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Abstract. There has recently been an increased demand in bone age es-
timation (BAE) of living individuals and human remains in legal medicine
applications. A severe drawback of established BAE techniques based on
X-ray images is radiation exposure, since many countries prohibit scan-
ning involving ionizing radiation without diagnostic reasons. We propose
a completely automated method for BAE based on volumetric hand MRI
images. On our database of 56 male caucasian subjects between 13 and 19
years, we are able to estimate the subjects age with a mean difference of
0.85±0.58 years compared to the chronological age, which is in line with ra-
diologist results using established radiographic methods. We see this work
as a promising first step towards a novel MRI based bone age estimation
system, with the key benefits of lacking exposure to ionizing radiation and
higher accuracy due to exploitation of volumetric data.

1 Introduction

Bone age estimation (BAE) of living individuals or human remains has recently
received conspicuous attention due to increasing demands in clinical and legal
medicine, like: growth predictions for prognostic and therapeutic purposes, di-
agnosis of endocrinological diseases [1], victim identification after disasters [2],
assessing asylum seekers entering a country without proper identification docu-
ments [3], or preventing age manipulation in junior-level sports competitions [4].
Being based on bone ossification, the clinically established BAE methods em-
ploy conventional X-ray examinations of the hand bones to provide means for an
objective and reliable age estimation up to 19 years. In cases involving subjects
near to the legal majority age, this examination is accompanied by a CT of the
clavicle bone, which is one of the last bones to finish ossification, and a panoramic
X-ray of the third molar teeth, to enable BAE up to 24 years. By examining the
ossification and epiphyseal plate fusion in X-ray images of the hand, radiologists
perform BAE based on the hand bones according to the Greulich-Pyle [5] (GP)
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or the Tanner-Whitehouse [6] (TW) systems. Building upon the visual compar-
ison of the whole hand with a reference atlas, the GP method is fast and easy
to use compared to TW, but shows lower accuracy and larger inter-observer
variability [3]. Exploiting the fact that the aging progress is not the same for
all bones of the hand, the BAE is improved in TW method by visually compar-
ing each individual hand bone to the X-ray image based atlas and combining
these scores to a final age estimate. Automated image analysis methods have
recently started to appear, most prominently the X-ray image based BoneXpert
method [7], which successfully mimic the atlas matching procedure.

A severe drawback of radiographic BAE techniques is radiation exposure,
which can not be justified for screening healthy children and adolescents, espe-
cially in applications of legal or sports medicine. Thus, non-invasive magnetic
resonance imaging (MRI) has gained in importance for BAE [1, 4], since many
countries prohibit scanning involving ionizing radiation without diagnostic rea-
sons. The higher cost of MRI compared to a single X-ray examination might seem
as a drawback, but the possibility of acquiring hand bones, teeth and clavicle in
a single MR scan session amortizes this cost. Another benefit of MRI compared
to projective 2D X-ray examinations is its volumetric nature, which may provide
a foundation for more accurate and reliable BAE. Up to our knowledge, all cur-
rent methods proposed for BAE in MR images are restricted to best-view cross
sections to imitate the estimation methods developed for X-ray images [1, 8].

We present a completely automated method for BAE based on volumetric
MR images of the hand. We see this work as a first step towards establishing a
novel MR imaging based method for age estimation. Key benefits are the lack of
exposure to ionizing radiation and higher accuracy due to exploiting 3D volumet-
ric data. Due to our intended application, i.e. age estimation of asylum seekers
without proper documents, the method is evaluated on adolescents, however, the
algorithm design supports future extension to a more comprehensive age group
involving children as well. The bone age can be estimated from the fusion stages
of the epiphyseal gap located between epiphysis and metaphysis of the hand
bones. We propose to locate the region of the epiphyseal gap in individual bones
and extract nearby features that discriminate the fusion stages of the epiphyseal
gap in our data set based on the known chronological age. Detection of the gap
region and mapping the extracted features to the chronological age can be seen
as a regression task, which we model using the powerful and efficient random
forest (RF) framework [9]. Similarly to the TW method [6], but in an automatic
fashion, we obtain an estimated age by fusing the BAE of individual hand bones.

2 Method

Our proposed approach, as illustrated in Fig. 1, first locates individual hand
bones from MR images, followed by a localization of the expected epiphyseal gap
position in the bone. A bounding box capturing the region of the epiphyseal gap
is extracted at this location, defined by the diameter of the bone and a statistical
height estimate derived from training data. The bounding box allows to crop the
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Fig. 1. Flowchart diagram for the proposed method

3D region, where relevant features for bone age estimation can be expected. After
feature extraction a regression step maps features to a chronological age, and
the fusion of per-bone age estimates determines the final BAE.

2.1 Extraction of Epiphyseal Gap Images

Localization of hand bones and epiphyseal gaps was inspired by the work on
anatomical structure localization in [9] and [10]. Based on regression RF, we
developed a fully automated method for localization of anatomical landmarks
in 3D MR images [11]. Its main idea is to gradually decrease the area where
landmark positions are expected. This is achieved with a two-step multiscale
approach, that first makes a prediction of the coarse landmark positions analyz-
ing the whole shape of the hand and using global feature information from the
whole image. After finding the area, where the precise landmark locations are
expected, the second step uses more localized information for prediction. Thus,
we obtain more accurate landmark localizations compared to [9] and also avoid
to explicitly model the spatial relations of anatomical landmarks with a Markov
Random Field as in [10]. With this approach we localize 28 landmarks on the
hand bones, which we use as anchor points to crop each individual bone based
on its maximally expected extent as estimated from our data set and to rotate
each obtained image to align the bone axes to a standard orientation.

For each bone image now the same method for anatomical landmark localiza-
tion is used to identify the position of the epiphyseal gap cG. The bounding box
of the epiphyseal gap is defined with the center in cG, the estimated diameter
of the bone in the axial slice where cG is located, and a statistically estimated
average height of the gap. Since bones have a cylindrical structure at the location
of the gap, the diameter of the bone can be estimated as an average distance
of bone edges to the center of the bone, i.e. cG. Bone edges are localized by
radially emitting rays originating from cG, and finding the maximum of the dot
product between the image gradient vector and the unit ray vector along the
rays. The gap image is generated by cropping the bone image with the obtained
bounding box and then normalizing the size of the image. Thus, all gap images
are aligned to allow features discriminating age to be generated in the fixed
coordinate system of the epiphyseal gap.
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2.2 Age Estimation for Individual Bone

To cope with the large number of features that can be generated from the epi-
physeal gap region and due to their non-linear relation with bone age, we again
use a regression RF to perform feature selection in the gap image. Thus, we let
the RF select those features that best map the fusion stage of the epiphyseal
gap to the chronological age. We treat each gap image and its selected features
together with the chronological age as one data input to train the regression RF.

At each node of the RF, features are generated in one of the three following
ways: the intensity value at a randomly generated point, the intensity difference
between two randomly generated points, or the average intensity value along the
line that connects two randomly generated points. A random selection between
these three types is performed. All these features can be efficiently computed
and provide the required discriminative capabilities for differentiating epiphyseal
gaps over the age range. According to the maximization of information gain (IG),
a feature f(θj) and threshold τi that best discriminates over the ages in the set
of the gap images S reaching the node, are stored in the forest:

IG = |V ar(S)| −
∑

i∈{L,R}

|Si|
|S| |V ar(Si)|. (1)

Here θj, j ∈ {1..NF }, are the parameters of the features, V ar(·) is the vari-
ation of a set of gap images, SL, SR are left and right split subsets of the gap
images, respectively, and node splits are defined according to the binary test
f(θj) > τi, i ∈ {1..NT}. Node splitting is done recursively and stops, when the
maximum tree depth D is reached or there is no improvement in IG. The his-
togram of the age distribution for the gap images that reach the leaf node are
generated and stored in the tree, to be available when testing an image.

During testing, each gap image is pushed through all trees in the RF. Until the
gap image reaches the leaf node, a feature response of the gap image is generated
based on the feature parameters θj and the image is passed to the left or right
child node depending on the result of the comparison with the threshold value
τi. The estimated age of a bone EAB(b) is obtained as a sum of the histogram
h(b; t) in the reached leaf nodes of the trees t ∈ {T }.

2.3 Age Estimation

The aging progress of epiphyseal gaps is not the same for all bones of the hand [6].
Thus, the aging of the epiphyseal gap in the phalanges and carpal bones is faster
than aging of the ulna and radius bone, except for the thumb metacarpal bone
which lies in between. The final estimated age of a subject EA is therefore
obtained as a sum of the estimated age of the individual bones:

EA =
∑

b

w(b) ·EAB(b) =
∑

b

w(b) ·
T∑

t=1

h(b; t), (2)



224 D. Stern et al.

(a) (b)

Fig. 2. (a) Ground truth of the 28 anatomical hand bone landmarks (red) and 11
landmarks (blue) and bounding boxes (green) of the epiphyseal gaps. (b) Epiphyseal
gap of a radius bone (green box) presented in the best view cross-section of a 14.6
(left) and 17.4 (right) years old subject. The estimated age of the radius bone (left:
15.4 years; right: 16.7 years, see red lines) is obtained as mean value of the resulting
histograms of the regression RF. The final age is estimated from the 11 hand bones.

where the weight coefficient of the bone w(b) ∈ {0, 1} includes or excludes a
bone b from the estimation depending on the prior knowledge about the limita-
tions in maximum age estimation of each bone.

3 Materials and Experimental Setup

Materials. Our dataset of left hand T1-weighted 3D gradient echo MR images
consists of scans from 56 caucasian male volunteers of known chronological age
equally distributed in seven age groups between 13 and 20 years (mean±std
16.5± 2.0, min 13.0, max age 19.9 years). The average dimension of the volumes
is 294× 512× 72 voxels and the average voxel size is 0.45 × 0.45 × 0.9mm3. A
scientist well experienced in the analysis of 3D MR images manually annotated
28 anatomical landmarks of the hand bones and additionally the center position
of the epiphyseal gap for 11 bones (radius bone, ulna bone, five metacarpal bones
and four proximal phalanges bones) that are used in BAE (see Fig. 2(a)).

Experimental Setup. For localization of 3D anatomical landmarks we use
forests with maximal tree depths of D = 15 and a small number of trees T = 8.
At each split node NF = 20 random candidate features and NT = 10 candidate
thresholds are generated. We use this design, since all voxels of the respective
training images vote for distance estimates to the landmarks, and we found larger
forests to not improve the detection performance. The results of our localization
forests are evaluated in a cross-validation setup with five rounds. In each round,
we randomly split the 56 input volumes into 44 training and 12 testing images.

For the BAE step, we construct forests for radius, ulna, thumb metacarpal
and a single forest for the other metacarpals, as well as a single forest for the
phalanx bones. We group these bones since they show a similar appearance and
aging progress of the epiphyseal gap. Due to the limited number of images in
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our data set, our forests for age estimation contain trees with a small maximum
depth (D = 4) but with a large number of trees (T = 1000). Each leaf node of the
forest stores a histogram over the age range with a one year resolution between
13 and 19 years. Extremal age values are determined by the youngest subject in
our data set and the age when hand bone ossification is considered to be finished.
Age estimation results are computed in a leave-one-out cross-validation.

We implemented our methods in C++ on an 8-core Intel(R) Core(TM) i7
CPU, the runtime for the localization of anatomical landmarks in 3D MR images
is about 400s and for the age estimation less than 5s. Training of the RF for
the localization of anatomical landmarks took around 24 hours and the training
of the RF for the age estimation around 10s. Our algorithms currently are not
optimized and could be sped up further by GPU based implementation.

4 Results

The performance of the method for localization of anatomical landmarks in 3D
MR images was measured quantitatively by computing the Euclidean distance
(±standard deviation) between the obtained and the ground truth landmark
position for the 28 anatomical landmarks of the bone, as well as for the epiphy-
seal gap position in the 11 hand bones. The overall localization error for the 28
anatomical hand bone landmarks was 1.4±1.5mm [11] and for the epiphyseal
gap position in the 11 hand bones it was 1.1±0.8mm. The mean difference be-
tween the diameter of the bounding box and the size of the bone at the location
of the gap was 0.6±0.5mm. The mean difference between ground truth chrono-
logical and estimated age in our data set was 0.85±0.58 years. Figure 3 shows
box-whisker plots that incorporate the results for all images and for each year
separately. The error in age estimation for each bone separately is also shown
in Fig. 3. Detailed results of radius bone age estimation for a selected 14.6 and
17.4 years old subject can be seen in Fig. 2(b).

5 Discussion

Our results show that the use of the regression RF framework enables not only
the localization of the epiphyseal gap regions in 3D MR images of the hand, but
also allows finding discriminative features in the gap regions, which are relevant
for age estimation. For detecting epiphyseal gaps of individual bones, we rely
on an anatomical landmark localization procedure determining first landmarks
between the bones (see Fig. 2(a)), and from there accurately locate the epiphyseal
gap regions [11]. This is different compared to related work in [9], where bounding
boxes are directly extracted using global feature information from all over the
image, while we focus on more local, and thus more precise feature information.
Our regression RF shows an accuracy of 1.4±1.5mm in landmark localization
compared to 1.5±1.1mm with the approach in [10], but reported on hand CTs.
We find that epiphyseal gap localization with its accuracy of 1.1±0.8mm is
sufficient for the following age estimation related feature extraction steps, since



226 D. Stern et al.

Fig. 3. (Left) Difference between the estimated and ground truth age for all subjects,
separately for each age group. (Right) Differences of estimated and chronological age
separately for each bone.

the goal is to roughly, but robustly locate the gap region, where the regression
forest extracts the features to learn the age from.

Our regression forests for age estimation are easy to implement, since they
do not require an intermediate bone segmentation step as in the BoneXpert
system [7]. Their complex statistical shape/appearance model to segment bones
from X-rays is very demanding to be extended to 3D, especially due to the tedious
annotation required for training the generative model. In addition generative
models are known to suffer in the presence of outliers, while our discriminative
model promises robustness to outliers. The overall results for age estimation of
adolescents (0.85±0.58 years) are comparable with clinically established methods
like manual Greulich-Pyle [5] or Tanner-Whitehouse [6] X-ray atlas comparison,
with reported precisions from 0.5 up to 2.0 years depending on the age, sex
and origin of the examined population [3]. BoneXpert [7], the most prominent
automatic method for BAE from X-ray images, reports a deviation of 0.72 years,
however, this result is obtained by comparing with the manual Greulich-Pyle [5]
atlas matching method performed by radiologists, not with the chronological
ground truth age as in our case. Therefore, no valid comparison can be made,
since Greulich-Pyle solely gives an age estimate as well. Nevertheless, the data
base on which the BoneXpert system is trained, i.e. more than 1700 X-ray images
of boys and girls in the age range from 2 to 17 years, significantly exceeds our
data set size. From the box-whisker plots of each separate age (Fig. 3), it can
be seen that a larger difference between the estimated and ground truth age is
present for the extreme ages in the histogram, i.e. 13 and 19 years. This may be
caused by the notched representation of their age distribution in the histogram
(see Fig. 2(b), left). Further, when the epiphyseal gap is in the final stage of the
fusion, the gap features are scattered in the gap region and therefore harder to
detect. This may be the reason for the larger difference between the estimated
and ground truth age for 18 years. Additional uncertainty in extraction of the
features relevant for age estimation may also come from motion artifacts that
are manifested inside the bone with an image intensity similar to the intensity
value of the gap at the age of 16 (Fig. 2(b), left). From Fig. 3, it can be seen
that radius and ulna bone for the whole age range, give similar estimation error
as the metacarpals and proximal phalanges bone by the age of 17. The highest
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uncertainty is obtained for the thumb metacarpal bone, since it was trained
separately from other metacarpal bones, i.e. on a smaller data base.

6 Conclusion and Outlook

Up to our knowledge, we have presented the first fully automatic skeletal bone
age estimation method from 3D hand MR data. On our database of 56 male
caucasian subjects between 13 and 19 years, we are able to estimate the subjects
age with a mean difference of 0.85 ± 0.58 years compared to the chronological
age, which is in line with results using established methods based on X-ray
projections, thus involving radiation exposure. In future work we will evaluate
our approach on a larger database and we will investigate how to extend our
method to a larger age range involving children as well.
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