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Abstract. We present an efficient realization of recent work on unique
geodesic paths between tree shapes for the application of matching coro-
nary arteries to a standard model of coronary anatomy in order to la-
bel the coronary arteries. Automatically labeled coronary arteries would
speed reporting for physicians. The efficiency of the approach and the
quality of the results are enhanced using the relative position of detected
cardiac structures. We explain how to efficiently compute the geodesic
paths between tree shapes using Dijkstra’s algorithm and we present a
methodology to account for missing side branches during matching. For
nearly all labels our approach shows promise compared with recent work
and we show results for 8 additional labels.
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1 Motivation and Overview

It is critical that an imaging physician report the anatomical location of pathol-
ogy in a standard way to the referring physician. A principle goal of automated
medical image analysis is the efficient reporting of such findings following estab-
lished medical guidelines. Criteria have been established for how lesions along
the coronary arteries should be reported from CT angiography (CTA) [1,8].
The number of coronary labels varies in different standards but there is agree-
ment on the major labels. The AHA established a standard 15 segment model
in 1975 [1]. Our model follows more closely the more recent and more complete
models of [8,6]. The physician generally knows which coronary segment contains
a lesion but it is time consuming to label images when more than a few labels
must be applied. So the goal of automatic coronary labeling is not to inform the
physician of the anatomy but to speed the preparation of a report.

In order to label the coronaries, our approach will leverage both geometric and
topological information to define the correspondence between a labeled model
and unlabeled data. We only consider the centerlines of the coronaries and not
the coronary lumen. Most prior work labeling vascular or airway trees extracts
an abstract graph that captures the topology of the tree but uses limited or
no geometric information. A graph matching algorithm is then run to define
the best correspondence between nodes in the model and in the unlabeled graph
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[2,7]. This is a natural approach when attempting to label coronaries in 2D X-ray
angiograms where the 3D geometry has been lost as in [2,7].

Recent work by [9] labels 3D CTA in 2 steps based on an anatomical model
derived from [1]. First, a reduced coronary model is rigidly aligned using a point-
set registration method and labels for the major branches are assigned based on
proximity. Second, the side branches are labeled based on iteratively reducing
a cost function which penalizes unlabeled centerline points. Our approach can
handle more general trees and so could be applied to other anatomy. In the
results section, we compare our results with theirs.

Our solution builds on the recent work defining unique geodesic paths between
trees [4], specifically, the proposed Quotient Euclidean Distance (QED) metric
to compute in general unique natural and continous geodesic paths between tree-
shapes by concatenating local tree deformations [4]. The paths are defined in a
high dimensional space that captures the topology and geometry of the tree. The
QED geodesic was previously applied to the computation of an average airway
tree [3] and to matching airway trees [5].

The main contributions of this paper are 1) the practical definition of the 3D
QED geodesic space for coronary trees based on automatically detected cardiac
anatomy, 2) an efficient computation of the QED geodesic using Dijkstra’s algo-
rithm, 3) the use of a coronary territory prior to augment the shape and topology
information, 4) explicit explanation of our heuristic in the QED framework to
handle missing side branches. We first explain the QED metric and then explain
its application to coronary labeling. We then present strong coronary labeling
results on manually and automatically detected coronary trees.

2 Method

In our method, we label a given target coronary tree by finding a minimum cost
tree-shape deformation from a coronary atlas model. We define the deformation
cost between two coronary trees as the weighted sum of the QED distance be-
tween them and a second cost term based on the likelihood of the assigned labels
to the target coronary branches which is computed from the spatial distribution
of coronaries over the heart surface.

As in [4], our vessel tree representation consists of a description of the branch
topology and the shape of the branches which together correspond to a point in
high dimensional space X . We represent a tree-shape as a pair (T, f) consisting
of first, an ordered binary tree T = (B, r) with branches B and a root point r
which together represent the tree topology, and second, branch attributes f that
map each branch in B to n landmark points sampled along the branch geometry.
In this tree-shape model, tree-shapes with non-binary topology are represented
via binary trees with collapsable zero-length internal branches. Figure 1c makes
it clear that the same tree-shape may correspond to different points in our space.

Our goal is then to find a geodesic path between two such tree-shape points.
However, geodesic paths in such a high dimensional space do not necessarily
give continuous and natural deformations, since these geodesic paths do not
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contain equivalent tree-shapes with different binary representations, Figure 1a.
Therefore, it is important to identify all the points in this space representing
the same tree-shape. In [4], a quotient space X̃ is defined to glue all points
in the space X that correspond to the same tree-shape. In the quotient space,
two tree-shape representations are considered to be identical, after collapsing
their zero-length branches, if the corresponding combinatorial, ordered, rooted
and attributed trees are exactly the same, Figure 1c. The geodesic metric in
this space is called the Quotient Euclidean Distance (QED) where the distance
between glued points corresponding to same tree-shape is considered to be zero.

The QED geodesic between two tree-shape points in quotient space is the path
with minimum distance cost over all possible paths, Figure 1b, c. The distance
cost d(x, y) between two tree-shape representations x and y is defined as the
L2 norm of the deformation costs between corresponding branches in two tree-
shapes. This branch deformation cost is computed as the sum of the Euclidean
distance between landmark points of the two branches with their first points
aligned. The cost of removing a branch is same as deforming it to a zero length
branch.

In general, finding geodesic paths in QED space is computationally very ex-
pensive. One algorithm for computing QED geodesic is to explore all paths
following all possible internal topology changes and choose the one with mini-
mum cost among them. However, the number of all possible internal topology
changes grows exponentially with the total number of internal branches of the
tree-shape. In fact, some sequences of internal topology changes may have a cost
larger than the geodesic cost. In order to eliminate redundant paths containing
such sequences, we propose to use Dijkstra’s shortest path algorithm which is
guaranteed to compute the shortest path when the graph metric is non-negative.
We construct a graph G = (V,D) where each node V in this graph corresponds
to a tree-shape and are connected with edges D. An edge connecting two nodes
with identical tree-shape is assigned with zero cost and an edge connecting two
nodes with different tree-shapes is assigned with the minimum of distance costs
between all possible pairs of different tree-shape representations of the two tree-
shapes, d̃(T̃1, T̃2) in Figure 2b. Note that the cost of an internal topology change
is the removal cost for the corresponding internal branch. The edge costs are
computed only when they are needed in Dijkstra’s propagation for efficiency.

Major side branches of the coronaries could be missing in a sample due to
anatomical variation, pathology, image acquisition issues, or segmentation er-
rors. One major contribution of this work is to consider equivalent partitioned
representations of source and target tree-shapes to account for missing side
branches, Figure 2a. Given two tree-shape representations, we collapse all zero-
length branches and merge the branch geometry of consecutive branches without
bifurcations to form a single branch in a new tree representation. If the two new
representations are exactly the same, we consider these two tree-shape repre-
sentations to be equivalent. This definition of identical tree-shapes allows for
partitioning a tree-shape branch into one or more consecutive branches in B to
naturally account for missing side branches, Figure 2a. Specifically, we compute
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(a) (b) (c)

Fig. 1. (a) T1 and T2 are tree-shape points in a high dimensional space. A third tree-
shape can be obtained by removing the internal branch of T1. Path 1 is the geodesic
path in the original space X. Path 2 is a continuous deformation but not a minimum
cost path. (b) In Quotient Space X̃, Path 2 is a feasible geodesic path because two
different representations of the same tree-shape are allowed along the path with zero
cost between them. Note that Path 2 goes through an internal topology change. (c)
Tree-shapes (top) and their representations (bottom) along the geodesic Path 2.

(a) (b)

Fig. 2. (a) T1 has a missing side branch. Its main branch is partitioned and mapped
onto the equivalent second representation (middle) with two consecutive branches. This
allows the side branch to grow naturally along the geodesic path. (b) Our constructed
graph for Dijkstra’s algorithm to compute QED geodesic from T1 to T2.

QED geodesic between all possible partitioning of source and target tree-shape
branches in to at most three equal length polylines. Note that the tree-shape
partitioning is a heuristic step of our algorithm that uses the QED tree-space.

It is not practical to apply QED to arbitrary trees embedded in 3D space
because it requires considering all possible orderings of the child branches. For
the coronaries, we can order the branches based on their position relative to
the surface of the heart. Specifically, we automatically detect all four cardiac
chamber using the method of [12,10] and use them to find branch orderings of
right and left coronary trees relative to the right and left ventricles, respectively.

In addition, since we know the underlying cardiac anatomy, we can use it to
compute the likelihood of where a particular coronary branch tends to lie. We
add a second cost term to our tree-shape deformation cost in addition to the
traditional QED distance. This second term accounts for the cost of assigning a
label to a specified branch on the target tree based on its location over the heart
territory. The likelihood for each branch is computed from the spatial distribu-
tion of hand annotated coronary trees aligned using a thin-plate spline (TPS)
defined by the detected cardiac chamber and pericardium models, Figure 3.
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Fig. 3. (a) Automatically detected four chamber models are used for aligning coronary
trees with TPS interpolation. (b) Right and (c) left coronary territories with certain
regions depicted. Red indicates high probability, blue low probability.

(a) (b) (c)

Fig. 4. a) The left coronary artery (LCA) has 14 labels: left main (LM), three segments
of the left anterior descending (LAD): proximal (LAD PROX), mid (LAD MID), and
distal (LAD DIST), diagonals (D1, D2), septal perforating (SP1), b) three segments of
the circumflex (CX): proximal (CX PROX), mid (CX MID), and distal (CX DIST),
sinoatrial nodal (SANB), posterolateral (CX PLB), and obtuse marginals (OM1,
OM2). c) The right coronary artery (RCA) has 9 labels: three segments of the right
coronary artery: proximal (RCA PROX), mid (RCA MID), and distal (RCA DIST),
sinoatrial nodal (SANB), conus (CB), right ventricle marginal (RVM), acute marginal
(AM), posterolateral (RCA PLB), and posterior descending (RCA PDA). Proximal
and distal subtrees are separated by red lines.

We achieve labeling an unseen coronary tree by propagating labels from a
coronary atlas model along the geodesic path computed between them. Our
coronary atlas model has a fixed topology described by [6] and we use mean
branch shapes computed over the most complete 10 coronary trees in the training
set. Figure 4 shows our coronary model in 3D space. Our coronary model is an
instance of both right-dominant and co-dominant circulation which are seen in
92% of the population [6]. This is why we excluded the CX posterior descending
artery in our coronary model. The ramus intermediate branch is also excluded.

The computational cost of our matching increases with the size of the trees.
However, coronary arteries may have more generations than what is practical
with the QED metric. Therefore, we partition RCA tree, LAD and CX subtrees
into proximal and distal parts by maximizing the likelihood of their locations on
coronary territory. Figure 4 shows the proximal and distal parts separated by
red lines. Each subtree is labeled separately.
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Table 1. Label assignments as a percentage for those branches with the most mislabels

RVM RVM (88%), CB (3%), None (9%)

AM AM (73%), RVM (19%), None (8%)

RCA SANB RCA SANB (80%), None (20%)

OM2 OM2 (83%), CX PLB (8%), None (9%)

D2 D2 (83%), LAD MID (12%), None (5%)

3 Results

Our QED geodesic implementation supports 3 generations. We keep a table for
quick look-up of equivalence classes of tree shapes. Our parallelized implemen-
tation with OpenMP computes the QED geodesic between 2 tree-shapes with at
most 2 internal branches in 30 seconds on a Quad Core Xenon 3GHz processor
and 8 GB RAM. Labeling both left and right coronary trees takes 3 minutes.

We assume that the left main (LM) and the proximal branches of the RCA,
LAD and CX always exist. To make the input centerlines suitable for use in our
QED implementation, each proximal and distal part of RCA, LAD and CX trees
were preprocessed by iteratively pruning their shortest branches until they had
a maximum three generations.

We evaluated our method for right and co-dominant dominant cases us-
ing leave-one-out cross-validation where the coronary spatial distribution is re-
computed for each training set. We experimentally chose the best weighting term
between QED distance and label assignment likelihood terms. The ramus branch
was removed from the entire test set and should be treated separately. We used
expert annotated coronary centerlines in 37 CTA datasets. We automatically
detected the pericardium mask and four chamber models to define our coordi-
nate system [10,12]. Each of the ground truth centerlines was labeled according
to [6] where the same label of the side branch is used to label its children. For
evaluation, labels corresponding to pruned branches are recorded as part of the
missed results. Figure 5 illustrates the matching between the model and a test
coronary tree. We calculated the overlapmeasures between automatic and expert
annotated labels for each branch that exists in our coronary model. Branches
that exist in our model but that are not labeled by the algorithm are counted as
mislabeled. Figure 6 compares our results to those of [9]. Note that the two test
datasets are different and so the results are suggestive rather than being directly
comparable.

We evaluated our labeling method on 20 patient cases of automatically de-
tected coronary centerlines [11] that combines a model driven approach for the
three major coronary arteries with a data driven approach for the side branches
and distal parts of the main branches. Because the method of [11] knows which
of the three main coronary branches it has recovered, the label of these branches
is known as part of the segmentation. However, in order to show the generality
of our approach to labeling, these known labels are ignored and we present a
method that can label the coronary tree without any known labels.
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Fig. 5. A sample test tree (right) matched to our model (left). An intermediate tree
along the geodesic path is shown in the middle. Each color corresponds to a label. New
grown branches are depicted in green. The first diagonal is missing in the test tree.

Fig. 6. Comparison of our overlap measures to Yang et. al. [9]. Total count of each
branch is depicted next to its label for our and their test set, respectively. Our results
for branches that were not part of their results appear as single columns.

Our success rate is 95% for the right coronary and 93% for the left coronary
for hand annotated centerlines, and 87% for the right coronary and 86% for the
left coronary for detected centerlines. Without the anatomical location prior, the
results for the hand annotated centerlines decrease to 92% for the right coronary
and 89% for the left coronary. In the case of the automatically detected coronary
branches, there are 14 instances of false positive detections which explain our re-
duced labeling performance. Specifically, in 51% of these cases,the false positives
are incorrectly given a label and the assigned label depends on the location.

4 Conclusion

We have presented an efficient method that determines a geodesic path between
tree shapes in order to propagate labels from a standard model of the coronary
arteries to unlabeled coronary centerlines. Our approach adapts the framework
of [5] to work on the detected surface of the heart. For most of the labels assigned
by [9] our approach produces equivalent or better results. However, our approach
can handle more general tree structures and we have shown results on 8 addi-
tional labels. Also, we show results for coronary trees produced by an automatic
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detection algorithm. Additional contributions include the efficient computation
of the QED geodesic using Dijkstra’s algorithm, the use of a coronary terri-
tory location prior, and an explicit description of how to support missing side
branches in the QED framework. However, the major limitation of our approach
is the computational complexity of QED for trees with many generations. In fu-
ture work, we will consider having multiple coronary models in order to handle
left dominant circulation (approximately 8% of the population [6]) or the rare
cases where the left main trifurcates into a ramus intermedius, LAD and CX [6].
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