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Abstract. This paper presents a new method for detecting polyps in colonoscopy.
Its novelty lies in integrating the global geometric constraints of polyps with the
local patterns of intensity variation across polyp boundaries: the former drives the
detector towards the objects with curvy boundaries, while the latter minimizes
the misleading effects of polyp-like structures. This paper makes three original
contributions: (1) a fast and discriminative patch descriptor for precisely charac-
terizing patterns of intensity variation across boundaries, (2) a new 2-stage classi-
fication scheme for accurately excluding non-polyp edges from an overcomplete
edge map, and (3) a novel voting scheme for robustly localizing polyps from the
retained edges. Evaluations on a public database and our own videos demonstrate
that our method is promising and outperforms the state-of-the-art methods.

Keywords: Optical colonoscopy, polyp detection, boundary classification, edge
voting.

1 Introduction

Colonoscopy is the preferred technique for colon cancer screening and prevention, dur-
ing which a tiny camera is inserted and guided through the colon to detect and remove
polyps—precursors to colon cancer. However, a colonoscopy is an operator dependent
procedure, wherein human factors, such as fatigue and insufficient attentiveness partic-
ularly during long and back-to-back colonoscopies, can lead to the miss detection of
polyps. Patients with missed polyps may be diagnosed with a late stage cancer with the
survival rate of less than 10%. Computer-aided polyp detection is promising to reduce
polyp miss-rate and encourage attentiveness during procedures.

Early works on polyp detection employed color and texture features. The work of
Karkanis et al. [1] based on color wavelet features sets a representative example. How-
ever, effectiveness of such methods is limited by partial texture visibility of polyps and
large color variations among polyps. More recent techniques have considered shape,
spatio-temporal, and appearance features. Hwang et al. [2] suggested elliptical shape
features for polyp detection; however, geometric features in the absence of contextual
clues can be misleading. Our previous work [3] aimed to address this drawback by
eliminating such misleading structures from the edge maps. Bernal et al. [4] employed
valley information to localize polyps. However, as acknowledged by the authors, this
method might result in false detections particularly around wrinkles and vascular struc-
tures. Finally, the spatio-temporal features suggested in [5] were suitable only for the
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Fig. 1. (a) Illustration of our polyp detection method: a crude set of edge pixels is extracted (Sec.
2.2), the edge map is refined by effectively removing many non-polyp boundary edges through
a classification scheme (Sec. 2.3 and 2.4), the retained edges vote along their voting directions
determined by the classifier (Sec. 2.5), a band is placed around the candidate point with maxi-
mum vote to measure the polyp probability (Sec. 2.6). Note how the inferred voting directions
help avoid a false positive at the top curvy boundary. (b) From top to bottom: average boundary
appearance of polyps, lumen areas, specular reflections, and vessels. Polyp boundaries have a
distinct appearance. (c) An endoluminal scene containing a polyp and other curvy structures.
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off-line processing of colonoscopy videos since this method requires information from
the past and future frames for polyp localization at the current frame.

The main contribution of this work is to enable effective use of shape information
for polyp detection in colonoscopy videos. This is accomplished by combining shape
information with intensity variation patterns (IVPs) across object boundaries, an inte-
gration that is essential because a polyp detector merely based on curvature can be easily
misled by other structures with curvy boundaries in the complex endoluminal scenes.
Given an overcomplete edge map, we employ [VPs (1) to remove as many non-polyp
edges as possible and (2) to determine voting directions for the retained edges. The
former handles misleading effects of other polyp-like structures and the latter allows
for robust polyp localization. Through this work, we make the following three original
contributions:

1. A new patch descriptor that quickly captures IVPs across boundaries. Our descrip-
tor is fast, rotation invariant, and robust against linear illumination changes.

2. A 2-stage classification scheme that enhances low level image features prior to
classification by learning a nonlinear similarity metric in the features space.

3. A novel voting scheme that robustly detects objects with curvy boundaries in frag-
mented edge maps. Our voting scheme produces a probabilistic output for each
polyp candidate but does not require any predefined parametric model of shapes.

2 Proposed Method

Given an edge map, we first extract [IVPs to remove as many non-polyp edges as pos-
sible, producing a refined edge map where shape and curvature can be safely used for
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polyp localization. The retained edges then participate in a voting scheme to determine
the locations of polyps. Fig. 1(a) illustrates how our polyp detection method works.

2.1 Intensity Variation Patterns (IVPs)

Polyps have distinct intensity variations across their boundaries. This is illustrated in
Fig. 1(b) where the average appearance of hundred thousand oriented image patches
around polyps, vessels, lumen areas, and specular reflections is compared. Fig. 1(c)
shows how these oriented patches are extracted from one of the used images. Factors
that contribute to the distinct appearance across polyp boundaries include different dif-
fuse and specular patterns on the surface of a polyp and the depth contrast between the
polyp side and background side of the boundaries.

2.2 Edge Map Construction

We apply Canny’s method on the three color channels of an input image to obtain an
overcomplete edge map. We then estimate edge directions for all the pixels in the map.
We employ ball tensor voting as used in [3] to robustly determine edge orientations.

2.3 Feature Extraction

The goal of feature extraction is to capture IVPs in an image patch around each edge
pixel. The desired feature extraction method must meet three major requirements: (1) it
must be fast to handle a large volume of input patches from the edge detection stage;
(2) it must provide high level of illumination invariance, since in a colonoscopy pro-
cedure, the source of light moves along with the camera, causing the same segment
of a boundary to appear with varying contrast in a number of consecutive frames; (3)
it must provide rotation invariance against the edge orientations because the essential
information do not lie along edge directions but across the edges.

Our patch descriptor begins with extracting a patch along the orientation of an edge
pixel such that the edge segment appear vertically in the middle of the patch. This pre-
sentation provides two advantages: (1) image appearance characterization independent
of edge orientations, and (2) some degrees of robustness against positional variability
along the horizontal axis. We then form sub-patches of size n x m all over an extracted
patch with 50% overlap along horizontal and vertical directions. Each patch is then av-
eraged vertically, resulting in a 1D intensity signal .S;, decreasing positional variability
along the vertical direction. To obtain a compact and robust presentation of intensity
variations, we then apply a 1D discrete cosine transform (DCT) to the extracted signal:

n—1 .
2 21+1
8 nw( ); cos( on " ) (D)
where w(k) = 1/+/2,k = 0and w(k) = 1,1 < k < n — 1. DCT has a strong energy
compaction property, allowing the entire spatial information to be summarized in a few
coefficients. However, such a compact presentation of the signal is not robust against
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Fig. 2. Overview of the suggested classification scheme

illumination changes. A constant change in the intensity of the pixels in a patch directly
appears in the DC coefficient, and illumination scaling affects both the DC and AC coef-
ficients. To achieve invariance against constant illumination changes, we discard the DC
component. To achieve invariance against linear intensity changes, we normalize the AC
components using their L?-norm. However, this scheme is not efficient given that we
are interested in only a few of the AC components. We therefore compute the first few
AC coefficients from each patch and use their L2-norm for normalization, achieving a
significant performance speedup. Finally, the coefficients selected from each sub-patch
are concatenated to form a feature vector for the extracted patch.

2.4 Edge Classification

The classification scheme aims to (1) remove as many non-polyp edges as possible and
(2) determine on which side of the retained edges a polyp exists—hereafter referred to
as “voting direction” (See Fig. 1(c)). To achieve the two objectives, we design a 2-stage
classification scheme. The first stage learns a non-linear metric in the low level feature
space to measure the similarities between the input patches and some predefined struc-
tures. We choose such structures through a misclassification analysis. The second stage
performs the main classification, removing non-polyp edges and determining voting
directions for the retained edges. Fig. 2 illustrates the training process.

Step 0: We divide the space of negative patches into 4 sub-classes: vessels, lumen
areas, specular reflections, and a class containing other structures in the scenes. These
four categories together with the polyp class constitute the structures of interest. Given
the ground truth in the database, we collect a stratified set of N;=100,000 oriented
patches around these five types of boundaries such that the structures of interest al-
ways appear on the same side of the patches. This is to ensure a consistent presentation
for all structures. Step 1: We then train a 5-class classifier to learn the appearance of
these 5 types of structures in the low level feature space that is generated by our patch
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descriptor. The trained classifier can be viewed as a similarity learner module and its
five probabilities for each input patch can be viewed as mid-level image features in con-
trast with the low level input features, which mainly encode IVPs across boundaries.

Step 2: We collect a stratified set of N2=100,000 pairs of oriented patches from
polyp and non-polyp boundaries in the training images. Let {p}, p?} be the extracted
pair of patches around i‘" edge with the corresponding normals, {n}, n?}, where /n} €
[0,7] and /n? = /n} + 7. Note that the normal vector indicates the interpolation di-
rection when extracting oriented patches. Based on the state of the i*" edge, we assign
a label y; to this pair of patches, where “0” is for a non-polyp edge, “1” is for a polyp
edge with n} indicating the voting direction, and “2” is for a polyp edge with n? indi-
cating the voting direction, {(p}, p?,4")|y’ € {0,1,2},i = 1,2, ..., No}. Step 3 and 4:
We extract low level features from each pair of patches and then apply the classifier
trained in the first layer, resulting in two arrays of mid-level features per pair that are
further concatenated to form a feature vector, { (f*,y%)|y* € {0,1,2},i = 1,2, ..., Nao}.
Step 5: Once all feature vectors are collected, we train a 3-class classifier to learn both
edge labels and voting directions. For both layers, we choose the random forest classi-
fier because of its high quality probabilistic output.

Given an edge map for a test image, a pair of patches is extracted for every edge pixel
and then the corresponding low level features are computed. Next, each feature vector
is fed to the first classification layer. The mid level features generated from each pair of
patches are concatenated and fed to the second classification layer where the label and
voting direction (n]) for the underlying edge are determined as follows:

“polyp” and n} < n! ifp(y*=1)>0.5
“polyp” and n} < n? ifp(y*=2)>05 )
“non-polyp” otherwise,

2.5 Voting Scheme

We refer to the edges that have passed the classification stage as the “voters” in the
rest of this paper. Each voter has a polyp direction n} and a classification confidence
C,, = maz(p(y* = 1), p(y* = 2)). Our voting scheme begins with grouping the voters
into K categories according to their voting directions, V*={uv;| '}? < /ni< (kJ;(l)ﬂ},
k = 0...K. Such edge grouping prior to vote casting minimizes vote accumulation
in the regions that are surrounded by low curvature boundaries. The voters in each
category then cast votes at their surrounding pixels according to their voting directions
and classifications confidence. This results in K voting maps that are further multiplied
to form the final voting map whose maximum vote accumulation (MVA) indicates the
location of a polyp candidate. Mathematically,

K
MV A = argmax H Z M, (z,y), 3)

z.Y k=1veVy

where M, (z,y) is the vote cast by the voter v at a receiver pixel » = [z, y], which is
computed as follows:
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(a)

Fig. 3. (a) The voting map generated from an edge pixel lying at 135 degree. (b) The narrow band
used for assigning a probabilistic score to a polyp candidate. (c) The isocontours of a voting map
generated for a synthetic shape. (d) The representative isocountour & of the voting map, which is
used to determine the shape and width of the corresponding narrow band
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where o controls the size of the voting field. Fig. 3(a) shows the voting field for an
edge pixel lying at 135 degree. As seen, the votes are cast only in the region pointed
by the voting direction. Such selectivity arises from the condition set on /n*v7, which
prevents the voters from casting votes in the opposite direction. The exponential and
cosinusoidal decay functions enable smooth vote propagation, which we will later use
to determine the likelihood of a polyp candidate.

2.6 Probability Assignment

The maximum vote accumulation at a polyp candidate depends on many factors in-
cluding the size of polyps and the number of nearby voters around polyps. Therefore,
we cannot use raw accumulated votes to assign a probabilistic score to a polyp candi-
date. Alternatively, we search for the contributing voters within a narrow band around
the polyp candidate. The narrow band B, as shown in Fig. 3(b), consists of radial line
segments whose extension passes through the candidate location. The line segment /g
can be parametrized as MV A + t[cos(0),sin(9)|7 with t € [ty — J,to + 3] where §
is the bandwidth, and ty = ||y — MV A|| is the distance between the candidate lo-
cation and the corresponding point on the band skeleton I". To form the band around
a polyp candidate, one needs to determine the bandwidth ¢ and a set of distances .
We will estimate these parameters from the corresponding voting maps in Section 2.7.
Once the band is formed, the probability assigned to a polyp candidate is calculated
as | 329‘ > e S (Ig V Ig+180) where Sy denotes the set of angles along which the vot-
ers are searched for and |Sp| is the cardinality of Sy. We consider the discrete set
Se = {0]0 < 6 < 180} for probability computation. In this equation, Iy is an indi-
cator variable that takes 1 if the line segment ¢y hits at least a voter v whose estimated
polyp direction n, points toward the candidate location. This equation is designed to be
sensitive to both regions surrounded by continuous boundaries and those surrounded by
partially segmented and discontinuous boundaries.
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2.7 Narrow Band Determination

We define the isocontours of a voting map and then use them to estimate the unknown
parameters of the bands. The isocontour @, of the voting map V' is defined as ¢, =
{(z,y)|V(x,y) = ¢M} where M denotes the maximum of the voting map and c is a
constant between 0 and 1. Our experiments show that isocontours of a voting map can
predict where actual object boundary is. We wish to find this mapping through a regres-
sion model. Since isocontours may get corrupted by other nearby voters in the scene,
we obtain several isocontours as shown in (Fig. 3(c)) and then take their median shape
as the representative isocontour ¢ of the voting map (Fig. 3(d)). Let d’__ denotes the

180
distance between the i*" point on @ and MV A. We use d.,, to predict d’, ;» the distance
between the corresponding point on the object boundary and the MVA within a pre-
diction interval. For this purpose, we use a second order polynomial regression model
dly; = bo + bi(di,,) + ba(di,,)?, where by, b1, and by are the regression coefficients
and are estimated using a least square approach. Once the model is constructed, we take
the output of the model d,;; at angle § with respect to MVA as ¢y and the correspond-
ing prediction interval as the bandwidth §. With this information, we can form the band

around the polyp candidate and then compute the probability.
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Fig. 5. Polyp localization. The edges retained af-
ter classification are shown in green. Line seg-
ments that reach polyp edges with desired voting
directions are shown in blue and red otherwise.

Fig. 4. Our descriptor outperforms off-the-
shelf methods for patch characterization.
Our closest competitor, Daisy, runs at much
slower computation speed.

3 Experiments

To evaluate our system, we employed CVC-ColonDB [4] containing 300 colonoscopy
images and 8 short colonoscopy videos from our private database consisting of approx-
imately 1700 images with polyps and 2500 images without polyps.

For feature evaluation, we collected 50,000 oriented patches around polyps and other
boundaries in colonoscopy images. We selected half of the images for training, and used
the rest for testing. For classification, we used a random forest classifier. Our experi-
ments with the training set revealed that selecting 8x16 sub-patches in each image patch
and extracting 3 DCT coefficients from each sub-patch yields the best performance.
Fig. 4 shows the ROC curve for our patch descriptor when applied on the test set.
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short videos from our private database

For comparison, we used the publicly available implementations' of the other widely-
used descriptors, such as HoG, LBP, and Daisy. As seen, our descriptor surpasses HOG
and LBP with a large margin and slightly outperforms Daisy, which runs at much slower
computation speed than ours.

We developed a shape generator to tune the parameters of the voting scheme and to
construct the regression model for boundary localization. For this purpose, we gener-
ated 3000 objects at three different scales corresponding to small, medium, and large
polyps. We then changed the number of voting categories, K € {2,3,4,5,6}, and per-
formed the voting scheme for all the objects. We constructed a regression model for
each configuration and found out that K = 4 achieves the best boundary localization.
We investigated the effect of the size of voting fields on the real colonoscopy images.

We employed 5-fold cross validation to evaluate our polyp detection system using
CVC-ColonDB. A detection is “true” if it falls inside the ground truth. Table 1 compares
the precision and recall rates of the proposed method with those reported in [4] and
[3]. As seen our method outperforms the rest in different operating points and yields
stable results over a relatively large range of o. Examples of polyp localization are
shown in Fig. 5. False candidates produced by our voting scheme mostly occur due to
aggressive edge classification and inadequate clear boundary between polyps and their
surrounding area. We further evaluated our system trained on the entire CVC -ColonDB
using the eight short colonoscopy videos. The free ROC curve, as shown in Fig. 6,
demonstrates that the suggested classification scheme significantly outperforms a 1-
stage classification scenario where a three class classifier is used for edge classification.

4 Conclusions and Discussions

We have presented a novel polyp detection method with performance superior to the
state-of-the-art, achieving an acceptable level of sensitivity and specificity for polyp
detection. An important consideration is computer aided detection for colonoscopy need

! HOG: lear.inrialpes.fr/pubs/2005/DT05/; LBP:
www.cse.oulu.fi/CMV/Downloads/LBPMatlab; Daisy:
cvlab.epfl.ch/software/daisy
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not to achieve perfect sensitivity to be clinically useful, because a polyp usually appears
in a number of consecutive frames and if one instance of the polyp—particularly upon
appearance—gets detected, the detection process is considered as a success. Our al-
gorithm was able to detect at least one instance of polyps in both the public database
and our collected videos. Noteworthy, the suggested boundary classification framework
is general and can be applied to a variety of medical segmentation problems where a
supervised edge classification can serve as a preprocessing stage prior to segmentation.
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