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Abstract. Today’s computer vision systems are not perfect. They fail
frequently. Even worse, they fail abruptly and seemingly inexplicably.
We argue that making our systems more transparent via an explicit hu-
man understandable characterization of their failure modes is desirable.
We propose characterizing the failure modes of a vision system using
semantic attributes. For example, a face recognition system may say “If
the test image is blurry, or the face is not frontal, or the person to be
recognized is a young white woman with heavy make up, I am likely to
fail.” This information can be used at training time by researchers to
design better features, models or collect more focused training data. It
can also be used by a downstream machine or human user at test time
to know when to ignore the output of the system, in turn making it
more reliable. To generate such a “specification sheet”, we discrimina-
tively cluster incorrectly classified images in the semantic attribute space
using L1-regularized weighted logistic regression. We show that our spec-
ification sheets can predict oncoming failures for face and animal species
recognition better than several strong baselines. We also show that lay
people can easily follow our specification sheets.

1 Introduction

“If you tell me precisely what it is a machine cannot do, then I can always
make a machine which will do just that” - John von Neumann

State-of-the-art computer vision systems are complex. In spite of their complex-
ity, they fail frequently. And in part due to their complexity, they fail in seem-
ingly inexplicable ways. As sophisticated image features and statistical machine
learning techniques become core tools in our computer vision systems, there is
an increasing desire and critical need to make our systems transparent.

Every student is different. A good teacher adapts his teaching style and the
amount of time he spends on each topic to the student’s strengths and weak-
nesses. But without knowledge of the student’s misconceptions, it would be diffi-
cult for the teacher to help the student make progress. Similarly, as researchers,
we can design vision solutions more effectively if we systematically understand
the failure modes of our systems. Identification of recurring failure modes via
manual inspection of instances where the system fails is not feasible given the
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scale of the data involved in realistic applications1. Automatic means of summa-
rizing failure modes are required. These characterizations need to be semantic
so humans (researchers, end users) can understand them. Semantic characteri-
zations of failure modes of vision systems as seen in Fig. 1 would be useful at
both training and testing time.

Fig. 1. We advocate transparent computer vision
systems. We characterize failure modes of a vision
system using semantic attributes.

At training time, researchers
can bring to bear their in-
tuitions and domain knowl-
edge to design better
features and develop more ef-
fective models. Classifiers and
features can be specialized
for individual failure modes
(e.g. for white young women
with makeup and bangs).
Researchers can also collect
more training data geared to-
wards a subset of categories
prone to failures. For in-
stance, if a celebrity recogni-
tion system consistently fails
to recognize old Asian ac-
tresses, one could collect more data for these subset of categories to re-train
the system and potentially improve it.

At test time, our characterization of failure modes can be used to automati-
cally detect oncoming failure. Downstream applications that use the output of
computer vision systems as input can benefit from such warnings. For example,
an autonomous vehicle performing semantic segmentation in a video feed can
skip frames that are predicted to be unreliable, and can make slightly delayed
but more accurate decisions instead. An automatic prediction of the type of fail-
ure mode can be used to raise a flag and resort to a specialized classifier for
that failure mode. A semantic characterization of failure modes can also be used
to empower a human user of a vision system. Consider a lay person using a
vision system to recognize celebrities. It would be useful if the system came with
a “specification sheet” of sorts describing the possible failure modes. The one
shown in Fig. 1 can guide the user to take better pictures that are well lit and
have a frontal view of the face, making the system more reliable. For some failure
modes (e.g. regarding demographics of categories that are difficult to recognize),
there may be nothing the user can do to make the system more accurate. But at
least he would know to not trust the system when recognizing celebrities with a
certain appearance. This results in the system being more reliable when it is used
and provides precaution in scenarios where it would have likely failed anyway.
The resultant fewer unpleasant surprises improves the overall user experience. A

1 In practice, this is often how researchers debug their systems, but it can not be done
very systematically and does not scale well.
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semantic characterization of the failure modes of a system can thus allow us to
make today’s vision systems more usable even with their existing imperfections.

Finally, a semantic characterization of failure modes makes vision systems
more interpretable. This helps gain operator trust in applications involving
semi-autonomous systems. Numerous technologies go unused in practice sim-
ply because of insufficient operator trust [1]. Vision systems today are typically
characterized by their accuracy and speed. A user (individual, startup, federal
agency) decides which system to use based on a desired accuracy and speed
trade off. Our spec sheets characterize the system’s performance in more depth
by describing the scenarios where it fails. Users can make an informed decision
about which system best suits their needs. E.g. If a user expects to be using a
celebrity recognition app frequently for Indian movies, he may not pick an app
that has known failure modes for Indians.

Why should we expect that such a characterization exists? It is because vision
systems often suffer from systematic failure modes. For instance, the quality of
the input image – often describable by semantic attributes – affects the perfor-
mance of a system drastically. Lack of enough training data of certain groups
of categories (e.g. old Asian actresses, Fig. 1) may lead to the inability of the
system to recognize them well. Low inter-class variance among another set of
categories (many young white actresses with heavy make up and bangs may
look similar) may lead to a different (characterizable) systematic failure mode.
Of course, similar to other sophisticated systems, vision systems also suffer from
arbitrary non-systematic mistakes. These are not the focus of this paper.

In this paper, we propose an approach that automatically identifies patterns
in failures, and summarizes them with a semantic characterization that humans
can understand. For instance, a face recognition system may say “If the image
has harsh lighting or the face is not frontal, I may give you an incorrect answer”
or “If the person you are trying to recognize is a young female with bangs, this
system may give you an incorrect answer” (Fig. 1). Attribute-based represen-
tations are a natural choice to generate this semantic characterization. Given
a trained classification system and a labeled set of training images, we identify
images that are correctly classified (“not-mistake images”), and those that are
misclassified (“mistake images”). Both sets of images are annotated with a vo-
cabulary of binary semantic attributes. The mistake images are discriminatively
clustered using weighted L1-regularized (sparse) logistic regression in the space
of annotated attributes. The “discriminative” part ensures that the (mistake)
clusters have only a few attributes in common with the not-mistake images, the
“weighted” part encourages the mistake images within each cluster to have many
attributes in common, and the “sparse” part ensures that each cluster can be
characterized via just a few attributes, leading to a compact representation of
the failure modes. We evaluate our approach in two domains: face (celebrity) and
animal species recognition. Our experiments demonstrate that (1) Our semantic
specification sheets can capture failure modes of the system well (2) They out-
perform strong baselines in automatic prediction of oncoming failure, and (3)
non-experts can follow our specification sheets well.
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2 Related Work

Our work relates to existing bodies of work on estimating classifier confidence,
on predicting failures of systems, and on the use of attributes, particularly for
better communication between humans and machines.

Classifier Confidence Estimation: The confidence of a classifier in its deci-
sion is often correlated to the likelihood of it being correct. Reliably estimating
the confidence of classifiers has received a lot of attention in the pattern recogni-
tion community [2–4]. Applications such as spam-filtering [5], natural language
processing [6, 7], speech [8] and even computer vision [9] have leveraged these
ideas. However, unlike our proposed specification sheets, these confidence esti-
mation methods are not semantically interpretable.

Predicting Failure: Methods that predict overall performance of a system
on a collection of test images by analyzing statistics of the test data or post-
recognition scores [10–15] are not applicable to our goal of identifying specific
failure modes of the system, and semantically characterizing them. Detecting
errors has received a lot of attention in speech recognition [16, 17]. In computer
vision, Jammalamadaka et al . [18] recently introduced evaluator algorithms for
human pose estimators (HPE) that can detect if the HPE has succeeded. These
techniques all use non-semantic features specific to their applications for pre-
dicting failure. Most related to our work is the recent work of Hoiem et al . [19].
They analyzed the impact of different object characteristics such as size, aspect
ratio, occlusion, etc. on object detection performance. Our work discovers com-
binations of image attributes that correlate with failure. Our generated compact
semantic specification sheets can predict when a mistake will be made, making
our vision systems more usable. The attributes we consider are generic attributes
and are not explicitly tied to the workings of these underlying system.

Attributes: Attributes have been used extensively, especially in the past few
years, for a variety of applications [20–34]. Attributes have been used to learn
and evaluate models of deeper scene understanding [20] that reason about prop-
erties of objects as opposed to just the object categories. They have also been
used for alleviating annotation efforts via zero-shot learning [23, 21, 22] where a
supervisor can teach a machine a novel concept simply by describing its prop-
erties (e.g. “a zebra is striped and has four legs” or “a zebra has a shorter neck
than a giraffe”). Attributes have also been explored to improve object catego-
rization [23], face verification [35] and scene recognition [36]. Attributes being
both machine detectable and human understandable provide a mode of commu-
nication between the two. This has been exploited for improved image search by
using attributes as keywords [25] or as interactive feedback [24]. Attributes have
also been leveraged for more effective active learning by allowing the supervi-
sor to provide attributes-based feedback to a classifier [26, 34]. Knowledge of a
classifier’s failure modes can help the supervisor provide more focused feedback.
Attributes have also been used for generating automatic textual description of
images [22, 37] that can potentially point out anomalies in objects [23]. Our
work exploits attributes for the novel purpose of characterizing failure modes



370 A. Bansal, A. Farhadi, and D. Parikh

of a machine. Attributes have been used at test time with a human-in-the-loop
answering relevant questions about a test image to help the machine classify
an image more reliably [31]. Our specification sheets can be used by a user at
test time, but for predicting the failures of a machine rather than aiding it. A
combination of these two scenarios may be interesting to explore.

3 Approach

While our approach can be applied to any vision system, we use image classifica-
tion as a case study in this paper. We are given a set of N images along with their
corresponding class labels {(xi, y

′
i)}, i ∈ {1, . . . , N}, y′ ∈ {1, . . . , C}, where C is

the number of classes. We are also given a pre-trained classification system H(x)
whose failures we wish to characterize. Given an image xi, the system predicts a
class label ŷ′i for the image i.e. ŷ′i = H(xi). We assign each image in our training
set to a binary label {(xi, yi)}, yi ∈ {0, 1}, where yi = 0 if ŷ′i = y′ i.e. images xi

is correctly classified by H , otherwise yi = 1. We annotate all images xi using
a vocabulary of M binary attributes {am},m ∈ {1, . . . ,M}. Each image is thus
represented with an M dimensional binary vector i.e. xi ∈ {−1, 1}M indicating
whether attribute am is present in the image or not. We wish to discover a spec-
ification sheet, which we represent as a set of sparse lists of attributes – each list
capturing a cluster of mistake images i.e. a failure mode.

3.1 Discriminative Clustering

We discriminatively cluster the mistake images in this ground truth attributes
space. We initialize our clustering using k-means. This gives each of the mistake
images a cluster index ci ∈ {1, . . . ,K}. We denote all mistake images belong-
ing to cluster k as {xk

i }. We train a discriminative function hk(xi) for each of
the clusters that separates {xk

i } from other “negative” images. Details of this
function and the negative images follow in the next sub-section.

Let’s say the score given by the discriminative function is hk(xi). We compute
the score of all mistake images with respect to each of the K discriminative
functions, and re-assign the image to the cluster whose function gives it the
highest score. The updated cluster labels are

c
(t+1)
i = argmax

k
hk(xi) (1)

where t+ 1 denotes the next iteration. We re-train the discriminative functions
using these updated cluster labels, and the process repeats. In our experiments,
the process always converged, and took on average 3.6 iterations. We now de-
scribe the specifics of the discriminative function hk(xi).
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3.2 L1-Regularized Logistic Regression

The discriminative function we train for each cluster is an L1-regularized logistic
regression. It is trained to separate mistake images belonging to cluster k (yki =
1) from all not-mistake images (yki = 0). yki is the label assigned to images for
training the cluster-specific discriminative function. Notice that here yki is not
defined for images belonging to other mistake clusters xl

i, l ∈ {1, . . . ,K}, l �= k,
as they do not participate in training the discriminative function for cluster
k. All discriminative functions share the same negative set i.e. the not-mistake
images {x0

i }. We also experimented with using all other images in the training
set (including mistake images assigned to other clusters) and using only mistake
images assigned to the other clusters as negative set. We select between these
three strategies via cross validation (Section 4.3).

When using logistic regression, the conditional probability that the label of
an image is 1 is given by

p(yki = 1|xi,wk) =
1

1 + exp(−wT
k xi)

(2)

where wk are the parameters to be learnt. These are learnt by

argmax
wk

∑

i

log
(
p(yki = 1|xi,wk)

)− α

M∑

m=1

|wk,m| (3)

where wk,m is the mth entry in wk,
M∑

m=1
|wk,m| is the L1 regularization term,

α is the parameter that trades off maximizing the likelihood of the data with
minimizing the regularization term leading to a sparse wk. We use interior based
method for this optimization [38].

Since the feature vectors representing the image are binary vectors indicating
the presence or absence of semantic attributes in the image, reading off the non-
zero weights in the learnt parameters wk, allows us to describe each cluster in a
semantically meaningful way. See Fig. 2.

3.3 Weighted Logistic Regression

In addition to identifying attributes that separate mistake from not-mistake im-
ages, we also wish to ensure that images belonging to the same cluster share
many attributes in common and more importantly, the attributes selected to
characterize the clusters are present in most of the images assigned to that
cluster. This will help make the specification sheet accurate and precise. To en-
courage this, rather than using a standard L1-regularized logistic regression as
described above, we use a weighted logistic regression. At each iteration, we re-
place each binary attribute in the image representation with the proportion of
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Fig. 2. The learnt sparse discriminative function for each cluster (Section 3.2) can be
directly converted to a compact semantic description of the cluster. For clarity, not all
attributes are shown in this illustration.

images in the cluster that share the same (binary) attribute value. That is at
the (t+ 1)th iteration, the mth feature value of xi is

x
(t+1)
i,m =

⎧
⎪⎨

⎪⎩

1
Nk(t)

∑
{xk

i }(t) δxi,m,1, wk,m > 0
−1

Nk(t)

∑
{xk

i }(t) δxi,m,−1, wk,m < 0

xi,m, wk,m = 0

(4)

where δab, the Kronecker delta, is 1 if a = b and 0 otherwise, and Nk(t) is
the number of images assigned to the kth cluster at iteration t. Recall that
xi ∈ {−1, 1}M . These are the ground truth attributes annotations of the image,
and do not change with the clustering iterations. The summation counts the
number of instances assigned to the kth cluster at iteration t that have the mth

feature value agree with the sign of w for that feature. Hence, attributes that
are present in most images in the cluster will have a higher weight, ensuring
that it attracts even more images with that attribute to this cluster in the next
cluster reassignment step. And same for the absent attributes. The weights will
only impact those attributes for which wk is non-zero.

As described above, correctly classified images form the negative set for our
discriminative clustering approach. Hence, most images from reliable categories
will be on the negative side, are unlikely to be captured in the characterization
of failure modes. Our approach can be easily applied to individual or subsets of
categories, which might also be insightful for researchers.

3.4 Hierarchical Clustering

The approach described above creates K scenarios, one for each cluster. Rather
than having a list of scenarios to look through, a user may find a tree-structured
specification sheet easier to navigate. To this end, we also experiment with per-
forming the clustering described above in a hierarchical fashion. Specifically,
given a branching factor B, we initialize the clustering using k-means with B
clusters. We run the iterative discriminative clustering approach described above
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Fig. 3. Example specification sheets generated by our approach. Left: Simple clustering
(SC): The failure modes are listed. For illustration, we show example images belonging
to each cluster. Right: Hierarchical clustering (HC): Each path leading to a leaf is a
failure mode e.g . “is slow and has yellow color” for the right most leaf of the bottom
tree. Best viewed in color.

till convergence using weighted L1-regularized logistic regression. We then fur-
ther cluster each of the B clusters into B clusters using the same iterative dis-
criminative clustering, and so on, till the tree reaches a predetermined depth D.
With this, we have now created a specification sheet. See Fig. 3 for an example.

4 Experiments

We now describe our experimental setup and the results we obtained.

4.1 Datasets

We experiment with two domains: face (celebrity) and animal species recogni-
tion. For faces, 2400 images from 60 categories (40 images per category) from
the development set of the Public Figures Face Database (Pubfig) of Kumar et
al . [35] are used. It contains 73 facial attributes such as race, gender, local fea-
tures (e.g. pointy nose), hair color, etc. We annotated the categories with binary
attribute annotations on Amazon Mechanical Turk. These will be made publicly
available. For animals, 1887 images from 37 categories2 (51 images per category)
from the Animals with Attributes dataset (AwA) of Lampert et al . [21] contain-
ing 85 (annotated) attributes are used. 10 and 20 images per category from both

2 We used the validation images from this dataset that were not used by the authors
for training the attribute classifiers. Only 37 of the 50 categories had more than 50
such validation images.
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datasets respectively were used to train their respective classifiers (SVM with
RBF kernel) for recognizing the person or animal species in an image. Attribute
predictors made available by the respective authors were used as image features
to train these classifiers. This forms the pre-trained system provided as input to
our approach, whose mistakes we wish to semantically characterize. For Pubfig /
AwA, 10 / 12 images per category were used to generate our specification sheets,
10 / 8 images per category were used as a validation set and the remaining 10 /
11 images per category were used for testing. Results averaged across 10 splits
are reported.

4.2 Metric

We evaluate the ability of our specification sheets to predict failure using pre-
cision and recall (PR), where we evaluate how often an image predicted by the
specification sheet to be a failure truly is a failure (precision), and what percent-
age of the true failures are detected by the specification sheet (recall). Note that
in the scenario where the user of a vision system uses our specification sheet to
determine when to ignore the output of the system, another relevant dimension
is the percentage of times the user would have to ignore the system. We define
frequency-of-use for the user, FOU = 1− proportion of test images classified to
be failures. The lower the FOU, the worse the user experience. At low FOUs
however, the vision system is likely to be highly accurate when it is used. Hence
from a user perspective, the accuracy of system (ACC) vs. FOU trade-off might
be more relevant than the precision-recall trade-off. The latter might be more
relevant for researchers using these sheets to better understand their systems.
A detailed discussion of the ACC vs. FOU metric and user-based evaluations of
our specification sheets are contained in the supplementary material.

4.3 Selecting Specification Sheets

Our approach has the following parameters: (random) k-means initialization, the
regularization weight α, number of clusters K for simple clustering or branching
factor B and depth of tree D for hierarchical clustering and, the three choices of
negative images to train the logistic regressors (Section 3.2). Different settings
of these parameters can lead to specification sheets that tend to classify varying
proportion of images as mistakes. We generate a pool of candidate specifica-
tion sheets for 250 different k-means initializations, α ∈ {5, 10, 20} for hierar-
chical clustering and {10, 20, 30, 40, 50} for simple clustering, K ∈ [2, 20], B ∈
[2, 8], D ∈ [2, 4].3 In total this leads to about 20k specification sheets generated
for hierarchical clustering and 71k for simple clustering. We measured the pre-
cision and recall for each specification sheet on held out validation data. Similar
to methods of computing AP from precision-recall curves, we sample S (=21)

3 We did not use all possible combinations of these. We avoid bringing together ex-
treme values of parameters because that leads to extremely large and cumbersome
specification sheets.
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Fig. 4. Performance of our generated specification sheets capture failures. Left: Pubfig,
Right: AwA.

Table 1. Area under the precision recall (PR) curve (left) and accuracy vs. frequency-
of-use (ACC vs. FOU) curve (right) for different approaches. SC: simple clustering,
HC: hierarchical clustering, all: using all attributes, sel: using a subset of attributes
that are easy for lay people to understand.

Random SC - all SC - sel HC - all HC - sel
Pubfig 0.4473 0.5473 0.5421 0.5370 0.5291
AwA 0.6061 0.7088 0.7079 0.6942 0.6963

Random SC - all SC - sel HC - all HC - sel
Pubfig 0.5517 0.6181 0.6067 0.6157 0.5997
AwA 0.3929 0.4777 0.4734 0.4636 0.4606

recall points ∈ [0, 1] in increments of 0.05. Among all specification sheets with
recall closest to each sampled point, we selected the sheet with the maximum
precision on a held out validation set. Given a desired operating point at test
time, we use the corresponding specification sheet. Selecting specification sheets
from a large pool is a proxy for the continuous threshold one can vary to select
arbitrary operating points on a precision recall curve.

4.4 Automatic Failure Prediction

At the core of it our approach is separating mistakes from not-mistakes, and
hence has the potential to be used as a classifier confidence measure of sorts,
to automatically predict oncoming failures. To this end, we use the following
approach. We run an image through each of our S specification sheets, using
predicted attributes instead of ground truth attributes. Recall that each specifi-
cation sheet is formed by multiple logistic regressors – one for each cluster – each
of which produces a probability of the image being a mistake. We build a feature
vector for an image by concatenating these output probabilities along with the
entropy of the main classifier whose mistakes we are characterizing. We train
an SVM on this new representation to classify mistake images from not-mistake
images. We have S such classifiers, one for each specification sheet. We average
their responses on a test image to estimate the likelihood of that image being
a mistake. Varying the threshold on this likelihood will result in different PR
operating points.
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Fig. 5. Performance of our specification sheets automatically predicting oncoming fail-
ure. Left: Pubfig, Right: AwA.

Table 2. Area under the precision-recall (PR) curve. Comparison of various approaches
to automatic failure prediction. CC: ClassConf, SC: simple (discriminative) clustering,
HC: hierarchical (discriminative) clustering, GC: generative clustering.

CC Boost SC HC CC+HC Boost+CC Boost+HC HC+Boost+CC GC GC+CC Rand

Pubfig 0.64 0.64 0.68 0.68 0.68 0.68 0.69 0.69 0.56 0.66 0.45

AwA 0.77 0.74 0.77 0.77 0.78 0.77 0.76 0.78 0.74 0.76 0.61

Table 3. Area under the ACC vs. FOU curve. Comparison of various approaches to
automatic failure prediction. CC: ClassConf, SC: simple (discriminative) clustering,
HC: hierarchical (discriminative) clustering, GC: generative clustering.

CC Boost SC HC CC+HC Boost+CC Boost+HC HC+Boost+CC GC GC+CC Rand

Pubfig 0.7033 0.7130 0.7423 0.7316 0.7117 0.7390 0.7409 0.7387 0.6430 0.7293 0.5517

AwA 0.5594 0.5573 0.5752 0.5789 0.5640 0.5807 0.5821 0.5809 0.5297 0.5600 0.3929

4.5 Baselines

Our specification sheets are fully semantic, and thus should not be compared to
non-semantic estimates of classifier confidence. We compare our automatic fail-
ure prediction approach to such non-semantic baselines. ClassConf (CC): The
conventional approach to estimating the confidence of a classifier is computing
the entropy of the probabilistic output of the classifier across the class labels
(e.g. computed using Platts’ method [39]) to a given test instance. This was one
of the features used in our automatic failure prediction approach in Section 4.4.
Placing a threshold on ClassConf to classify an image as being a likely mistake or
not gives us a point on the PR curve. Varying this threshold gives us the entire
curve. Boost: Our approach to automatic failure prediction employs multiple
classifiers. This is related to boosting approaches [40]. We use Adaboost [41, 42]
to learn the weights of 2000 decision trees4, each with a maximum depth of 4 to
differentiate between “mistake” and “not-mistake” images. We use the same im-
age features as used by the classification system itself to train the weak learners.

4 More trees did not further improve accuracy.
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Perhaps using orthogonal features may lead to better failure prediction perfor-
mance. Rand: We also compare to a baseline that assigns each image a random
score between [0,1] as a likelihood of failure.

4.6 Results

Accuracies of the pre-trained classifiers on average were 55% and 40% for Pubfig
and AwA respectively. Our goal is to semantically characterize the mistakes
these classifiers tend to make. The results of oracle users5 using our semantic
specification sheets are shown in Fig. 4. Our specification sheets can predict
oncoming failures with accuracy significantly better than chance.

Hierarchical vs. Simple Clustering: We compare the use of hierarchical
clustering as opposed to simple clustering in Fig. 4. A hierarchical specification
sheet is likely to be more convenient for a user to navigate through. But as we
see for AwA (Fig. 4, right) it can perform slightly worse than simple clustering.
See qualitative examples of specification sheets generated by our approach in
Fig. 3. We also selected a subset of attributes that we thought were easier to
understand by a lay person. We selected 45 attributes out of 73 for Pubfig and
58 out of 85 for AwA. Table 1 shows that performs stays fairly stable even with
these fewer attributes.

Automatically Predicting Failures: The results of our specification sheet
based automatic approach of predicting failures (Section 4.4) can be seen in
Fig. 5 and Tables 2, 3. Our approach significantly outperforms the well accepted
approach to estimating the confidence of a classifier. The boosting baseline is
comparable to or worse than ClassConf. Adding our approach to ClassConf and
Boost significantly improves performance. Combining all three generally leads
to minor gains. Tables 2, 3 predict failure by combining predictions of multiple
specification sheets (a total of 21 specification sheets; one for each sampled recall
point) using an SVM. Hence, they shows improved performance over Table 1
which uses a single specification sheet.

Recall that the logistic regressors were trained on ground truth annotations
of attributes. But for the automatic approach, at test time we use predicted
attribute values for images. The performance may further improve if the logistic
regressors were re-trained using the predicted attribute values for images at
training time.

Note that Boost directly predicts failure from image features. We also learn a
failure predictor, but on top of our specification sheet confidences. Our improved
performance over Boost may be because attributes help transfer knowledge be-
tween categories and provide a semantic regularization of sorts. Other problems

5 We assume that researchers can identify the presence/absence of attributes correctly,
and hence will not make a mistake while following the specification sheet. Note that
this does not result in a (even nearly) perfect failure prediction system. This is
because the scenarios listed in the specification sheet are learnt summaries of the
attributes incorrectly classified images tend to share in common.
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(e.g. face verification [35]) have also shown that using attributes as an intermedi-
ate representation for classification outperforms direct classification from image
features.

Additional Data: One might wonder: if the validation images used to train
our specification sheets were instead used as additional training data to bet-
ter train the underlying classification system, would its confidence measure be
more accurate at failure prediction? To verify this, we retrained the base algo-
rithm using train+val images. But performance of ClassConf did not improve
(decreased little). This is not surprising. It is well known that strong classifiers
can be overconfident.

Discriminative vs. Generative Clustering: We compare our discriminative
clustering approach (Section 3.1) to generative clustering (GC). All mistake im-
ages are clustered using k-means clustering (which forms the initialization step
for discriminative clustering) in the predicted attributes space.6 Given a test
image, its distance from the closest mistake cluster gives us an indication of its
likelihood of being a mistake. Varying a threshold on this distance gives us a PR
curve. We report the area under this curve in Table 2. We see that this generative
approach performs significantly worse than our discriminative approach. To give
it a further boost, we represent each image by its distance from all K clusters,
and train a classifier on these K features and ClassConf to separate mistake im-
ages from not-mistake images. This (now partially discriminative approach: GC
+ ClassConf) results in better performance but still worse than our approach.

Human Studies:We conducted studies on Amazon Mechanical Turk to demon-
strate that the semantic characterizations generated by our approach can be eas-
ily understood by non-computer vision experts also. Without any training about
meaning of attributes, we showed subjects 24 failure modes each from celebrity
face and animal species recognition by showing them the list of attributes that
characterize the failure modes. The modes were selected by first randomy picking
50 failure modes (or clusters) from different specification sheets such that each
was characterized by atleast 3 attributes. We then pruned out the ones that had
attributes in common so as to ensure wide coverage of attributes. We had workers
annotate 100 images as belonging to a failure mode or not (that is satisfying the
attribute-based description or not). Each image was shown to 10 workers, and
we took the majority vote. Workers were able to correctly identify whether an
image belongs to a failure mode or not 85.37% and 73.96% of the time for Pubfig
and AwA respectively (chance is 50%). Clearly, our specification sheets are truly
human understandable. Note that our experimental evaluation covers the entire
spectrum including 1. oracle users who can predict attributes reliably (Fig. 4) to
evaluate the performance of our specification sheets in capturing failure modes;
2. real subjects on MTurk to see if they could easily understand these failure

6 Performing the clustering in ground truth attributes space like our approach results
in even worse performance because the test image is represented by predicted at-
tributes and not ground truth for automatic prediction of failure. We use predicted
attributes here to report a stronger baseline.
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modes; and 3. without a user in the loop (Fig. 5) to demonstrate the effectiveness
of our specification sheets for automatic (machine) failure prediction.

User Experience: For Pubfig, the simple clustering based specification sheets
have 11 clusters on average. It involves the users having to check the values of
about 7 attributes per cluster. Hierarchical clustering on the other hand has
about 10 clusters but involves checking only about 4 attributes per cluster. For
AwA, both simple and hierarchical clustering have 9 clusters on average, and
involve checking on average about 7 and 4 attributes respectively per cluster.

5 Discussion

Like most machine learning systems, our approach can only predict what was
seen during training. Existing vision systems suffer from plenty of systematic
failure modes that are observed during validation. While capturing unseen failure
modes is certainly desirable, capturing seen ones - even via predictive correlations
(as opposed to causal relationships) - is a significant step towards making our
systems transparent. The data, code, and specification sheets used in this work
are available on the author’s webpage.

Future Work: Discovering a vocabulary of application-specific attributes geared
specifically towards predicting failures, and leveraging the sheets for the various
applications discussed in the introduction is part of future work. Specification
sheets can also help compare different vision systems designed to address sim-
ilar tasks. This can explicitly reveal redundancies or complementary strengths
among various approaches. This can be enlightening for the community, and can
also be quite useful for a potential consumer of vision applications attempting
to identify the system that is the best fit for the application at hand.

6 Conclusion

We proposed a discriminative clustering approach using L1-regularized weighted
logistic regression to generate semantically understandable “specification sheets”
that describe the failure modes of vision systems. We presented promising results
for face and animal species recognition. We demonstrated that the specification
sheets capture failure modes well, and can be leveraged to automatically pre-
dict oncoming failure better than a standard classifier confidence measure and
a boosting baseline. By being better informed via our specification sheets, re-
searchers can design better solutions to vision systems, and users can choose
to not use the vision system in certain scenarios, increasing the performance of
the system when it is used. Downstream applications can also benefit from our
automatic failure prediction.
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