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Abstract. This paper presents a new, efficient and accurate technique
for the semantic segmentation of medical images. The paper builds upon
the successful random decision forests model and improves on it by mod-
ifying the way in which randomness is injected into the tree training
process. The contribution of this paper is two-fold. First, we replace the
conventional bagging procedure (the uniform sampling of training im-
ages) with a guided bagging approach, which exploits the inherent struc-
ture and organization of the training image set. This allows the creation
of decision trees that are specialized to a specific sub-type of images in
the training set. Second, the segmentation of a previously unseen image
happens via selection and application of only the trees that are relevant
to the given test image. Tree selection is done automatically, via the
learned image embedding, with more precisely a Laplacian eigenmap.
We, therefore, call the proposed approach Laplacian Forests. We vali-
date Laplacian Forests on a dataset of 256, manually segmented 3D CT
scans of patients showing high variability in scanning protocols, resolu-
tion, body shape and anomalies. Compared with conventional decision
forests, Laplacian Forests yield both higher training efficiency, due to the
local analysis of the training image space, as well as higher segmentation
accuracy, due to the specialization of the forest to image sub-types.

1 Introduction

The accuracy of image segmentation is crucial in many medical imaging appli-
cations, affecting notably diagnostics and treatments. Popular approaches often
require manual user interactions [1,2], however, automatic approaches are in-
creasingly benefiting from the rising number of annotated data. Early proposals,
such as template-based methods [3] or Active Shape Models [4], were exploiting
annotated ground truth data, known as atlases, in order to label previously un-
seen images. These statistical atlases were built using registration of training im-
ages, which is a non-trivial problem. Recently, machine learning approaches [5,6]
propose to capture correlations between image features and associated ground
truth labels, and exploit these learned traits to segment previously unseen im-
ages. Among such approaches, Random Decision Forests (RF) [7,8] have shown
impressive, fast and accurate segmentation of medical images, including brain
[9,10,11], and heart [12] images. They notably derive their strength from bagging
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[7], a uniform sampling of training images, which adds randomness during train-
ing of the decision trees. Image segmentation is simply done by labeling pixels
with the predictions of the decision trees.

We propose to improve accuracy of the decision trees by modifying the way
in which randomness is injected in the training process. Motivated by the fact
that i) training should consider affinities between images, and ii) decision trees
should have different influences with respect to a test image, we decide to dif-
ferentiate images by exploiting an embedding of the training image set. A large
training set may indeed contain images of various anatomical regions, e.g., cere-
bral, thoracic, and/or abdominal. Bagging of too diverse images, with high vari-
ability in shapes and anomalies, may confuse training, which in turn, would
necessitate an increased number of images for training. This increases memory
and computational burden. Ideally, separate forests would be trained on specific
sub-type of images in the training set, e.g., one would not annotate a thoracic
image using a forest trained on abdominal images. This is inline with the Con-
ditional Regression Forest [13,14], which focuses training of facial/body features
on separate subsets of head/body-pose images. Pushing this strategy further,
a recent attempt at localizing training and reducing computation burden for
large databases is Atlas Forest (AF) [10], where trees are trained on single im-
ages, and predictions are made by averaging the probability estimates of these
single-image trees. Grouping heterogeneous images into sub-types is, however,
not trivial. Medical images pose an even greater challenge as their quality and
field of view may be varying with acquisition protocols, whereas their DICOM
tags for image types are not necessarily available or reliable.

The contribution of this paper is two-fold. First, we replace the uniform bag-
ging strategy of conventional forests with guided bagging. Training images are
embedded in a reduced image space representation, which exploits the underlying
structure and organization of image sets, more precisely, via a Laplacian eigen-
map. Decision trees are subsequently trained on images within specific neigh-
borhoods of the embedding. Image sampling is guided rather than uniformly
randomized. Guided bagging could also be regarded as a generalization of the
Atlas Forest framework, where training is extended beyond single-image trees
and uses neighborhoods of images on the Laplacian eigenmap. Second, we select
decision trees based on their relevance to a test image. The segmentation of a
previously unseen image is made by weighting the contributions of each individ-
ual tree with relative distances, and descriptive statistics, between training and
testing image representations in the embedded space. A forest is, therefore, built
at test time, as opposed to training time, and utilizes only the revelant trees
depending on where a test image lands on the Laplacian eigenmap. We thus
name our method Laplacian Forests. Furthermore, guided bagging and tree
weighting allow Laplacian Forests to scale well with large databases, since each
new training image would naturally bring information to only the relevant trees,
increasing consistency within a decision tree during training. Similarly, new test
images would pull information from only relevant trees without sacrificing com-
putation costs at test time. The next section describes the Laplacian Forests in
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more details, followed by a set of experiments that illustrates the fundamental
differences of Laplacian Forests over conventional forests. Results show how our
approach improves segmentation accuracy on a dataset of 256 CT images with
high variability in shapes and anomalies.

2 Method – Laplacian Forest

We begin by briefly reviewing Random Decision Forests (RF), and extend the
general framework to exploit the underlying structure of the image space.
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Fig. 1. Image Space Embedding – a) Collection of training images (ground truth), with
no particular order. b) Reorganized images, ordered using the first two principal axes
of a Laplacian eigenmap (images as red points). This map allows images to be grouped
in neighborhoods, e.g., thoracic on top, abdominal in the bottom.

Standard Forest (RF). A standard RF classifier consists of an ensemble of
decision trees, each trained on a randomized subset of training data. During
training, a tree is grown by establishing binary decisions that optimally split a
training set from node to node such that information gain among class distri-
butions is maximized. Each tree, t, learns a probabilistic class predictor pt(c|f)
for a feature representation f of an image pixel. During testing, pixels of a test
image are labeled by passing down their feature representations in ntree trees.
The resulting class predictions {pti(c|f)}1..ntree are averaged and a pixel is fi-
nally labeled using the maximal prediction ĉ = argmaxc

∑nT

i=1 pti(c|f). More
details could be found in [7,8]. A key aspect of RF is that accuracy and gener-
alization are improved with bagging, a uniform sampling of the training image
set. Atlas Forest (AF) [10] is a particular case of RF where individual trees are
trained on single images. AF was shown to outperform the state-of-the-art in
brain labeling [15].
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Laplacian Forest (LF). In LF, training images are reorganized into a new, low-
dimensional continuous space. More precisely, they are embedded in a Laplacian
eigenmap, as illustrated on Fig. 1. LF exploits such embedding in two novel
ways: guided bagging during training, and tree weighting during testing. The
general concept is i) to train trees on sets of similar images, which are in fact
conveniently localized within neighborhoods of the reduced image space, and ii)
to form forests at test-time with decision trees that are close to the mapping of a
test image into the reduced image space. These strategies, illustrated on Fig. 2,
contrast with standard uniform bagging, and with uniform tree weighting in RF.

2.1 Training Stage – Guided Bagging

Given a training set of nimg images {Ii}1..nimg with their associated label maps,
affinities are first established between images, in order to build an embedding of
the training images.

Affinity in Image Space. Image similarity is defined by a distance d(i, j)
between images Ii and Ij . In this paper, we use the sum of squared differences

of pixel intensities between images: d(i, j)2 = 1
|Ii∩Ij |

∑
p∈{Ii∩Ij} (Ii(p)− Ij(p))

2
,

which is fast and uses no image registration, nor any label information. If images
have different sizes, we use their overlapping area Ii ∩ Ij around their center
points. These distances are used to build the nimg × nimg weighted adjacency
matrix W , defined in terms of image affinity, here: wij = exp

(−d(i, j)2/2σ2
)

if images Ii and Ij are within their respective k-nearest neighbors, 0 other-
wise, while σ represents tolerance to similarity, e.g., with the average of dis-
tances σ = mean (d(i, j)). The diagonal degree matrix is the sum of all affinities
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Fig. 2. Algorithm Comparison – a) Standard Forests use uniform bagging (training
with randomly chosen images). One decision tree is shown by connecting in blue, im-
ages used for its training (covers large area with various image types). b) Laplacian
Forests use guided bagging, by creating specialized trees with neighboring images on the
Laplacian eigenmap. Trees are shown with ellipses that fit their constituting images.
Testing only needs trees close to a test images (black cross, bottom left).
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di =
∑

j wij . Normalized affinities in the image space are summarized in the

generalized Laplacian [16], a nimg × nimg matrix L = D−1(D −W ).

Images on Laplacian Eigenmap. We reduce the high-dimensional image
space via the spectral decomposition of the Laplacian L = XΛXT , giving the
eigenvalues, in increasing order, Λ = diag(λ0, λ1, ..., λnimg) and their associated

eigenvectorsX = (x(0), x(1), ..., x(nimg)), a nimg×nimg matrix where each column
x(·) is an eigenvector. We finally define the m-dimensional spectral coordinate of

an image Ii as si =
(
λ
− 1

2
1 x(1)(i), ..., λ

− 1
2

m x(m)(i)
)
. We use in this paper m = 2.

The Laplacian eigenmap, which is our embedding of the training image set, is the
representation of images as points in m dimensions with normalized positions
{si}1..m, illustrated on Fig. 1b.

Laplacian Trees. We train ntree trees on subsets of images that spreads across
small neighborhoods on the Laplacian eigenmap. In order to evenly cover the
reduced image space, we first find ntree points by clustering all image spectral
coordinates {si}1..nimg with k-means. The Laplacian trees are formed using each
of these clusters. Their centers are defined as the average spectral coordinates of
the images composing each cluster. Each of which is subsequently trained using
nimg/tree images chosen randomly within the vicinity of ci on the Laplacian
eigenmap, as illustrated on Fig. 2b. In addition to the center ci of a tree ti, we
also retain the distribution of the spectral coordinates, Si = (s1; ...; snimg/tree

),

of its constituting images via Principal Component Analysis, ST
i Si = UiΣiU

T
i ,

where Ui contains the m major axes of the Laplacian tree, illustrated as ellipses
on Fig. 2. A Laplacian tree differs from a conventional tree only because it is
trained on images that are close to one another in the image space.

Training is done using the following commonly used features [9,10,11,12] for
each pixel: a) the average intensity within a randomly-shaped cuboid centered
around the tested pixel, b) the average intensity of a random cuboid centered
around a randomly offset pixel, c) the differences of average intensities between
two random cuboids centered around randomly offset pixels, d) the pixel coor-
dinates (x, y, z).

2.2 Testing Stage – Tree Weighting

During testing, a test image It is first mapped on the Laplacian eigenmap. Its
mapped position gives the neighboring Laplacian trees to be used for labeling
the pixels of the test image.

Location of Test Images. Given a test image It, its k-nearest neighbor images
(kNN) within the training set are found in terms of image similarity, i.e., we
find the indices of the k training images with the smallest d(i, t). The spectral
coordinate of the test image is interpolated with st =

1
Z

∑
i∈kNN(t) witsi, where

Z =
∑

i∈kNN(t) wit. The position of a test image is illustrated with a black cross
in Fig. 2b. Nearby Laplacian trees will have a higher influence for labeling the
test image.
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Weighting of Laplacian Trees. The relative influence between a test im-
age and a Laplacian tree is measured with the Mahalanobis distance of the
spectral coordinate of the test image, st, within the statistical spread of the
Laplacian tree: d2tree(t, i) = (st − ci) UiΣ

− 1
2 . We further favor close trees by

weighting them with: wtree(t, i) = exp
(−d2tree(t, i)/2σ

2
)
, where the tolerance is

σ = mean
(
d2tree(t, i)

)
.

Prediction. The final labeling of pixels in a test image It is done by taking the
maximum weighted class predictions: ĉ = argmaxc

(
1
Z

∑nT

i=1 wtree(t, i)pti(c|f)
)
,

where Z =
∑nT

i=1 wtree(t, i). Decision trees that are close to the test image on
the embedding have, therefore, a stronger influence in the final class prediction.
Such tree weighting differs from conventional RF methods where averages of tree
contributions are used instead.

3 Results

We validate our method using a dataset of 256 3D CT images, manually labeled
with 11 organs, all acquired at different hospital sites with varying acquisition
protocols: volumes with 13 to 515 slices of size 1282, resolutions ranging from
0.89 to 4.69mm, with and without contrast agent, in the thorax and abdomen
(Fig. 1). We illustrate the fundamental differences between standard Random
Decision Forests (RF) and Laplacian Forests (LF), which essentially reside in i)
how images are selected via guided bagging during training, and ii) how decision
trees are weighted during testing. Our experiments also avoid using any pre- or
post-processing step in order to evaluate the direct improvement of the guided
bagging and tree weighting strategies.

Bagging Strategy. We form a training set of 255 images, and use the re-
mainder image as a test image. Accuracy is measured with the Dice metric
(2|A∩B|/(|A|+ |B|), where A is a ground truth segmentation for an organ, and
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Fig. 3. Comparing bagging strategy – Standard Forests (red) and Laplacian Forests
(blue). We increase a) the number of images per tree, and b) the number of features
used for training. Experiments are repeated 10 times, average accuracy is measured
with Dice metric, in %. Our guided bagging strategy improves accuracy by 18% when
using 20 images per tree and 250 features.
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Heart 0% 76.3% 72.4% 74.5%
Liver 0% 74.3% 84.6% 86.9%
Spleen 0% 61.5% 52.4% 75.9%

Lung (L) 0% 3.5% 88.4% 88.5%
Lung (R) 0% 9.4% 88.4% 91.9%
Kidney (L) 0% 17.9% 41.8% 72.4%
Kidney (R) 0% 0.3% 5.8% 46.2%
Ilium (L) 48.3% 38.7% 84.2% 87.7%
Ilium (R) 46.3% 50.4% 81.3% 87.4%
Average 10.5% 36.9% 66.6% 79.0%

Fig. 4. Segmentation – Testing an image using an
Atlas Forest (AF), Laplacian Atlas Forest (LAF)
(an AF with tree weighting at test-time), Standard
Forest (RF) and a Laplacian Forest (LF). Ground
truth is overlaid in black contours for each organ. LF
shows an overall improvement over RF, with a Dice
metric increase from 66.6% to 79.0%. Large gains
are noticeable in smaller organs such as in kidneys.

B is our prediction). We use 50 trees, each trained using 15 levels, on 1 million
pixels drawn randomly from a subset of nimg/tree training images, where nfeatures

features are computed as described earlier. We repeat each experiment 10 times
and average the Dice scores for all organs using two settings: a) nimg/tree is in-
creased from 1 to 20 images per tree, and b) nfeatures from 10 to 500 features
per tree. We observe in Fig. 3, that our bagging strategy (LF) increases the
segmentation accuracy from 22% to 81%, while the conventional approach (RF)
shows a lower increase from 12% to 68%. This shows that LF is more efficient in
extracting discriminative information during training, perhaps, due to the use
of more consistent decision trees. We further observe that increasing the cluster
size, nimg/tree, has a stronger impact than increasing the number of features,
nfeatures, which appears to be relatively stable from 50 to 500 features. This
again highlights the impact of using localized decision trees.

Tree Weighting. We now evaluate the effect of weighting trees in the final
labeling decision. Atlas Forest (AF) [10] is an extreme case of localized train-
ing where trees are trained on single images. We train 255 trees, each with
nimg/tree = 1, nfeatures = 250, and test using the remaining image of the dataset.
AF was shown to work well for brain labeling, where images exhibit relatively
small variations. It is, however, not expected to handle highly heterogeneous
databases as the one used here. Fig. 4 confirms indeed that segmentation fails
for most organs and yields an average Dice score of 10.5%. We now modify AF
to use weighted trees at test-time, which is in fact a special case of LF with
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Dice Jaccard
RF LF RF LF

Heart 68.2% 71.0% 54.6% 58.1%
Liver 82.7% 83.8% 71.4% 73.2%
Spleen 55.6% 57.8% 42.3% 44.5%

Lung (L) 91.7% 91.0% 86.2% 85.3%
Lung (R) 93.3% 93.1% 88.6% 88.4%
Kidney (L) 30.3% 39.8% 21.8% 29.4%
Kidney (R) 28.9% 37.7% 20.5% 28.1%
Femur (L) 75.4% 77.8% 63.7% 66.5%
Femur (R) 74.8% 78.1% 63.0% 66.8%
Ilium (L) 71.7% 74.5% 59.3% 62.3%
Ilium (R) 70.3% 74.3% 57.7% 62.0%
Average 67.5% 70.9% 57.2% 60.4%

Table 1. Cross-validation 10-folds – 256 CT Images
– Standard Forests (RF) and Laplacian Forests (LF)
– LF produces higher accuracy, notably for more
challenging smaller organs, such as kidneys.

nimg/tree = 1. Such, so-called Laplacian AF only adds a tree weighting strategy
when compared to AF, and is shown to improve segmentation accuracy from
10.5% to 36.9%.

Guided Bagging + Tree Weighting. The previous experiment is now ran
with nimg/tree = 20 using RF/LF. They use respectively uniform/guided bagging,
without/with tree weighting. Combining both strategies improves the overall
Dice performance from 66.6% (RF) to 79.0% (LF). One notable improvement is
seen in smaller organs with high shape variability, such as in kidneys (green on
Fig. 4).

Segmentation Accuracy. Finally, we cross-validate our dataset by using 9
tenth of images as training set, leaving 1 tenth as testing images. We repeat
10 times our validation, such that each image in the dataset is tested at least
once. Table 1 shows that on average, LF performs with a Dice score of 70.9%,
which is a 5% increase over the standard RF. A similar improvement is seen
when measuring the Jaccard index (|A ∩B|/|A ∪B|). Larger improvements are
noticed in smaller organs, such as 30% increase in accuracy for kidneys.

4 Conclusion

We proposed two contributions for improving RandomDecision Forests: i) guided
bagging during training – decision trees are grown from subsets of images that are
close to one another on a Laplacian eigenmap, and ii) non-uniform tree-weighting
during testing – the contributions of individual decision trees are weighted based
on their relative positions with respect to a test image on the Laplacian eigen-
map. Laplacian Forests were shown to outperform standard forests in a dataset of
CT images of various anatomical regions. Larger improvements were noticeable
in organs with higher variability of shape and positions, such as in kidneys.

Our guided bagging strategy produces decision trees with more consistent
image information, since each tree is trained using related images. This could be
seen as a generalization of Atlas Forests for using multiple images during training.
Such localized information also has the advantage to be pooled efficiently during
test-time. The final labeling decision is indeed based on weighted contributions
from trees that are the most relevant to a test-image. Furthermore, our bagging
strategy could scale well with additional training images, since information from
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new images would be simply exploited in only relevant trees. Our approach is also
compatible with other variants of RF, such as for instance, Geodesic Forests [17],
by simply changing the bagging strategy. In this paper, the Laplacian eigenmap
was built using a very simple affinity measure, based on the sum of squared
differences of images, yet, we observe an improvement in accuracy. Future work
will focus on using better discriminating affinity measures as well as applying
our strategy to other RF variants.
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