter are
called sensitive resource nodes).

We use two strategies to automatically extract sensitive nodes. The first strategy
is based on the observation that malware samples belonging to the same family tend
to share similar malicious logic. Such an observation has been validated by a recent
study, which reports that Android malware in the same family tends to hide in multiple
categories of fake versions of popular apps [7]. Based on this intuition, we group known
malware samples according to their families. Then, for each malware family, we extract
function nodes and resource nodes that are commonly shared by at least % members
in this family. Our second strategy is based on the observation that malware samples
hosted on third-party market websites tend to be parasitic, i.e., they masquerade as
popular benign apps by injecting malicious payloads into original benign apps. Based
on this intuition, we automatically extract sensitive nodes by calculating the additional
bytecode between the known malicious app and official Android apps sharing similar
app names. More details/discussions of the two strategies are in our technical report [6].

DroidMiner 171

Modality Generation. Intuitively, our system generates function modalities by mining
an ordered sequence (path) of sensitive function nodes from known malware samples’
behavior graphs, as illustrated in Figure 2. In particular, for each path of each known
malware’s CBG, we denote a subpath of it as a sensitive path, if it starts from one sens-
itive function node and ends with another sensitive function node. Then, after removing
those non-sensitive nodes sitting in the middle of the sensitive path, we generate func-
tion modalities from the transformed sensitive path by extracting all of its subsequences.
Generating function modalities involves the two steps: Extract Sensitive Path and Ex-
tract All Subsequences. (Due to the page limit, we leave the detailed algorithm in [6].)

Step 1: Extract Sensitive Path. For each pair of sensitive nodes S; and S;, we ex-
tract sensitive paths P;; of framework API functions from all known malware samples’
CBGs, if P;; starts from .S; and ends with S;. In particular, for each path in the mal-
ware’s CBG, we generate modalities from the longest sensitive path, which will cover
the results extracted from those shorter sensitive paths. As an illustrative example in
Figure 4(d), if fo1, fma and foo are sensitive nodes, the longest sensitive path could
be illustrated as Figure 5(a). Then, we could generate a transformed path of function
nodes, through removing non-sensitive nodes in the middle. In the previous example,
a transformed sensitive path fo1 — fna — fo2 can be extracted by removing two
non-sensitive nodes f,,,; and “null” in the middle.

Step 2: Extract All Subsequences. We generate function modalities by extracting all
order-preserving* subsequences of the transformed path of sensitive function nodes.
Accordingly, we could mine four function modalities from the previous example (see
Figure 5(b)). Since DroidMiner utilizes all subsequences to generate the modalities
instead of using the original single long sequence/path, DroidMiner is resilient to many
evasion attempts by malware, e.g., insertion of loop framework API calls in the middle
that serve no purpose other than adding noise. Hence, our modalities are a more robust
representation of specific malware programming logic than using simple call sequences
or frequencies.

Cms D=t D>—Cng Do >

(a) Extract Sensitive Path

:9
|

(1) Modality 1 (2) Modality 2
(3) Modality 3 (4) Modality 4

(b) Extract All Subsequences

Fig. 5. An illustration of function modality generation

* This implies that the order of two function nodes in the subsequece remains the same as in the
original path.

172 C. Yang et al.

3.3 Identification of Modalities

After mining modalities, the second phase of DroidMiner involves the identification of
modalities in unknown apps (i.e., determine which modalities are contained in unknown
apps). As illustrated in Figure 2, for each unknown app, DroidMiner identifies its mod-
alities by extracting its behavior graph and generating a Modality Vector, specifying the
presence of mined modalities.

More specifically, for each unknown app, DroidMiner generates its behavior graph
and extracts sensitive paths from the graph. Then, DroidMiner obtains all potential sub-
paths by generalizing those sensitive paths. For each sub-path, if it is a modality (be-
longing to the mined modality set), we consider this app to contain this modality. This
process of modality extraction is highly efficient due to the limited number of sens-
itive nodes present in each app. In this way, once M different modalities are mined
from known malware samples, each app could be transformed into a boolean vector
(X1, X2,..., X)), denoted as a “Modality Vector”: X; = 1, if the app contains the
modality M;; otherwise, X; = 0. In this way, an app’s Modality Vector could represent
its spectrum of potentially malicious behaviors.

3.4 Modality Use Cases

We introduce how to use an Android app’s Modality Vector to address the following
three use-case scenarios: Malware Detection, Malware Family Classification, and Ma-
licious Behavior Characterization.

Malware Detection. The first use case involves simply determining whether or not an
Android app is malicious. In fact, it is challenging to make a confirmative decision.
For example, although some sensitive behaviors (e.g., sending network packets or SMS
messages to remote identities) are commonly seen in malware, without a deep analysis
about such behaviors (e.g., the analysis of the reputation of those remote identities),
we cannot blindly declare all apps with such behaviors to be malware. However, An-
droid malware typically needs to use multiple sensitive functions (or modalities) to
achieve its objectives: e.g., (¢) sending SMS AND blocking notifications or (%) rooting
the phone AND installing new apps. According to this observation, DroidMiner con-
siders an app to be malicious only if the cumulative malware indication from all of its
modalities exceed a sufficient threshold. That is, the single usage of one modality in a
benign app will not cause it to be labeled as malware. We use machine learning tech-
niques to learn the indication of each modality used in the cumulative scoring process.
More specifically, we consider each of mined modalities as one detection feature in the
machine-learning model. Thus, the number of detection features is equal to the dimen-
sionality of the Modality Vector. By feeding modality vectors extracted from known
malware and benign apps into the applied machine-learning classifier, the indication
of those modalities that are highly correlated with malicious apps are up-weighted in
judging an app to be malicious; those modalities that are also commonly used in benign
apps are down-weighted.

DroidMiner could also be designed to detect malware using pre-defined (strict) de-
tection rules, like policy-based detection systems discussed in Section 5, which may
lead to a lower false positive rate. However, such a policy-based design requires con-
siderable domain knowledge and comprehensive manual investigations of malware

DroidMiner 173

samples, which can limit overall scalability and thus is more suitable to be applied
to detect specific attacks. Our goal of designing a fully automated approach motivated
us to use the learning-based approach instead of policy-based ones.

Malware Family Classification. Besides detecting malware from a corpus of apps, an-
other use case is automatically determining the family that an identified malware sample
may belong to, given sufficient knowledge from existing known malware families. This
problem is also important for understanding and analyzing malware families. In fact,
many antivirus vendors still rely on common code extraction techniques, which typic-
ally manually extract signatures after gathering a large collection of malware samples
belonging to the same malware family.

Different malware samples in the same family tend to share similar malicious be-
haviors, which could be depicted by Modality Vectors. Thus, the degree of similar-
ity between the Modality Vectors of two malware samples provides an indication of
whether they belong to the same family. Hence, with the knowledge of Modality Vec-
tors mined from malware samples belonging to existing malware families, we could
also build a malware family classifier for unknown malicious apps.

Malicious Behavior Characterization. The final use case involves characterizing the
specific malicious functionality embedded within a candidate app. To solve this prob-
lem, we essentially need to know which modalities could be used to achieve specific
malicious behaviors. Then, if an app contains those modalities, we could claim with
high confidence that the app is malicious. To realize this goal, we use a data mining
technique, called “Association Rule Mining [8]”. Due to the page limit, we only intro-
duce the basic intuition here, and recommend interested readers to read our extended
version [6]. Intuitively, we mine relationships (association rules) from modalities to ma-
licious behaviors. More specifically, DroidMiner derives association rules by analyzing
the relationship between the modality usage in existing known malware families and
their corresponding malicious behaviors. For example, Zsone has two known malicious
behaviors: (z) sending SMS and (¢¢) blocking SMS. DroidMiner associates modalities
generated from this family to these two behaviors.

4 Evaluation

We present our evaluation results by implementing a prototype of DroidMiner and ap-
plying it to apps collected from existing third-party Android markets and from the offi-
cial Android market (GooglePlay).

4.1 Prototype Implementation

We implement a prototype of DroidMiner on top of a popular static analysis tool
(Androguard [9]). In our experience, comparing with other public Android app decom-
pilers (e.g., Dex2Jar [10] or Smali [11]), Androguard produces more accurate decom-
pilation results, especially in terms of handling exceptions. The prototype decompiles
an Android app into Dalvik bytecode, further builds its behavior graph and mines its
modalities based on the bytecode.

174 C. Yang et al.

The method call graph in an app is built by analyzing the caller-callee relationships
of all methods used in the app. For each method, DroidMiner extracts its callee methods
by analyzing the invoke-kind instructions (e.g., invoke-virtual and invoke-direct) used in
the method. Since Android is event-driven, the entrance of an app could also be Ul event
methods (e.g., onClick). However, such UI event methods could only be executed after
the corresponding UI event listeners are registered (e,g., setOnClickListener). Thus, to
make the program logic more complete, DroidMiner adds an edge from Ul events listen-
ers to corresponding Ul event methods, although there is no such caller-callee relation-
ships in the bytecode. We use a similar strategy to address registered event handlers
and threads. DroidMiner generate the control-flow graph in each method by analyzing
branch jump instructions (e.g., if-eq). In our implementation, all behavior graphs are
stored in XGMML [12] format, a highly efficient format for graph representation and
matching.

4.2 Data Collection

We crawled four representative marketplaces, including GooglePlay, and three altern-
ative markets (SlideMe [13], AppDH [14], and Anzhi [15]). The collection from the
alternative markets occurred during a 13-day period. GooglePlay collection was harves-
ted during a two-months period. As described in Table 1, in total, we collected 67,797
free apps, where 17% of the apps (11,529) were collected from GooglePlay, and the
remaining 83% (56,268) were harvested from the alternative markets.

Table 1. Summary of Android App Collection

Official Market SlideMe AppDH Anzhi

Location US.A U.S.A China China
Number of Apps 11,529 15,129 2,349 38,790
11,529 (17%) 56,268 (83%)
Total Apps
67,797

Next, we isolate the set of malicious apps from our corpus by submitting the set of
apps from the alternative markets to “VirusTotal.com”, which is a free antivirus (AV)
service that scans each uploaded Android app using over 40 different AV products [16].
For each app, if it has been scanned earlier by an AV tool, we can obtain the full Virus-
Total report, which includes the first and last time the app was seen, as well as the
results from the individual AV scans. For example, BitDefender has a report for a ma-
licious app (MDS5: 7acb7c624d7al9ad4fa92cacfddd9257) as Droid.Trojan.KungFu.C.
Thus, we obtained 1,247 malicious apps identified by at least one AV product. For each
malicious app, we extract its associated malware family name, and when AV reports
disagree, we derive a consensus label using the label that dominates the responses from
the AV tools. In addition, we obtain another set of malware samples from Genome
Project [17,18]. This dataset contains the family label for each malware sample. After
excluding those already appeared in our crawled malware set, there are 1,219 differ-
ent malware apps. Thus, in total, our malware dataset consists of 2,466 (1,247+1,219)
unique malicious apps that belong to 68 malware families.

DroidMiner 175

We construct a benign dataset using popular apps collected from GooglePlay. To
further clean this dataset, we submit our candidate set of 11,529 free GooglePlay apps
to VirusTotal, of which 1,126 apps were labeled as malicious by one AV product. We
discarded those apps and constructed our benign dataset using the remaining /0,403
free GooglePlay Android apps. Clearly, the benign app dataset may still contain some
malicious apps, but this set has at least been vetted by the GooglePlay anti-malware
analysis and by more than 40 AV products from VirusTotal. The problem of producing a
perfect benign app corpus remains a hard challenge, and we note that a similar approach
to construct a benign app dataset has been used in prior related work [3].

4.3 Evaluation Result

Below, we summarize our system evaluation results for malware detection, malware
family classification, behavior characterization, and efficiency.

Malware Detection. As introduced in Section 3.4, we utilize machine learning tech-
niques to conduct malicious app detection. To better evaluate the effectiveness of
DroidMiner, we utilize four widely used machine learning (ML) classifiers: Naive-
Bayes, Support Vector Machine (SVM), DecisionTree and Random Forest.

For each classifier, we conduct a series of experiments using a ten-fold cross valid-
ation to compute three performance metrics: False Positive Rate, Detection Rate, and
Accuracy. Specifically, we divide both malicious and benign datasets randomly into 10
groups, respectively. In each of the 10 rounds, we choose the combination of one group
of benign apps and malicious apps as the testing dataset, and the remaining 9 groups as
the training dataset. We further compare the performance of DroidMiner with another
classifier (used in [3]), which uses registered permissions as major detection features,
based on our collected dataset.’

Table 2 shows the results of using permission versus DroidMiner based on different
classifiers. We see that for all four classifiers, the usage of modalities as the input fea-
ture set (DroidMiner) produces a higher detection rate and lower false positive rate than
the approach of using permission features [3]. Particularly, using Random Forest Droid-
Miner achieved a detection rate of 95.3%, roughly 10% higher than the that of using
permission. Furthermore, DroidMiner produced a lower false positive rate of (0.4%), or
around 1/5th of the compared approach. Also, DroidMiner could maintain the detection
rate higher than 86% for all four classifiers. Due to space limit, we leave a more detailed
analysis of false positives and negatives in [6].

Table 2. Detection Results (DR denotes detection rate, FP denotes false positive)

Classifier NaiveBayes SVM Decision Tree Random Forest

Method Permission DroidMiner Permission[3] DroidMiner Permission[3] DroidMiner Permission[3] DroidMiner
DR 75.1% 82.2% 78.8% 86.7% 85.7% 92.4% 87.0% 95.3
FP Rate 7.2% 4.4% 3.5% 1.1% 2.2% 1.0% 2.0% 0.4%

3 We are unable to provide a direct corpus comparative evaluation with other detection systems
discussed in related work [1,2], because they are not publicly available and it is generally
difficult to completely reproduce similar systems and parameter selections.

176 C. Yang et al.

Family Classification. The purpose of this experiment is to measure the accuracy of
using Modality Vectors to correctly assign apps that are classified as malicious to their
correct corresponding malware family. To conduct the malware family classification, we
use samples from 12 families, each of which has more than 50 samples. The number of
samples of each family is shown in Table 3.

Table 3. Malware samples used for classification

Ind Family Num Ind Family Num Ind Family Num Ind Family Num
1 GingerMaster 166 4 AnserverBot 187 7 KMin 52 10 DroidKungFu3 327
2 GoldDream 57 5 DroidKungFu 70 8 BaseBridge 122 11 DroidKungFu4 10
3 Airpush 568 6 Leadbolt 52 9 Geinimi 69 12 Plankton 194

For each family, we use half of the samples as training dataset, and the other half
as the testing dataset. In this case, the classification accuracy represents the ratio of the
number of correctly classified samples to the total number of samples in the test dataset.
Here, we use Random Forest for classifying both the training and testing datasets. The
classifier produces a relatively high classification accuracy of 92.07%.

0 04

W
Iy
o
®

N N O Of

0000000 0f

00000 KN O Of
N OO0 O O0OO0CONDO Of

0.2

wWwHrOOORNDO
Co0O0CwoM@roO

o.1

HO 0 0 00CO0O0O0CO0O0CO0
NtO O O W 00 0w K O
vt

MO 0O 0 O WO OO
00 0 0

0.0

S0 O N O 0 0 K

Fig. 6. The confusion matrix of malware classification for multiple malware families

Figure 6 shows the confusion matrix produced from our classification of the dataset
into the malware family label set. The value of the cell (¢,7) in the matrix shows the
number of samples in family ¢, which are classified as being family j. Thus, the central
diagonal in the matrix shows the number of correctly predicted samples per malware
family. The darker the cell color is, the higher the classification accuracy is. With the
exception of Leadbolt (index is 6), most of the other families achieve an accuracy higher
than 90%. Leadbolt is an adware family, and thus its implementation may be influenced
by the campaign it is serving, and thus producing a behavior that has a wide variability,
leading its samples to appear to match a wider range of potential families.

Behavior Characterization. As described in Section 3.4, to characterize malicious be-
haviors, we construct a behavior matrix based on malicious behaviors observed within
an existing training set of known malware apps. To decrease sampling bias, we produce
our fraining dataset using malware samples from families which have a minimum of 5
members. Next, for each family, we manually extract a malicious behavior description

DroidMiner 177

for this family using documentation describing the malware family from sites that con-
tain malware analysis reports, such as threat reports from various AV companies (e.g.,
Symantec.com). There are many detailed public sources of information regarding mali-
cious behavior description for many existing Android malware families. For this exper-
iment, we focus on the following six malicious behaviors commonly observed within
many malware families: stealing phone information (GetPho), Sending SMS (SdSMS),
blocking SMS (BkSMS), communicating with a C&C (C&C), escalating root privilege
(Root) and accessing geographical information (GetGeo). We refer interested readers
to [6] for more details.

Table 4. Characterizations on 10 malware samples

MD5 Family Behavior
917alaa8fafb97cdb91475709calScdb MobileTX SdSMS, C&C
49ea90de2336dccee188c3078ea64656 Gappusin - SASMS, BKSMS, C&C, GetGeo
d6aea5963681cf6415cc3f221e4e403b Cosha SdSMS, C&C, GetGeo

8ef081ff9fb2dd866bfcoaf6749abdef Fakeflash C&C
a835b82de9e15330893ddf2da67a6a49 HippoSMS SdSMS, BkKSMS
bbb6f9alaad8cc8c38d4441bac4852¢0 DroidDeluxe Root

9b0d331aa9019bfb550f4753aba45d27 RogueLemon SdSMS, BKSMS, C&C
cfa9edb8c9648ae2757a85e6066f6515 Spitmo GetPho, SASMS, BKSMS, C&C
ee0f74897785eb3f7af84a293263c6c5 Gamex Root
c00e43c563ecadf1€22097124538c24a Tapsnake C&C, GetGeo

Efficiency. We now consider the performance overhead of DroidMiner in identifying
modalities. As described in Section 3.3, modality identification involves three steps: 1)
decompilation, 2) behavior graph generation and 3) modality vector generation. Table
5 shows the mean and median value of time spent on each step and the overall time
required to identify modalities for all collected apps. Table 5 illustrates that DroidMiner
expended an average of 19.8 seconds and a median of 5.4 seconds to identify modalities
in an app. We provide a fine-grained analysis of the time used for generating behavior
graphs in our extended version [6].

Table 5. Time for identifying modalities.

Step Decompile Behavior Graph Modality Vector Overall
Mean 3.87 15.19 1.10 19.83
Median 1.65 3.08 0.56 5.35

5 Related Work
5.1 Mobile Malware Detection

System Call Monitoring. Systems such as [19,20,21] detect malware by monitoring
and analysis of system calls. A fundamental shortcoming of such approaches is the

178 C. Yang et al.

semantic gap between the system calls and specific behaviors. DroidScope [22] is de-
signed to reconstruct both OS-level and Java-level semantics. Their dynamic analysis
approach is limited by path exploration challenges.

Android Permission Monitoring. Enck et al. studied the security of Android apps by
analyzing the permissions registered in the top official Market apps [23]. Stowaway [24]
and COPES [25] are designed to find those apps that request more permissions than they
need. PScout [26] analyzes the usage trend of permissions in Android apps. Kirin [27]
detected malicious Android apps by finding permissions declared in Android apps that
break “pre-defined” security rules. More recent work also detected malicious Android
apps by designing several classifiers, whose features were built primarily on the applic-
ation categories and permissions [3]. A concern with these approaches is false positives
stemming from the coarse-grained nature of permissions and the highly common nature
of benign apps to over-claim their set of required permissions. Mario et al. [28] presen-
ted their studies of permission request patterns of Android and Facebook applications.

Framework API Monitoring. DroidRanger [1] and Pegasus [2] detect malicious An-
droid apps by statically matching against “pre-defined” signatures (permissions and An-
droid Framework API calls) of well-known malware families. Such approaches requires
semi-manual analysis of suspicious system calls and manual selection of heuristics (or
detection patterns). Thus, they are not systematic and not robust to the evolution of mal-
ware. In [4,5], the frequencies of API calls were used as detection features, and more
recently in [29], the names and parameters of APIs and packages were used as detec-
tion features. Such studies differ fundamentally from DroidMiner in that our modalities
capture the connections of multiple sensitive API functions, not just the frequency or
names of APIs.

Online Malware Detection Service. We intend to make DroidMiner available as a
public webservice for Android malware analysis and detection. Similar public services
include AndroTotal [30] which allows users to submit applications and have them sim-
ultaneously analyzed by various mobile antivirus systems and CopperDroid [31] which
performs system-call centric dynamic analysis.

Due to space limit, we leave more detailed comparisons and discussions in [6].

5.2 Android Platform Security Defense and Analysis

Existing studies have also developed several security extensions to defend against spe-
cific types of attacks. TaintDroid [32] detects those apps that may leak users’ privacy
information. However, it is not designed to detect other types of malicious behaviors
such as stealthily sending of SMS. RiskRanker [33] detects malicious apps based on
the knowledge of known Android system vulnerabilities, which could be utilized by
malicious apps, and several heuristics. Dendroid [34] is a static analysis tool which spe-
cializes in text mining of android malware code. Quire [35] prevents confused deputy at-
tacks. Bugiel et al. [36] proposed a security framework to prevent both confused deputy
attacks and collusion attacks. AppFence [37] protects sensitive data by either feeding
fake data or blocking the leakage path. Apex [38] allows for the selection of granted
permissions, and Kirin [27] performs lightweight certification of applications. Paranoid
Android [19], L4Android [39] and Cells [40] utilize the virtual environment to secure

DroidMiner 179

smartphone OS. SmartDroid [41] automatically finds UI triggers that result in sensitive
information leakage.

6 Discussion

DroidMiner against Zero-Day Attacks. Emerging malware generally falls into two
classes: fundamentally new strain with entirely novel code bases, and malware that
improves (evolves) from an existing code base. The latter form arguably represents the
dominant case. We believe DroidMiner is well designed to adapt to evolutionary change
in existing code bases, and thus useful in detecting most emerging variant strains. As
long as new malware launches malicious behaviors through utilizing modalities ob-
served in known malware families, DroidMiner should detect it. For entirely novel mal-
ware strains, an additional strength of DroidMinder is that unlike traditional systems
that require human expertise, DroidMiner’s features (modalities) can be automatically
learned and updated by feeding new malware samples.

DroidMiner against Common Evasion Techniques. We can envision that Android
malware may evolve to be more evasive. As observed by DroidChameleon [42], com-
mon malware transformation techniques (e.g., repackaging, changing field names, and
changing control-flow logic) could evade many existing commercial anti-malware tools.
However, DroidMiner is resilient to these common evasion techniques studied in [42].
Specifically, DroidMiner does not rely on specific signing signatures or class/method-
/field names to detect malware. The simple program transformation (resigning, repack-
aging, changing names) will not affect the detection model used in DroidMiner. Another
type of evasion technique is to insert noisy code and spurious calls in between malicious
sequences, or to change specific control-flow logic. However, DroidMiner is designed
to extract all subsequences of suspicious control-flow logic commonly seen in malware
(instead of relying on the exact matching of one full/long execution path). As long as
the malware follows a known programming paradigm to achieve malicious goals (e.g.,
intercepting short text messages after receiving them, and obtaining the phone number
before sending it), DroidMiner could still capture such suspicious logic regardless of
the noisy/spurious API injections in the middle of execution paths. Last but not least,
malicious apps may include a large number of benign patterns to confuse DroidMiner.
As mentioned earlier, our learning procedure typically down-weights modalities com-
monly used in benign apps and up-weights truly malicious modalities learned before.
Thus, DroidMiner still has a good tolerance of such evasion.

Limitations and Future Work. Like any learning-based approach, DroidMiner re-
quires an accurate training dataset to mine its malicious behaviors into modalities. The
effectiveness of our approach depends on the quality of the given training data, e.g.,
labeled malicious Android apps and their families. Fortunately, it was easy for us to ob-
tain such data (thanks to prior research efforts from academia and industry). In fact, one
may also recognize DroidMiner’s automatic learning approach as a feature rather than
a strict liability. Whereas most existing approaches require significant manual labor to
generate signature, specifications, and models for detection, DroidMiner offers far more
automated model generation.

180 C. Yang et al.

DroidMiner currently employs static analysis, which is a reasonable choice given
that current Android apps are relatively easy to reverse engineer statically, unlike no-
torious PC-based malware. Like other Java static analysis studies, DroidMiner may fail
to identify certain usages of instances/methods, which are encrypted or made by using
Java Reflection and native code. This serves as another motivation for us to incorporate
dynamic analysis in our future work.

7 Conclusion

DroidMiner is a new static analysis system that automatically mines malicious para-
sitic code segments from a corpus of malicious mobile applications, and then detects
the presence of these code segments within other, previously unlabeled, mobile apps.
We present our DroidMiner prototype and an extensive evaluation of this algorithm on
a corpus of over 2,400 malicious apps. From these 2,400 malware apps DroidMiner
achieves a 95% accuracy rate in processing over 77,000 samples from real-world app
stores. Further, we show that DroidMiner achieves a 92% accuracy in assigning mali-
cious labels to blind test suites.

Acknowledgments. This material is based upon work supported in part by the Na-
tional Science Foundation under Grant CNS-0954096, I1S-0905518 and the Air Force
Office of Scientific Research under Grant FA9550-13-1-0077. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of NSF and AFOSR.

References

1. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets. In: Proc. of the 19th NDSS (2012)

2. Chen, K., Johnson, N., Silva, V., Dai, S., MacNamara, K., Magrino, T., Wu, E., Rinard,
M., Song, D.: Contextual policy enforcement in android applications with permission event
graphs. In: Proc. of the 20th NDSS (2013)

3. Peng, H., Gates, C., Sarm, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C., Molloy, I.: Using
probabilistic generative models for ranking risks of android apps. In: Proc. of the 19th CCS

4. Wu, D, Mao, C., Wei, T., Lee, H., Wu., K.: Droidmat: Android malware detection through
manifest and api calls tracing. In: Proc. of the 7th Asia JCIS (2012)

5. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: Effective and ex-
plainable detection of android malware in your pocket. In: Proc. of NDSS (2014)

6. Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: Droidminer: Automated mining and
characterization of fine-grained malicious behaviors in android applications. Technical re-
port, Texas A&M University (2014),
http://faculty.cse.tamu.edu/guofei/paper/

DroidMiner TechReport 2014 .pdf

7. 60 percentage of android malware hide in fake versions of popular apps,
http://thenextweb.com/google/2012/10/05/
over-60-percent-of-android-malware-comes-from-one-family-
hides-in-fake-versions-of-popular-apps/

http://faculty.cse.tamu.edu/guofei/paper/DroidMiner_TechReport_2014.pdf
http://faculty.cse.tamu.edu/guofei/paper/DroidMiner_TechReport_2014.pdf
http://thenextweb.com/google/2012/10/05/over-60-percent-of-android-malware-comes-from-one-family-hides-in-fake-versions-of-popular-apps/
http://thenextweb.com/google/2012/10/05/over-60-percent-of-android-malware-comes-from-one-family-hides-in-fake-versions-of-popular-apps/
http://thenextweb.com/google/2012/10/05/over-60-percent-of-android-malware-comes-from-one-family-hides-in-fake-versions-of-popular-apps/

13.
14.
15.
16.
17.
18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

DroidMiner 181

. Association mining rule,

http://en.wikipedia.org/wiki/Association_rule_learning

. Androguard, http://code.google.com/p/androguard/
10.
11.
12.

Dex2jar, https://code.google.com/p/dex2jar/

Smali, https://code.google.com/p/smali/

extensible graph markup and modeling language,
http://www.cs.rpi.edu/research/groups/pb/punin/public html/
XGMML /draft-xgmml-20001006.html

Slideme android market, http://slideme.org/

App dh android market, http: //www.appdh.com/

Anzhi android market, http://www.anzhi.com/

Virustotal, https: //www.virustotal.com/

Android malware genome project, http://www.malgenomeproject.org/
Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution. In: Proc. of
the 33th IEEE Security and Privacy (2012)

. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid android: versatile protec-

tion for smartphones. In: Proc. of the 26th ACSAC (2010)

Schmidt, A., Bye, R., Schmidt, H., Clausen, J., Kiraz, O., Yxksel, K., Camtepe, S., Sahin,
A.: Static analysis of executables for collaborative malware detection on android. In: ICC
Communication and Information Systems Security Symposium (2009)

Schmidt, A., Schmidt, H., Clausen, J., Yuksel, K., Kiraz, O., Sahin, A., Camtepe, S.: Enhan-
cing security of linux-based android devices. In: Proc. of 15th International Linux Kongress
Yan, L., Yin, H.: Droidscope: Seamlessly reconstructing the os and dalvik semantic views
for dynamic android malware analysis. In: Proc. of the 21st USENIX Security (2012)

Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application security.
In: Proc. of the 20th USENIX (2011)

Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystied. In:
Proc. of the 18th CCS (2011)

Bartel, A., Klein, J., Monperrus, M., Traon, Y.L.: Automatically securing permission-based
software by reducing the attack surface: An application to android. In: Proc. of the 27th
IEEE/ACM International Conference on Automated Software Engineering (2012)

Au, K., Zhou, Y., Huang, Z., Lie, D., Gong, X., Han, X., Zhou, W.: Pscout: Analyzing the
android permission specification. In: Proc. of the 19th CCS (2012)

Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification.
In: Proc. of the 16th CCS (2009)

Frank, M., Dong, B., Felt, A.P., Song, D.: Mining permission request patterns from android
and facebook applications. In: Proc. of ICDM 2012 (2012)

Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: Mining API-level features for robust malware
detection in android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M. (eds.) SecureComm
2013. LNICST, vol. 127, pp. 86—103. Springer, Heidelberg (2013)

Maggi, F., Valdi, A., Zanero, S.: AndroTotal: a flexible, scalable toolbox and service for
testing mobile malware detectors. In: Proc. of SPSM 2013 (2013)

Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation technique
to automatically reconstruct android malware behaviors. In: Proc. of EUROSEC 2013 (2013)
Enck, W., Gilbert, P., Chun, B., Cox, L.P., Jung, J., Mc-Daniel, P., Sheth, A.N.: Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones. In:
Proc. of the 9th OSDI (2010)

Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accurate zero-day android
malware detection. In: Proc. of the 10th MobiSys (2012)

Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Alis, J.B.: Dendroid: A text mining ap-
proach to analyzing and classifying code structures in android malware families (2012)

http://en.wikipedia.org/wiki/Association_rule_learning
http://code.google.com/p/androguard/
https://code.google.com/p/dex2jar/
https://code.google.com/p/smali/
http://www.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML/draft-xgmml-20001006.html
http://www.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML/draft-xgmml-20001006.html
http://slideme.org/
http://www.appdh.com/
http://www.anzhi.com/
https://www.virustotal.com/
http://www.malgenomeproject.org/

182

35.

36.

37.

38.

39.

40.

41.

42.

C. Yang et al.

Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: lightweight provenance
for smart phone operating systems. In: Proc. of the 20th USENIX Security (2011)

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: Towards taming
privilege-escalation attacks on android. In: Proc. of the 19th NDSS (2012)

Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids you're
looking for: Retrofitting android to protect data from imperious applications. In: Proc. of the
18th CCS (2011)

Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and enforce-
ment with user-defined runtime constraints. In: Proc. of the 5th ICCS (2010)

Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., Peter, M.: L4android: A generic
operating system frame- work for secure smartphones. In: Proc. of the 1st Workshop on
Security and Privacy in Smartphones and Mobile Devices (2011)

Andrus, J., Dall, C., Hof, A.V., Laadan, O., Nieh, J.: Cells: A virtual mobile smartphone
architecture. In: Proc. of the 23rd SOSP (2011)

Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., Zhou, W.: Smartdroid: an automatic
system for revealing ui-based trigger conditions in android applications. In: Proc. of the 2nd
Workshop on Security and Privacy in Smartphones and Mobile Devices (2012)

Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: evaluating android anti-malware against
transformation attacks. In: Proc. of the 8th ICCS (2013)

	DroidMiner: Automated Mining and Characterization of Fine-grained Malicious Behaviors in Android Applications
	1 Introduction
	2 Motivation and System Goals
	2.1 Motivations
	2.2 Goals and Assumptions

	3 System Design

	3.1 Behavior Graph and Modalities
	3.2 Mining Modalities
	3.3 Identification of Modalities
	3.4 Modality Use Cases

	4 Evaluation
	4.1 Prototype Implementation
	4.2 Data Collection
	4.3 Evaluation Result

	5 Related Work
	5.1 Mobile Malware Detection
	5.2 Android Platform Security Defense and Analysis

	6 Discussion
	7 Conclusion
	References

