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Abstract. Typical methods for camera calibration and image rectifica-
tion from a single view assume the existence of straight parallel lines
from which vanishing points can be computed, or orthogonal structure
known to exist in the scene. However, there are practical situations where
these assumptions do not apply. Moreover, from a single family of paral-
lel lines on the ground plane there is insufficient information to recover
a complete rectification. Here we study a generalization of these meth-
ods to scenes known to contain parallel curves. Our method is based on
establishing an association between pairs of corresponding points lying
on the image projection of these curves. We show how this method can
be used to compute a least-squares estimate of the focal length and the
camera pose from the tangent lines of the associated points, allowing
complete rectification of the image. We evaluate the method on high-
way and sports track imagery, and demonstrate its accuracy relative to
a state-of-the-art vanishing point method.

Keywords: camera calibration, projective rectification, contour group-
ing, traffic surveillance.

1 Introduction

Automatic rectification of imagery to a dominant scene plane is an impor-
tant subproblem in many applications, including surveillance, geodatabases,
autonomous navigation, driving assistance systems, and sports videography.
Single-view methods typically rely upon prior knowledge of the features lying
on these planar surfaces, such as straight lines or orthogonal structure (e.g.,
[1,2]). However these methods fail when orthogonal structure is not dominant in
the image or when there are no straight lines from which to extract vanishing
points. Here we make the observation that it is not the linearity of the visible
features used in vanishing point methods that affords information about the sur-
face attitude, but rather their parallelism. This is important because there are
many practical cases where the features are parallel curved lines, e.g., highways,
racetracks, railway tracks, industrial conveyer belts etc. In this paper we intro-
duce a technique to perform automatic image rectification in such cases. As a
target application, we focus on the problem of rectifying highway images taken
from pole-mounted cameras. Rectification in this application is an important
step toward accurate estimation of vehicle speed.
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Traffic surveillance is one of the main applications for automatic camera recti-
fication [3,2]. Some methods [4,5] use vehicle trajectories in the image to estimate
the ground plane orientation, however these have the disadvantage that recal-
ibration after a PTZ shift may take considerable time if traffic is sparse. The
majority of static methods assume that straight lines or rectangular patterns or
textures are available for vanishing point estimation [2,6].

Prior work has explored concentric circle calibration rigs for multi-view cam-
era calibration [7]. For roadway analysis, Masoud & Papanikolopolous [8] have
reported an interactive method for recovering camera parameters that includes
the modelling of concentric curves bounding traffic circles. While their work
demonstrates the potential for using curves to rectify roadway imagery, their
approach was largely manual: the number of curves was assumed known, and
control points for each of the curves were provided to the algorithm, sidestepping
the difficult problems of feature detection and grouping.

In this paper we present a much more general and fully-automatic, non-
parametric single-image approach to projective rectification of planar scenes
containing a system of parallel curves, as arise commonly in highway traffic
and sports track video. In spirit our approach is related to prior work on ela-
tions, which are projections of (normally rectilinear) coplanar features related
by translation in the plane, from which vanishing points and lines can be in-
ferred [9,10,11]. In our case, however, the features are not rectilinear but curved,
and they are related not by translation but by systems of dilations (see below).

To train and evaluate our method we construct a human-labelled dataset of
highway camera images in which the parallel curves in the image projecting from
lane dividers and highway markers in the scene are identified. Our algorithm
proceeds in three stages:

1) Local feature detection. Orientation features are detected using local eigen-
vector analysis, and a classifier is trained to distinguish features lying on curvi-
linear roadway boundaries from other local features in the scene. 2) Feature
grouping. A set of probabilistic grouping cues are learned to infer extended
curves as connected components of these local orientation features. 3) Recti-
fication and outlier removal. Extracted curves are assumed to comprise a subset
of inliers that are mutually parallel when back-projected, as well as a subset of
non-parallel outliers. To estimate the camera parameters, we form an objective
function based upon the average deviation from parallelism between all pairs
of inlier curves. Rectification then consists of minimization of this objective,
alternating with adjustments in the inlier/outlier assignments.

In summary, the primary contributions of our paper are: 1) A probabilis-
tic method for extracting useful curvilinear features from highways and sports
tracks. 2) A novel, effective and fully automatic calibration and rectification
algorithm that applies to planar surfaces featuring general parallel curves. 3)
Demonstration that the method generalizes, without relearning, to a completely
different application domain (a running track).
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2 Geometry

We consider the problem of rectifying to a ground plane where the visible fea-
tures consist of smooth parallel curves. We assume a partially normalized pan-
tilt-zoom (PTZ) camera, where all internal camera parameters except for the
focal length are assumed to be approximately fixed, and therefore can be esti-
mated using standard pre-calibration procedures [12] and normalized out of the
projection matrix [11]. In particular, we assume zero skew and square pixels,
and we locate the origin of our image coordinate system at the principal point,
which we assume to be at the centre of the image.

We assume a planar ground surface and adopt a right-handed world coordinate
system [X,Y, Z] where the Z-axis is in the upward normal direction (Fig. 1).
We also assume that the camera has negligible roll, so that the z-axis of the
camera is parallel with the ground surface. This assumption is reasonable, since
in many applications such as highway surveillance camera roll is minimized at
installation, and if there is residual roll it is constant and can be calibrated out.
In the unusual case that roll varies with pan/tilt, our method could easily be
generalized to estimate roll as well, as it implicitly estimates the horizon line.

(a) (b) (c) (d)

Fig. 1. (a) Camera setup - see text for details. (b) Parallel curves in the scene plane.
(c) Compression in the y-dimension preserves the 1:1 mapping of parallel tangent lines
but breaks the constraint that the tangents be orthogonal to the line connecting the
points. (d) Only rectification with the correct tilt angle ¢ and the correct focal length
a will fully restore parallelism.

Without loss of generality, we identify the X-axis of the world coordinate
system with the z-axis of the camera, so that the y-axis of the camera is the
projection of the Y-axis of the world coordinate system. Under these conditions,
points [X,Y]” on the ground plane project to points [x,y]” on the image plane
according to A[z,y,1]T = H[X,Y,1]T [11], where ) is a scaling factor, and the
homography H is given by

a 0 0
H=|0acos¢ 0 |. (1)
0 sing D
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Here « is the focal length in pixels, D is the distance of the optical centre of
the camera from the ground plane along the optic axis, and ¢ is the tilt angle of
the camera relative to the ground plane: ¢ = 0 when the camera points straight
down at the ground surface and increases to 7/2 as the camera tilts up toward
the horizon. Conversely, points in the image can be backprojected to the ground
plane using the inverse of this homography, [X,Y,1]7 = AH [z, y,1]T, where

a~t 0 0
H'=] 0 (acos¢)™t 0. (2)
0 —(aD) 'tang }

Substituting, in Euclidean coordinates this backprojection becomes:

vl i) ®

where fs = a7 'D, f, = a"'tan¢ and f. = 1/cos¢. Here, f is a scaling factor
that determines the isotropic scaling of the backprojection into metric scene
coordinates. f. is the affine vertical expansion factor that determines the extent
to which the image is vertically stretched to undo the foreshortening. f, is the
perspective factor that reverses the effect of linear perspective, restoring affine
properties, e.g., that parallel lines remain parallel.

As a final step, we can apply the homography H of Eqn. (1) with a tilt angle
of ¢ = 0 to the scene points [X, Y]? computed using (3), transferring these scene
points to image points [z, y,]T taken by a “bird’s eye” virtual camera, yielding
a rectified plan view of the ground surface seen from a height D:

[Z ] B 1f1fpy {ffy} ' (4)

This rectification equation can alternatively be expressed in terms of a homog-
raphy: Az, v, 1]T = H.[z,y,1]T, where

1 0 0

1
H?" = 0 cosp 0 . (5)
0 —a~'tang 1

To understand how projection will transform parallel curves visible on the
ground surface, we appeal to the definition typically attributed to Leibniz (1692-
4) [13]: two curves are considered parallel if one is a constant distance d along
the normal from the other. In the language of mathematical morphology, one
curve is the erosion or the dilation of the other. (Note that the curves are not
related by a translation, and hence the theory of elations [9,10,11] does not
directly apply.) This means that for every point on the first curve, there is a
corresponding point on the second curve such that 1) the line connecting the
two points is normal to both curves and 2) the tangent lines through the two
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points are parallel [14]. Understanding the projection of smooth parallel curves
thus entails understanding the projection of these pairs of parallel tangent lines.

A tangent line L on the ground plane can be represented by the normalized
homogeneous vector L = [A, B, 1]T. The projection 1 = [a,b,1]T of this line to
the image is given by [11] I/A = H-TL — AL = HT1. Substituting (1) into this
equation allows us to express the tangent line [A, B, 1] on the ground plane in
terms of its projection (a,b,1)” on the image plane:

A ax
A B| = |bacos¢p+sing| . (6)
1 D

Now consider two tangent lines L and L’ from corresponding points on two
parallel curves. To be parallel, the coordinates of the two lines must satisfy the
relation A’/A = B’/B. Substituting from (6), we have:

o' bacosd+sing

= 5 7
a baccos ¢ + sin ¢ (™)
and rearranging, we obtain:
3 ab’ —a’b
= t = . 8
fp=a "tan¢ 7 —a (8)

Thus we observe that the perspective factor f, can be computed directly from
the image coordinates of the two tangent lines projecting from corresponding
points on the parallel ground plane curves. From Eqn. (3) it can be seen that
this is sufficient information to restore the scene curves to their parallel state.
However, on its own, Eqn. (8) is insufficient to uniquely determine the tilt angle
¢ and focal length «. In particular, there remains a one-dimensional family of
solutions corresponding to the unknown vertical expansion factor fe.

In principle it is possible to estimate the internal parameters of a pan-tilt
camera, including the focal length «, using point correspondences from a set of
images taken with different pan-tilt settings [15]. However for applications such
as traffic surveillance, requiring a series of large pan-tilt shifts to recalibrate
every time the focal length changes is undesirable, as it may interrupt the normal
control protocol and real-time video analytics.

Fortunately, if the curves are not straight we have not exhausted the informa-
tion available from a single image. Recall that for the curves to be parallel, not
only must the corresponding tangent lines be parallel, they must also be orthogo-
nal to the line connecting the corresponding points (Fig. 1). In particular, letting
(X,Y)T and (X', Y")T be the Euclidean representation of the two corresponding
tangent points, we must have [X’ — X, Y’ — Y] [B,—A]" = 0. Substituting from
Eqns (3) and (6), and simplifying, we obtain:

9, dya
cos“¢p = 5 (by+ 1) (9)
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where ¢, = W'z’ —wz, §y = w'y —wy, w=(1- fpy)f1 and w' = (1 — fpy’)fl.
With the constraint that 0 < ¢ < w/2 (Fig. 1), Eqn. 9 uniquely determines the
tilt angle ¢, allowing the focal length o to be computed directly from Eqn. (8).

An example may make this computation clearer. Suppose that the two curves
are concentric (parallel) circles in the scene plane (Fig. 1(a)). On projection,
these circles appear as ellipses compressed along the y axis in the image, and
these ellipses are not parallel (Fig. 1(b)), since the lines connecting pairs of points
with parallel tangents are not normal to the curves. The curves will remain non-
parallel ellipses even after correction for the perspective factor f,, due to the
uncorrected expansion factor f.. The only solution to the rectification problem
that will make all tangent pairs parallel and orthogonal to the line connecting
them must use the correct tilt angle ¢ and the correct focal length « to correct
for both perspective f, and expansion f.. In general the parallel curves may be
much more complex, but the same principle applies.

Thus the presence of parallel curvature on the ground plane represents an
opportunity for more complete rectification. The flip side is that as the curvature
decreases and the curves become straight, the problem becomes ill-posed and,
although the image can still be rectified up to the vertical compression factor,
the estimates for focal length & and tilt ¢ will generally be unreliable.

Without some metric knowledge, the scaling factor fs must remain unknown.
However, for many applications (e.g., highway surveillance), camera height is
known, so that given both tilt angle ¢ and focal length «, knowledge of the
sensor dimensions (pixel pitch) will in principle suffice for metric estimation on
the ground plane. We leave this as future work.

Due to noise a single pair of corresponding tangents will in practice be insuffi-
cient to render an accurate rectification. Instead, we seek a least-squares solution
over a large number of corresponding tangent pairs over multiple parallel curves.
We turn to this problem now.

3 Algorithm

Given a single image I and a scene plane containing parallel curves, we wish
to estimate the camera parameters ¢ and « in order to rectify the image data
by means of the homography H, from Eqn.(5). This estimate will be based on
maximizing the parallelism of rectified image curves. To compute this objective
we need to detect and group local features into extended curves, and associate
pairs of curves hypothesized to be parallel.

For the sake of concreteness, we will focus here on highway imagery. To op-
timize accuracy and make our assumptions explicit, we adopted a probabilis-
tic supervised learning approach, randomly partitioning 20 640 x 480 highway
videos captured by various highway cameras into training and test datasets of 10
videos each. From each video we extracted and hand-labeled 10 images, sampled
sparsely in time. A risk here is that we will over-learn the statistics specific to
this dataset. To assess this, we will also apply the method, without relearning,
to a completely different application domain (sports videography).
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Our automatic rectification algorithm has two main stages: 1) curve extrac-
tion, and 2) rectification.

3.1 Curve Extraction

Curve extraction consists of local feature detection and grouping. The param-
eters for both stages are learned from manually labeled lane marks and lane
dividers in our highway dataset.

Local Feature Detection. We use a standard corner detector [16] to extract
image features. At each image location 7, we construct the 2 x 2 matrix C; and
compute its eigenvectors e} and e? and associated eigenvalues A} and A2. For a
smooth curve, the eigenvectors e} and e? encode the normal and tangent vectors,
respectively. We define an appearance vector d; = [n;, A}, b;]7 where n; = A7 /A!
is the ratio of the eigenvalues and b; is the pixel brightness.

We wish to use this appearance vector to determine whether a feature lies on
(w; = 1) or off (w; = 0) a smooth curve on the scene plane. Assuming conditional
independence of the appearance features, the likelihoods are approximated as the
product of the marginals (Fig. 2), and the likelihood ratio L can be written as

_ p(Ajlwi = D)p(bilw; = 1)p(nlwi = 1)
P(AHw; = 0)p(bi|w; = 0)p(n;w; = 0)
After discarding features for which log L; < 0, we thin the features using non-

maximum suppression in the e} direction, normal to the curve. The result is a
sparse set of local features (Fig. 3 (a)).

L (10)

15
04 —p(rle,;=0) —pi'10,=0) 0.03{|——p(b|®,=0)
008 —Prle;=1) ] —pti" 0= 1) —p(ble=1)
0.02
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0.04 05 0.01
0.02)
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Ratio of Eigenvalues 7 Leading Eigenvalue A Brightness b

(a) (b) (c)

Fig. 2. Likelihood distributions for local features

Feature Grouping. In spirit, our rectification method is local, as it relies
only upon pairs of local tangent vectors. In practice, however, grouping the
local features into global curves is important, for two reasons. First, for some
applications, the local features are not aligned. For example, in the highway
imagery shown in Fig. 3(c-d), the lane marks are offset, so that a normal from
one will not necessarily intersect another. If we first group these lane marks into
curves, these intersections can be determined by interpolation.
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Fig. 3. Curve extraction. (a) Local features before and after thinning. Each vector
indicates the direction of the leading eigenvector. (b) Processing window used in the
curve segmentation process, (c) First-level segmentation, (d) Second-level segmenta-
tion. Each color represents a subset of grouped feature vectors.

A second benefit of grouping lies in outlier removal. In practice, only some
of the local features will lie on parallel curves from the dominant scene plane,
and identifying outliers is an important part of making the method work. Outlier
identification is greatly facilitated by first grouping the local features into curves,
as normally a curve will be either wholly an inlier or wholly an outlier.

We found that a simple grouping method was sufficient for this application.
From the training dataset, we learn the minimum-area L x W rectangular search
window that, when based at each ON curve feature is guaranteed to include at
least one other feature from the same curve, and determined the maximum angle
0o between the leading eigenvectors of these two features. (Learned parameters:
L = 10 pixels, W = 5 pixels, §p = 39 deg.) The grouping algorithm then
proceeds in three stages: 1) A graph G(V, E) is instantiated, where vertices V'
represent the local features and the edge set E is initially empty. 2) We tour the
graph, searching the window based at each local feature and adding an edge to
any other vertex representing a feature within the search window and satisfying
the maximum angle constraint. 3) We extract curves C = {C1,Cy,...,Cp} as
connected components of G.

Figure 3(c) shows the resulting curves for an example highway image. Note
that the lane marks are segmented as individual, short curves. In order to group
these into global curves, we repeat the same procedure using a larger search win-
dow, again learned (independently) from the training data (Learned parameters:
L = 145 pixels, W = 25 pixels, 6y = 20 deg.). Figure 3(d) shows the resulting
global curves for the same highway image.

3.2 Rectification

The input to our rectification algorithm is a set C of curves, each consisting of
a set of local features f; = (r;,1;) represented by their location r; = (x;,y;,1)T
in the image and tangent line 1; = (a;, b;,1)T, in homogeneous form. Our goal is
to estimate the camera parameters ¢ and «, and therefore the homography H,,
which can be used to rectify the input image (Eqn.(5)). Each iteration ¢ of the al-
gorithm consists of four main steps: 1) Transformation of local features using the



Single-View Calibration and Rectification from Parallel Planar Curves 821

current estimate H,. of the homography, 2) Pairwise association of local features
on parallel curves, 3) Re-estimation of the homography, and 4) Outlier removal.
The steps are interdependent: feature association and outlier removal depend
upon the estimated homography, and the estimated homography depends upon
feature association and outlier removal. In this sense, our rectification algorithm
can be considered a generalization of the iterative closest point method [17,18].

Transformation. The current estimate of the homography H,; is applied
to the local feature map to yield approximately rectified features: p} = H,:p;,
I =H,"1,.

Association. The goal of this step is to associate each local feature f;,, on a
curve C; with one other local feature f;, on each of the other curves Cj,j # ¢ in
the image. Roughly speaking, we wish to select the feature f;, that lies nearest
the normal line for f;,, (Fig. 4 (a)). In practice, we measure this distance along
the tangent line for f;,, which takes into account the curvature of Cj. If no
feature on C; lies within an association tolerance of T, = 41 pixels (learned
from training images) of the normal line for f;,,, no association is made. The
outcome of this process is, for each pair of curves (C;,C;),j # ¢ in the image,
a bipartite matching between a number Kj;; of local features on the two curves.
The critical property of each match is the angular deviation 0,;x, k € [1,. .., K;;]
between the associated tangent lines.

; JING
A S .
- W
f .8

»

(b)

(©)

Fig. 4. (a): Association of feature vectors from different curves - see text for details.
(b): Example synthetic input with localization noise o = 1 pixel and no angle noise.
(c): Rectified output. Note the noise amplification along the rectified curves.

Re-estimation. Were the homography H,, correct, and in the absence of
noise, all of the associated features would be parallel. Thus to estimate the focal
length o and tilt angle ¢ we minimize the sum of squared angular deviations 6,
over all corresponding tangent lines and all pairs of curves in the image using a
standard iterative nonlinear optimization method. To initialize the optimization
we evaluated two methods: 1) Coarse grid search and 2) Using the mean of the
parameters estimated from the training set (¢ = 70 deg, & = 788 pixels). Both
methods proved equally accurate, but of course using a single, well-chosen initial
estimate is faster.

Outlier Removal. The re-estimation process can fail if there are many outlier
curves. In this paper an outlier curve is a curve that is not approximately parallel
to the rest of the curves in the image. To detect and remove outliers, we define
a measure of total deviation ¢; for each of the M curves C; in the image:
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1 1
Ei:M,]_ZK..Z‘eijﬂ' (11)

j#i Y k=1

Curves C; for which ¢; exceeds a threshold of 30 deg are discarded, and the total
deviation €; is recomputed for the remaining curves. This process is repeated
until all curves lie within the threshold (Fig. 5).

o ..’ . ‘\_\, A _.’ .
,/. - l' 1 N S - A
p- ' \ 2 ']
’a '.77
(a) (b)

Fig. 5. Example highway feature vectors before (a) and after (b) outlier removal

4 Results

We evaluated our algorithm on three datasets: 1) Synthetic data consisting of
parallel curves with added noise and known ground truth, 2) Highway images
taken by a variety of uncalibrated highway cameras (unknown « and ¢), and 3)
Images of a curved running track taken by a calibrated camera (known a and ¢).
Dataset 3 was acquired with a Nikon D90 camera, calibrated using a standard
method [12]: the focal length was estimated at a = 812 pixels. We used this
camera model when generating the synthetic Dataset 1.

4.1 Experiment 1. Synthetic Data

For our first experiment, we assumed a viewing distance D = 40m and a 640 x480
pixel image, and simulated 6 concentric circular arcs centred at the origin of the
scene plane, with equally-spaced radii ranging from 30 to 55 m, and angular
subtense of 90 deg. The rotation of the arcs around the origin of the scene plane
was randomized over samples. Each of these arcs was projected analytically to
the image using our camera model, and then represented by a field of feature
vectors localized to sub-pixel accuracy with an arc length spacing of 1 pixel. We
used this dataset to verify the method and assess sensitivity to additive Gaussian
iid noise in in both the position and angle of the local features, as a function of
tilt angle. Fig.4 (b-c) shows an example stimulus before and after rectification.

Fig. 6 shows results. For low noise (Figs. 6a-b) and larger tilts (Figs. 6¢-d) the
method produced estimates of tilt angle c;AS and focal length & that are unbiased
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Fig. 6. Experiment 1 Results. Top plots show estimated tilt angle QAS, bottom plots
show estimated focal length &. Red dashed curves indicate ground truth values, blue
curves indicate estimated values. (a) Variation with std. dev. of position noise o,. (b)
Variation with std. dev. of angle noise og. (c) Variation with tilt angle ¢ for position
noise of o, = 1 pixel. (d) Variation with tilt angle ¢ for angle noise of o9 = 3 deg.

and accurate. However, with high levels of noise and/or small tilt angles, the
method becomes biased: both tilt angle and focal length are underestimated.
We believe that this bias is due to amplification of noise in the objective
function induced by rectification. From Eqn. 4, one can see that the perspective
factor f, will cause noise to be attenuated or amplified depending upon the sign
of y. However, noise in the rectified y coordinate g, will increase monotonically
with the vertical expansion factor f., inducing a bias to smaller values, and hence
smaller tilt angles ¢. Since tilt angle and focal length « are inversely coupled
through the perspective factor f, = a~!tan¢, this induces a compensating
decrease in the estimate of focal length «. This effect becomes more pronounced
for smaller tilt angles, where the perspective distortion does not impose as strong
a constraint on the rectification. In future work we hope to correct for this high-
noise bias by explicitly modelling the propagation of noise across rectification.

4.2 Experiment 2. Highways

For our second experiment, we applied our algorithm to the highway test dataset,
which is quite challenging: 1) The images are originally analog, then digitized and
compressed, 2) pan, tilt and zoom vary widely, 3) quality of the road markings
varies widely, 4) weather and light conditions vary widely. This dataset thus
forms a realistic test of the algorithm’s potential.

We compare our curvilinear method against a state-of-the-art method for lin-
ear vanishing point extraction [1]. This method extracts the vanishing points
from the detected families of imaged parallel lines assumed to lie on the ground
plane and the resulting horizon line, which can be used to estimate the projec-
tive factor f,. We emphasize that while the linear method should work well for
straight highways, it is not expected to work well for curved highways.
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Since we do not have ground truth here, we are somewhat constrained with
respect to quantitative evaluation. However, two forms of evaluation are still pos-
sible. 1) We can qualitatively evaluate whether rectification correctly parallelizes
the curves. 2) We can compare parameter estimates for the fully automatic algo-
rithm against parameters estimated with our curvilinear rectification algorithm
but given hand-labelled curves as input. While this second method serves to
estimate errors induced by the segmentation and grouping stages, we emphasize
that it does not evaluate errors introduced in the rectification stage.

We divided the test dataset into a subset of straight highway segments, and a
subset where the highway is curved. For the straight subset, simultaneous esti-
mation of both tilt angle ¢ and focal length « is under-constrained. To evaluate
the methods, we therefore estimate the perspective factor f, and use a nominal
value for the vertical expansion factor of fo = 1 in Eqns. 3 and 4 in order to
rectify the imagery.

Fig. 7(a-b) shows example rectifications for linear and curvilinear methods.
While results appear satisfactory in both cases, a paired t-test comparing the
error in the estimated perspective factor f, for 30 different images reveals that
the curvilinear method is significantly more accurate, t(69) = 4.4, p = .00004.

Fig. 7. Highway rectification examples. Top row: estimated features, bottom row: re-
sulting rectified image. (a-b) Linear [1] and proposed curvilinear method applied to
straight road. Both methods perform well. (c-d) Linear [1] and proposed curvilinear
method applied to curved road. While the linear method fails completely, the curvilin-
ear method computes a reasonable rectification.

Fig. 7(c-d) shows example rectifications of a curved highway for both linear
and curvilinear methods. In this case the linear method fails catastrophically,
while the curvilinear method succeeds in computing a reasonable rectification.
Quantitatively over the curved roads in our dataset, the curvilinear method again
performs significantly better, ¢(29) = 2.5, p = .02, (Fig. 8). Mean accuracy of the
estimated parameters for the curvilinear method applied to curved highways in
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Fig. 8. Experiment 2 results (highway images): comparison of error in the estimated
perspective factor f, using the linear and curvilinear methods. Errors were computed
with respect to ground-truth estimated with hand-labeled data.

Table 1. Mean abs. errors for estimated tilt and focal length for curvilinear method.
Road results are for curved highways only and are relative to estimated ground truth,
using our rectification algorithm on hand-segmented data. Track results are based on
actual ground truth.

Mean tilt err Ay Mean focal length err A,

deg % pixels %
Roads 2.8 4.0 13.7 1.7
Track 1.2 1.8 14.4 1.8

our test dataset is shown in Table 1. We emphasize that these errors are relative
to estimated ground truth, computed using our rectification algorithm on hand-
labeled data. Average running time of our non-optimized Matlab implementation
on a standard dual-core laptop computer was 15.3 sec for curve extraction, and
41.1 seconds for rectification (30 iterations). We expect run time could easily be
improved by an order of magnitude with some optimization.

4.3 Experiment 3. Running Track

For our final experiment, we used a calibrated camera to acquire 7 images of a
running track. These images were taken from a variety of locations in the stadium
stands, at tilt angles of 60, 65 and 70 deg. We applied the same algorithm used
for the highway images in Experiment 2, except for omitting the second grouping
step, since the curves of the running track are continuous. Importantly, we did
not relearn the statistical parameters for feature detection and grouping. Given
the substantial differences in the quality of the imagery and the application
domain, Experiment 3 provides a good test of how well the method generalizes.

An example result is shown in Fig. 9, where (a) shows the results of curve
segmentation, and (b) and (c) show the results after outlier removal and rectifi-
cation. Here we have ground truth tilt and focal length, allowing us to evaluate
the accuracy of the method in absolute terms. Table 1 shows these results. Mean
absolute tilt angle error Ay was 1.2 deg (1.8%) and mean absolute focal length
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Fig. 9. Experiment 3 results. (a) Output from curve segmentation stage prior to outlier
removal. (b) Rectified image with inlier curves. (c) Rectified image.

error A, was 14.4 pixels (1.8%). We believe that the improved accuracy relative
to the highway dataset is primarily due to the superior image quality.

5 Conclusions

Methods for single-view calibration and rectification generally assume systems
of parallel lines or orthogonal structure in the scene. In this study we have in-
troduced a method that applies to scene planes that may not contain linear
structure, but do contain parallel curves, and have shown that these curves pro-
vide sufficient information for the estimation of both focal length and tilt angle.
Our experiments have demonstrated the efficacy of the method, particularly in
situations where conventional methods fail.

Although highway surveillance is our main target application, we have shown
that the method generalizes well to sports tracks without relearning. Other po-
tential application domains include autonomous navigation systems, curved con-
veyer systems for industrial automation and non-contact fingerprint analysis.

Future work may address 1) the analysis of small biases induced by nonlin-
ear propagations of error, 2) estimation of additional camera parameters (e.g.,
camera roll), 3) estimation of metric properties based upon prior knowledge of
sensor placement or object size and 4) generalizations to scenes with multiple
systems of parallel curves, e.g., highway interchanges.
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