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Abstract. Synergistic fusion of pre-operative (pre-op) and intra-
operative (intra-op) imaging data provides surgeons with invaluable in-
sightful information that can improve their decision-making during
minimally invasive robotic surgery. In this paper, we propose an efficient
technique to segment multiple objects in intra-op multi-view endoscopic
videos based on priors captured from pre-op data. Our approach lever-
ages information from 3D pre-op data into the analysis of visual cues in
the 2D intra-op data by formulating the problem as one of finding the
3D pose and non-rigid deformations of tissue models driven by features
from 2D images. We present a closed-form solution for our formulation
and demonstrate how it allows for the inclusion of laparoscopic cam-
era motion model. Our efficient method runs in real-time on a single
core CPU making it practical even for robotic surgery systems with lim-
ited computational resources. We validate the utility of our technique
on ex vivo data as well as in vivo clinical data from laparoscopic par-
tial nephrectomy surgery and demonstrate its robustness in segmenting
stereo endoscopic videos.

1 Introduction

Robotic minimally invasive surgery (MIS) systems have been gaining popularity
due to their many advantages compared to traditional MIS and open surgeries
including greater precision, improved dexterity and enhanced 3D immersive vi-
sualization for surgeons [9].

In robot-assisted MIS, image-guided localization and delineation of tissues,
e.g. tumour and kidney in partial nephrectomy, is an important step that can
significantly enhance the surgeon’s perception of the surgical scene and facilitate
their decision-making. However, accurate identification of various tissues in intra-
op video is by no means an easy task due to the limited viewing area, presence
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of occluding objects (e.g. surgical tools), data acquisition noise (e.g. specular
light reflection, blood and smoke), as well as similarity in the visual appear-
ance of different tissues. To localize different tissues, surgeons rely on (mentally)
combining the information they recall from pre-op scans, often computed to-
mography (CT), with the information they see in the intra-op stereo endoscopic
video feed, a task that requires exceptional skill. Advances in intra-op imaging
has introduced some other modalities into the operating room, e.g. ultrasound
and X-ray [3]. However, the feasibility, quality, and information content of such
data still markedly lags behind the typically high resolution 3D pre-op data, and
endoscopic imaging remains the staple modality in MIS. Using efficient 2D and
3D computer vision techniques to support the analysis of endoscopic images al-
leviates the need for using additional equipment, e.g. fiducial markers, and helps
to relax the handling of multiple intra-op data streams. Yet, the aforementioned
complications related to noise and clutter pose many challenges in endoscopic
video segmentation.

Some recent works in endoscopic image segmentation proposed the use of level
set-based approaches [4,5] while others focused on parameter-sensitive morpho-
logical operations and thresholding techniques [2,7]. However, practical success
of such methods is limited as they mostly rely on image color/intensity, do not
use pre-op information, and focus on segmenting a single object. Other contri-
butions focused on feature tracking, e.g. [11], while Mountney et al. [8] proposed
a method to estimate laparoscopic camera and periodic organ motion. Both
methods cannot handle free-form deformation of organs and the latter method
assumed the camera has (on average) constant velocity, which is often not the
case in MIS. In this paper, we propose a technique that imitates surgeons skill
in leveraging pre-op information into the analysis of intra-op endoscopic visual
cues. Our approach encodes the fused information within an energy optimization
process to efficiently segment multiple objects in endoscopic videos.

Our work is inspired by the work of Prisacariu et al. [10] in the (non-medical)
computer vision area where the segmentation of an object in an image was ob-
tained by finding the six pose parameters of its 3D model. In MIS, six degrees
of freedom are not enough as tissues non-rigidly deform. Unlike [10], Sandhu et
al. [12] used kernel PCA to capture the shape variation and estimated the non-
rigid pose of a single object. Their method, however, segments a single object
in a single view image. Applying the methodology of [10] and [12] to robotic
surgery applications is also not straightforward as images in endoscopic videos
are highly noisy and cluttered. Moreover, [12] does not leverage stereo vision
and is incapable of handling large occlusions (large portions of objects are oc-
cluded, e.g. by tools), both of which are common in MIS. In our formulation, we
provide a closed-form solution (unlike [10,12]) to segment multiple tissues in a
multi-view endoscopic video (here we use stereo video) based on prior knowledge
extracted from pre-op data. Our approach thus simultaneously estimates the 3D
pose of tissues in the pre-op domain as well as their non-rigid deformations from
their pre-op state. Furthermore, our framework allows for the inclusion of mo-
tion priors on laparoscopic camera motion to stabilize the segmentation/pose
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tracking in the presence of a large occlusion. Such feature is especially useful in
robotic MIS as camera motion signals can be easily read using the robot’s API
and incorporated into our formulation to obtain even more accurate and robust
results. In this work, we enforce a motion prior on the cameras only; nonetheless,
our flexible mathematical formulation allows for incorporating of general non-
rigid motion or temporal deformation priors on various tissues. Our method runs
in real-time on a single CPU core which makes it suitable for robotic surgical
systems as they are typically limited in computational resources.

2 Methods

For ease of exposition, we start by describing our method for segmenting a single
object in a single image, given its 3D segmentation in the pre-op domain.
Later, we show how we extend our framework to segment multiple objects in
multiple 2D images (multi-view data). Let X p,.; € R3 be point i of a 3D model
obtained from segmented pre-op 3D data. The goal is to spatially transform
and deform the model non-rigidly in 3D such that its silhouette on the 2D
color image, I : £2 C R? — R3, delineates the object of interest in I, i.e. the
silhouette encapsulates the foreground. The silhouette of a 3D model is obtained
by projecting the model from 3D to 2D given the projection function 7 and
the corresponding camera’s focal point f and principal point ¢. We represent
the foreground by the level set function ¢ such that, for a pixel ; € {2 in
I, ¢(x;) > 0 if x; belongs to the foreground, ¢(x;) < 0 if x; belongs to the
background, and ¢(x;) = 0 if x; is on the object’s boundary. Every 2D point
x; on the foreground is related to its corresponding 3D point X,,.; by x; =
W(T(Xpm,i; 5)) where T' transforms X p,. ; from the pre-op domain to X ¢4 ; in
the surgical domain. £ = {£,,&,,} is the set of pose §, = {q1,- - ,¢n} and shape
parameters &, = {w1, - ,w,}. We use the weights of shape variation modes
as &,,- To segment a tissue in the 2D image I given its 3D model, we define the
following residual for the i*" pixel, z; € {2 as:

ei = —gs(@i) H(p(x:)) + go(wi) (1 — H(¢(:))), (1)

where gy and gy are the regional terms measuring the agreement of the image
pixel @; with the foreground and background statistical models and H(.) is the
Heaviside step function. Ideally e; would be zero for a perfect model-to-data fit,
however, due to noise, e; will have a distribution p(e;|€), which can be modelled
as N(0,0) when £ is close to the solution (Fig. 1(a)). The residual value for
all pixels e is calculated assuming that the noise is independent across pixels.
The objective is to find the most likely transformation parameters £ given the
residual e by maximizing the posterior probability,

& = argmax p(¢le) = argmin — Y logp(eile) ~ logp(¢) . (2)

The second term in (2) is the prior on the transformation. Here, we enforce
a prior only on pose parameters (§,) which can also be considered as camera
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motion parameters (due to their relative rigid motion); however, one can use this
term to enforce a prior on the tissues’ non-rigid deformation. The camera motion
prior can be obtained either from the robotic surgical system or the prediction
of a Kalman filter. The uncertainty in the motion estimation is modelled with
a Gaussian meaned around the predicted pose parameter é with covariance X,
i.e. p(&) ~ N(€, 5¢). We minimize (2) by taking its derivative and setting it to
Z€10:

dlogp(eil§) | Ologp(€) _ -1 dei 1 . 5
3 9 + o => o i oe 25(5 £)=0. (3)

i i

As e; is not linear in €, to solve (3) efficiently we linearize e; with respect to &
using the first order Taylor approximation:

0ei(§)
o€

where J; is the Jacobian of the i*" pixel’s error with respect to €. Substituting
(4) into (3) and using matrix notation, we have

(7T +5)ag = TTe(0)+ T E -6, ). 6

where J is the stacked matrix of all J; pixel-wise Jacobians and &,_; is the pose
in the previous frame. At each frame of video, the linear system of equations (5)
is solved efficiently for A& (by Choleskey decomposition) with which we update
the transformation/deformation parameters £. For this linearization, we assumed
AE is small. This assumption is valid given the high video capture rate of current
surgical systems, e.g. daVinci with ~30 FPS. To handle larger transformations,
one may apply a coarse-to-fine scheme. The gradient of the i*" pixel’s error with

respect to £t" component of & (¢** element of J; ) is calculated as:
Oe; OH 0¢ Ox ox
()= o7 = (~gr - = (~g5 ~ WOVai "
O = et = (=9 ohoF = (o - a)@Va 00 . (©)

where 0(.) is the Dirac delta function. Given the camera parameters f and c,
every 2D point & = (z,y) in I is related to at least one corresponding 3D point
Xorg = (Xorg, Yerg, Zorg) by @ = me Xorg+c and y= Z.ig Yirg + c. Hence,

or f 0Xorg B 0Zgrg
06 22, (Zoro g, —Xoro g, ) "

We similarly calculate gg’e . 3D point X4 is related to X .. by the transfor-
mation function T: Xy = T(Xpre; &) = R(E,) X pre + t(§,), where R and ¢
are rotation (linear) and translation matrices and can represent any rigid (lin-

ear) transformation upon the choice of pose parameters in 7', £, = {q1," " ,qn}
Therefore, 8)8(;"9, agqg and ag;"g in (7) are easily calculated upon the choice of

transformation function.
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To handle non-rigid deformation, we generate a catalog of realistic 3D de-
formed shapes for the organs of interest (Fig. 1(b)) using Deformlt [6]. Having
this catalog, we obtain the modes of variation through principal component
analysis such that a novel 3D shape of an organ/tissue can be estimated as
Xpre = Xpre + Uw, where X, is the coordinates of the average shape of
the organ of interest, U = {u1, - ,ux} are the K principal modes of variation
and w = §, = {wy, - ,wk} are their weights. We chose the number of prin-
cipal modes explaining 97% of the variance in the training set. The derivative
of a 3D point X, in the surgical domain with respect to wy is calculated as
82(1;;9 = Ragi’)’;e = R - uy, where uy is the £** mode of variation in U.

We now describe the extension to segmenting multi-object in multi-view
images. Having N tissues of interest in the pre-op data and M views in the intra-
op domain, we extend our framework to segment multiple objects in multi-view
images by computing a level set function for each object. Also, all the pixels from
all views contribute toward calculating the residual of each pixel. The residual
of pixel ; belonging to the n'” tissue is calculated as:

M

e =Y (= fm HOR @) + gh (1= HGR (@) ®)

m=1

where g%, and g, are the regional terms and ¢z, is the level set of the nth
object in the m!* image. Note that in the multi-view scenario, the extrinsic
camera parameters (RS, t¢*!) have to be considered in calculating the Jacobian,
i.e. R in the above equations is replaced by RﬁftR.

To make our method more robust, we leverage a variety of image features
(normalized RGB and YCbCr and local color histogram) to calculate the regional
terms, g7, and gy ., in (8), for different tissues in all 2D views. We estimate the
probability of a given pixel z belonging to the n* object (O,,), p(x € O,|I,),
and its background (B,), p(x € B,|I), in the m*" image, I,,, by training a
random forest (RF) consisting of N, binary decision trees (here N, = 20). To
train a RF, we select few 20 x 20 patches on different tissues in 2% of all frames
from the same patient, i.e. ~10 frames out of ~600 frames. In practice, surgeons
may select these patches with the help of surgical tools. The regional terms are

calculated as g%, (z) = —logp(z € Oy|l,,) and g7, (z) = —logp(x € By|lm).

3 Materials, Experimental Setup, and Results

We evaluated our framework on 10 ex wivo lamb kidney datasets as well as
three in wvivo clinical partial nephrectomy data. We constructed the set of ez
vivo phantoms using lamb kidneys and implanted artificial tumours outside and
inside each kidney to emulate a partially exophytic and completely endophytic
tumour, respectively. CT volumes and stereo video sequences of our phantoms
were captured by a Somatom CT scanner (Siemens, Germany) and a daVinci S
system (Intuitive Surgical, USA), respectively. We segmented the kidney and tu-
mours in each CT using the TurtleSeg software [13]. We simulated deformations
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Fig. 1. (a) Residual distribution. (b) Few samples from our kidney and tumour catalog.
Segmentation result in the presence of artificial tools (black cross) largely occluding the
kidney and tumour phantoms using (¢) ACWOE, (d) our method without any motion
prior and (e) our method with motion prior. Green: kidney; Red: exophytic tumour;
Blue: endophytic tumour; Yellow: ground truth.
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Fig. 2. DSC vs. frame of a phantom for (a) rigid vs. non-rigid transformation and, for
(b) ACWOE, AE [1] and our method with and without motion prior (MP vs. No MP).
Box plot representation of DSC for the whole dataset is presented in (c) for rigid vs.
non-rigid transformation and in (d) for ACWOE, AE and our method with/without
motion prior over the occlusion periods.

of each kidney and tumour in respectively ~40 and ~15 different ways using
DeformlIt [6] (Fig. 1(b)). To obtain ground truth segmentation for stereo videos,
we used the “Rotobrush” tool of After Effect (Adobe Systems Inc., USA) as a
semi-automatic segmentation tool allowing for visual inspection and correction.
For initialization, we manually aligned the pre-op model with the intra-op image
by choosing ~6-8 landmarks in the CT and the first frame of the stereo video.

Our first experiment on ex vivo data focused on evaluating our method
w.r.t. using a rigid vs. deformable transformation model. Fig. 2(a) shows an ex-
ample Dice similarity coefficient (DSC) vs. time for one of our phantoms. It is
seen in Fig. 2(a) that, as expected, incorporating the non-rigid deformation of
tissues improves the final results. Note that the method in [11] does not handle
non-rigid deformation and [8] can only estimate the non-rigid deformation for
organs with periodic motion, whereas our method does not pose any such con-
straints. Results for all the ex vivo phantom datasets are shown in Fig. 2(c).

In our second experiment, we artificially occluded large portions of the
kidney and tumour in the videos (Fig. 1(c-e)) and contrasted the performance
of our method with and without the motion prior. We also compared with
the state-of-the-art video segmentation method proposed by Bai et al. [1],
implemented in the After Effect software (AE), and with the level-sets based
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Fig. 3. Clinical partial nephrectomy results. (a) DSC for three clinical cases. (b) Qual-
itative results of (1°* column) ACWOE (blue arrows indicate errors), (2" column) our
method without motion prior and, (3" column) our method with motion prior. Green:
kidney; Red: tumour; Yellow: ground truth.

active contours without edges (ACWOE) [14] as considered in [4,5] for endo-
scopic video segmentations. In this experiment, we used the constant velocity
model as our motion prior. Note that there is no explicit limitation on our mo-
tion prior term and more complicated motion priors can be seamlessly deployed
into our framework, e.g. using the surgical robot’s API signals. To compare our
method with AE, we provided AE with an accurate segmentation for the first
frame and, since this software is only able to segment a single object in a single
view image, we used it multiple times to segment the kidney and tumours in
the left and right view channels. Fig. 2(b) illustrates the DSC vs. time when
using ACWOE, AE and our method with and without motion prior for a phan-
tom case. The dips in Fig. 2(b) are caused by the occluding objects. The figure
demonstrates how incorporating a motion prior stabilizes the segmentation and
pose tracking and helps overcome large tissue occlusions that may occur in MIS.
Obviously, AE and ACWOE are not able to show the internal tissues, e.g. the
endophytic tumours shown in blue in Fig. 1(e), as they do not use any pre-op
information. They also are both fragile when a large occlusion occurs. Fig. 2(d)
compares the results of ACWOE, AE and our method with/without motion
prior for all the ex vivo phantom datasets during the occlusion periods.

In our third experiment we tested our method on three different clinical
cases of partial nephrectomy. For each patient, we prepared a ~20-second stereo
endoscopic video from the surgical system with a frame rate of 30 FPS, i.e. ~600
frames. Segmenting CT and preparing the ground truth was performed similar
to the ez vivo phantom data. Each stereo video took ~3.5 hours to segment semi-
automatically using AE to create the ground truth. Quantitative and qualitative
results on the real in vivo cases are illustrated in Fig. 3. Despite existing clutter
and tool crossings, our method was able to achieve a DSC close to 0.85 on these
challenging real in vivo cases with an average runtime of 0.045 seconds per frame
using non-optimized MATLAB code on a single core 3.40 GHz CPU.
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4 Discussion and Conclusions

Leveraging both pre-op data as well as endoscopic visual cues, we proposed a novel
formulation with closed form solution for segmenting multiple tissues in multi-
view endoscopic videos. Our formulation further incorporated a motion prior in
our optimization framework to stabilize the segmentation and pose tracking. One
shortcoming of our method is the use of statistical deformable model which might
not represent patient-specific tissue deformations. In addition, sudden camera mo-
tion will cause our tracking to fail. However, in cases where access to the surgi-
cal robots’ API is available, one can easily feed in the camera motion signals into
our formulation, as a camera motion constraint, which would enable handling the
complex camera motion. Although our validation on ex vivo phantoms and in vivo
surgery data of partial nephrectomy confirmed the usability and great promise of
the proposed framework in an augmented reality environment for MIS, more clin-
ical experiment is needed to verify the clinical validity of the proposed method.
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