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Abstract. Brain imaging genetics is an emergent research field where
the association between genetic variations such as single nucleotide poly-
morphisms (SNPs) and neuroimaging quantitative traits (QTs) is eval-
uated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate
analysis method that has the potential to reveal complex multi-SNP-
multi-QT associations. Most existing SCCA algorithms are designed us-
ing the soft threshold strategy, which assumes that the features in the
data are independent from each other. This independence assumption
usually does not hold in imaging genetic data, and thus inevitably limits
the capability of yielding optimal solutions. We propose a novel structure-
aware SCCA (denoted as S2CCA) algorithm to not only eliminate the
independence assumption for the input data, but also incorporate group-
like structure in the model. Empirical comparison with a widely used
SCCA implementation, on both simulated and real imaging genetic data,
demonstrated that S2CCA could yield improved prediction performance
and biologically meaningful findings.
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1 Introduction

Brain imaging genetics is an emerging research field aiming to identify associ-
ations between genetic factors such as single nucleotide polymorphisms (SNPs)
and quantitative traits (QTs) extracted from neuroimaging data. While univariate
analyses [9] have been widely used to discover single-SNP-single-QT associations,
recent studies have also started to perform regression analyses [5] to examine the
joint effect of multiple SNPs on one or a few QTs, and bi-multivariate analyses
[4,6,10,12] to examine complex multi-SNP-multi-QT associations.

Sparse canonical correlation analysis (SCCA) [7,14] is a bi-multivariate anal-
ysis method that has been applied to both real [6] and simulated [4] imaging
genetics data, as well as other omics data sets [2,3,7,14]. Most existing SCCA
algorithms use the soft threshold strategy for solving the Lasso [7,14] or group
Lasso [4,6] regularization terms. However, the soft threshold approach requires
the input data X to have an orthonormal design XTX =T (see Section 10 in
[11]), meaning that the features in the data should be independent from each
other. However, for neuroimaging and genetics data, correlation usually exists
among regions of interest (ROIs) in the brain and among linkage disequilibirum
(LD) blocks in the genome. Simply treating the covariance of the input data as
an identity or diagonal matrix will inevitably limit the capability of identifying
meaningful imaging genetic associations.

One possible solution to address this issue is to orthogonalize the input data by
performing principal component analysis (PCA) before running SCCA. However,
we aim to identify relevant imaging and genetic markers, and thus prefer a sparse
model. The combined PCA and SCCA strategy cannot achieve this goal, since
PCA loadings on the original imaging and genetic markers are non-sparse.

To overcome this limitation, in this paper, we propose a novel structure-aware
SCCA (denoted as S2CCA) algorithm for brain imaging genetics applications
to achieve the following two goals: (1) our algorithm is not based on the soft
threshold framework and eliminates the independence assumption for the input
data; (2) our model can incorporate group-like structure (e.g., voxels in an RO,
or SNPs in an LD block) to yield more stable and biologically more meaningful
results than conventional SCCA model. We perform an empirical comparison be-
tween the proposed S2CCA algorithm and a widely used SCCA implementation
in the PMD software package (http://cran.r-project.org/web/packages/PMA/)
[14] using both simulated and real imaging genetic data. The empirical results
demonstrate that the proposed S2CCA algorithm can yield improved prediction
performance and biologically meaningful findings.

2 Structure-aware SCCA (S2CCA)

We denote vectors as boldface lowercase letters and matrices as boldface upper-
case ones. For a given matrix M = (m;;), we denote its i-th row and j-th column
to m’ and m; respectively. Let X = {x1,...,x,,}7 C WP be the SNP data and
Y = {y1, ¥l C R? be the imaging QT data, where n is the number of
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participants, p and ¢ are the numbers of SNPs and QT's, respectively. Canonical
correlation analysis (CCA) seeks linear combinations of variables in X and Y
which maximize the correlation between Xu and Yv:

max u’XTyv st. W' XTXu=1,vIYTYv=1 (1)
where u and v are canonical vectors or weights. Two major weaknesses of CCA
are that it requires the number of observations n to exceed the combined di-
mension of X and Y and that it produces nonsparse u and v which are diffi-
cult to interpret. The sparse CCA (SCCA) method removes these weaknesses
by maximizing the correlation between Xu and Yv subject to the weight vec-
tor constraints P;(u) < ¢ and Pe(v) < ¢a. The penalized matrix decomposition
(PMD) toolkit [14] provided a widely used SCCA implementation, where the L,
penalty P(A) = Y"7_, |A(k)| was used for both P; and P». As mentioned earlier,
similar to most SCCA methods, PMD employed the soft threshold strategy for
solving the L, penalty term, which required the input data to have an orthonor-
mal design XTX =T and YTY =1 (see Section 10 in [11]). This independence
assumption usually does not hold in imaging genetic data (e.g., correlated vox-
els in an ROI, correlated SNPs in an LD block), and thus inevitably limits the
capability of identifying meaningful imaging genetic associations.

To overcome this limitation, we propose a novel structure-aware SCCA (de-
noted as S2CCA) algorithm to not only eliminate the independence assumption
for the input data, but also incorporate group-like structure in the model. In-
stead of using L;, we define a group L; constraint on P; and P» as follows:

K3 Ky
Pi=lulla=m Y, [> ut=y > [u",

ki=1 \| iemy, ki1=1
. . (2)
k
B=lvlie=nY |3 vt=nY V2.
ko=1 \| i€mp, ko=1

In Eq. (2), SNPs are partitioned into K; groups I} = {Wkl}kKllzl, such that

{u;}; % € mg,, and my, is the number of SNPs in 7y, ; and imaging QTs are

partitioned into Ko groups Il = {sz}i?zp such that {v;};? € mx,, and my,

is the number of QTs in mk,. || - || is the constraint for the group structure. In

this work, we partition voxels using AAL ROIs and SNPs using LD blocks.
Now the S2CCA objective function can be formally written as follows:

K1 Ko
T T k k
maxu” X Yv—y Y [[u e = Y V2l (3)
k1=1 ko=1
st u"X"Xu=1,vY'YVv=1,
Using Lagrange multipliers, Eq. (3) can be transformed as follows:

maxu’ X"Yv —yilulle —22llvlle = Bil|Xull3 - B2|Y VI3 (4)

u,v
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Algorithm 1. Structure-aware SCCA (S2CCA)

Require:

X={x1,.. %}, Y={yy, 0, ¥ }7"
Ensure:

Canonical vectors u and v.
1: ¢ = 1, Initialize u; € RP*L, v, € RIXL,
2: while not converged do

3: Calculate the block diagonal matrix D1, , where the ki-th diagonal is ‘ ;1‘ ;
2([u " |2

4 w1 = (BXTX + ’y1D1t)71XTth/2; Scale ut41 so that uz:rlXTXuH_l =1;

5 Calculate the block diagonal matrix Dgt, where the ks-th diagonal is 22 5
2[lvy“ 12

6: vitr = (B2YTY +42D2,) "' YT Xust1/2;  Scale veq1 so that vﬂ_lYTYvH_l =1;

T t=t+1.

8: end while

Taking the derivative about u and v and setting them to zero, we have

X"Yv/2 —y1Diu — 81X "Xu =0, (5)
Y Xu/2 — 15Dov — BoYTYv =0, (6)

where D1 is the block diagonal matrix of the ki-th diagonal block as

2([u*1]2”
1
2lIv*2)
With v fixed, we can use an approach similar to G-SMuRFS [13] to solve for
u. With u fixed, we can do the same to solve for v. We propose Algorithm 1 to
alternatively compute u and v until the result converges. We use max{|d| | ¢ €
(uty1—ug)} < 1075 and max{|d] | § € (Vi1 —ve)} < 107° as stopping criterion,
and nested cross-validation to automatically tune parameters 1, 72, 81 and Ss.

and Dy is the block diagonal matrix of the ko-th diagonal block as

3 Experimental Results

3.1 Results on Simulation Data

We first performed a comparative study between S2CCA and PMD using sim-
ulated data. We used the following procedure to generate two sets of synthetic
data X and Y, both with n = 1000 and p = ¢ = 50: 1) We created a random
positive definite non-overlapping group structured covariance matrix M. 2) Data
set Y with covariance structure M was calculated through Cholesky decompo-
sition. 3) We repeated the above two steps to generate another data set X. 4)
Canonical loadings u and v were set based on the group structures of X and Y
respectively, where all the variables within the group share the same weights. In
this initial study, for simplicity, we selected only one group in Y to be associated
with 4 groups in X. 5) The portion of the specified group in Y were replaced
based on the u, v, X and the assigned correlation. We generated 7 pairs of X
and Y with correlations ranging from 0.45 to 0.99. The canonical loadings and
group structure remained the same across all the synthetic data sets.

We applied S2CCA and PMD to all seven data sets. The regularization pa-
rameters were optimally tuned using a grid search from 107° to 10° through
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Fig.1. 5-fold trained weights of u and v. Ground truth of u and v are shown in
the most left two panels. S2CCA results (top row) and PMD results (bottom row)
are shown in the remaining panels, corresponding to true correlation coefficients (CCs)
ranging from 0.45 to 0.99. For each panel pair, the five estimated u values are shown
on the left panel, and the five estimated v values are shown on the right panel.

Table 1. Five-fold cross-validation performance on synthetic data: mean+std is shown
for estimated correlation coefficients and AUC of the test data using the trained model.
P-value of paired t-test between S2CCA and PMD results is also shown.

True Correlation Coefficient (CC) Area under ROC (AUC)

CC S2CCA PMD P S2CCA:u  PMD:u P S2CCA:v.  PMD:v P
0.445 0.4240.05 0.274£0.08 T7E-4 1.00+£0 0.68+0.02 4E-6 1.00+0 0.84+0.02 4E-5
0.526 0.48+0.04 0.3240.11 4E-3 1.00+£0 0.66+£0.01 3E-7 1.00£0 0.87£0.06 3E-3
0.594 0.5640.07 0.3940.12 2E-3 1.00+£0 0.64+0.01 3E-7 1.00£0 0.81£0.05 7E-4
0.697 0.67£0.01 0.47£0.07 2E-3 0.944+0.02 0.66+0.03 6E-5 1.00£0 0.854+0.04 3E-4
0.814 0.80£0.04 0.4940.06 T7E-5 0.984+0.02 0.63+0.01 1E-6 1.00£0 0.834+0.04 5E-4
0.906 0.90£0.01 0.56%0.06 9E-5 1.00+£0 0.66+£0.01 4E-7 1.00£0 0.82£0.04 4E-4
1.000 0.9940.00 0.654+0.04 2E-5 1.00+£0 0.66+£0.01 3E-7 1.00£0 0.86£0.07 4E-3

nested 5-fold cross-validation. The true and estimated u and v values are shown
in Fig. 1. Due to different normalization strategies, the weights yielded through
S2CCA and PMD showed different scales. Yet the overall profile of the estimated
u and v values from S2CCA remained consistent with the ground truth across
the entire range of tested correlation strengths (from 0.45 to 0.99), while PMD
only identified an incomplete portion of all the signals. Furthermore, we also ex-
amined the correlation in the test set computed using the learned CCA models
from the training data for both methods. The left part of Table 1 demonstrates
that S2CCA outperformed PMD consistently and significantly, and it could ac-
curately reveal the embedded true correlation even in the test data. The right
part of Table 1 demonstrates the sensitivity and specificity performance using
area under ROC (AUC), where S2CCA also significantly outperformed PMD
no matter whether the correlation was weak or strong. From the above results,
it can also be observed that S2CCA could identify the correlations and signal
locations not only more accurately but also more stably.
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Table 2. Participant characteristics

HC MCI AD
Num 304 363 176
Gender(M/F) 111/193 235,128 95/81
Handedness(R/L) 190/14 329/34 166/10
Age (meanzstd) 76.07£4.99 74.88+7.37 75.60£7.50

Education (meantstd) 16.15+2.73 15.72£2.30 14.84+3.12

3.2 Results on Real Neuroimaging Genetics Data

S2CCA and PMD were also compared using real neuroimaging and SNP data.
The magnetic resonance imaging (MRI) and SNP data were downloaded from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. One goal
of ADNI has been to test whether serial MRI, positron emission tomography,
other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and
early AD. For up-to-date information, see www.adni-info.org.

This ADNI study included 176 AD, 363 MCI and 304 healthy control (HC) non-
Hispanic Caucasian participants (Table 2). Structural MRI scans were processed
with voxel-based morphometry (VBM) in SPM8 [1,8]. Briefly, scans were aligned
to a T1-weighted template image, segmented into gray matter (GM), white mat-
ter (WM) and cerebrospinal fluid (CSF) maps, normalized to MNI space, and
smoothed with an 8mm FWHM kernel. Rather than using ROI summary statis-
tics, in this study we subsampled the whole brain and examined correlations be-
tween the voxels (GM density measures) and SNPs. A total of 465 voxels spanning
all brain ROIs were extracted. All SNPs within LD block of APOE e4 were ex-
tracted from an imputed genetic data set containing only SNPs in Illumina 610Q
and/or OmniExpress arrays after basic quality control. As a result, four SNPs
(rs429358, rs439401, rs445925, rs534007) from this LD block were included in this
study. Using the regression weights derived from the healthy control participants,
VBM and genetic measures were pre-adjusted for removing the effects of the base-
line age, gender, education, and handedness.

Both S2CCA and PMD were performed on the normalized VBM and SNP mea-
surements. Similar to the previous analysis, 5-fold nested cross-validation was ap-
plied to optimally tune the parameters. Table 3 shows 5-fold cross-validation
canonical correlation results, indicating that S2CCA significantly and consistently
outperformed PMD in terms of identifying high correlations from the training
data and replicating those in the testing data. Shown in Fig. 2(a) are the canonical
loadings trained from 5-fold cross-validation, suggesting relevant imaging and ge-
netic markers. Although the S2CCA model did not explicitly impose sparsity on
individual voxels, it was still able to discover a very small number of relevant ROIs
for easy interpretation due to the imposed group sparsity. The strongest imaging
signals came from the right hippocampus, which were inversely correlated with
APOE e4 allele rs429358. In contrast, despite the flat sparsity design, PMD identi-
fied many more ROIs than S2CCA (Fig. 2 (a-b)), making results hard to interpret.
In addition, comparing the results from 5 cross-validation trials, S2CCA yielded
a more stable and consistent pattern than PMD. It is reassuring that S2CCA
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Table 3. Five-fold cross validation canonical correlation results on real data: the CCA
models learned from the training data were used to estimate the correlation coefficients
between canonical components for both training and testing sets. P-values of paired
t-tests were obtained for comparing S2CCA and PMD results.

Correlation S2CCA PMD

coefficients F1 F2 F3 F4 F5 F1 F2 F3 F4 Fs Pvalue
Training 0.28 0.27 0.27 0.27 027 026 0.26 0.26 026 0.24 0.016
Testing 0.21 0.24 0.28 0.23 026 020 0.21 021 020 0.24 0.017

7\Voxels from Right Hippocampus

S2CCA

PMD

(a) 5-fold canonical loadings

S2CCA

PMD

— b 'y
Axial Coronal

(b) Brain map of average v

Sagital( )

Fig. 2. Comparison of S2CCA and PMD canonical vectors in cross-validation trials:
(a) 5-fold canonical loadings of u and v on 4 APOE SNPs and 465 VBM measures; (b)
mapping the average of imaging canonical loadings v of 5 cross-validation trials onto
the brain

identified a well-known correlation between hippocampal morphometry and APOE
in an AD cohort, which shows the promise of S2CCA to correctly identify biolog-
ically meaningful imaging genetic associations.

4 Conclusions

Most existing SCCA algorithms (e.g., [4,6,7,12,14]) are designed using the soft
threshold strategy, which assumes that the features in the data are independent
from each other. This independence assumption usually does not hold in imaging
genetic data, and thus limits the capability of yielding optimal results. We have
proposed a novel structure-aware sparse canonical correlation analysis (S2CCA)
algorithm, which not only removes the above independence assumption, but also
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takes into consideration group-like structure in the data. We have compared S2CCA
with PMD (a widely used SCCA implementation) on both synthetic data and real
imaging genetic data. The promising empirical results demonstrate that S2CCA
significantly outperformed PMD in both cases. In addition, S2CCA accurately re-
covered the true signals from the synthetic data and yielded improved canonical
correlation performance and biologically meaningful findings from real data. This
study is an initial attempt to remove the feature independence assumption many
existing SCCA methods have. Since joint multivariate modeling of imaging ge-
netic data is computationally and statistically challenging, we downsampled our
data via a targeted APOE analysis to reduce computational burden and overfit-
ting risk. The S2CCA sparsity was designed to reduce model complexity and fur-
ther overcome overfitting. Future directions include evaluating S2CCA using more
realistic settings and expanding S2CCA to address efficiency and scalability.
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