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Abstract. Recently, neuroimaging data have been increasingly used to
study the causal relationship among brain regions for the understand-
ing and diagnosis of brain diseases. Recent work on sparse Gaussian
Bayesian network (SGBN) has shown it as an efficient tool to learn
large scale directional brain networks from neuroimaging data. In this
paper, we propose a learning approach to constructing SGBNs that are
both representative and discriminative for groups in comparison. A max-
margin criterion built directly upon the SGBN models is proposed to
effectively optimize the classification performance of the SGBNs. The
proposed method shows significant improvements over the state-of-the-
art works in the discriminative power of SGBNs.

1 Introduction

Neuroimaging techniques have been widely adopted in brain research for analyz-
ing mental diseases, such as the Alzheimer’s disease (AD). They could provide
more sensitive and consistent assessments for the early diagnosis of disease. Re-
cently, neuroimage analysis is shifting its emphasis from local brain regions to
regional interactions (known as brain network) using graph theory [1]. Such anal-
ysis is important because brain network change is often a response to damages
like mental diseases. Generally a brain network is constructed as follows (Fig. 1).
After aligning to a common stereotaxic space, brain images are partitioned into
regions of interest (ROI). A brain network is then modeled by a graph with
each node corresponding to a brain region and each edge corresponding to the
connectivity between regions. Brain “effective connectivity” analysis focuses on
the causal relationships between brain regions [1]. The directionality is often of
interest, because it may disclose the pathways of how one brain region affects the
other. Evidence of causal relationship changes has been found in many mental
diseases including AD from multiple imaging modalities [2,3], shedding light on
discovering novel connectivity-based biomarkers for disease diagnosis.

Early research works in this regard usually require a prior model of connec-
tivity and study only a small number (≤ 10) of brain regions, such as Structural
Equation Modeling [4] and Dynamic Causal Modeling [5]. This situation has been
improved recently by [2], where a completely data-driven method, denoted as
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Fig. 1. Illustration of brain network construction from neuroimaging data

H-SGBN in this paper, is proposed to recover sparse Gaussian Bayesian network
(SGBN) from more than 40 brain regions in fluorodeoxyglucose PET (FDG-
PET) images. It employs the strategy of sparsity constraint to handle large scale
Bayesian Network (BN) construction, and circumvents the traditional two-stage
procedure for parent set identification in many sparse BN learning methods,
achieving a more accurate network recovery [2].

As most BNmethods in the literature, H-SGBN is a generative method, which,
as pointed out in [6], may ignore the subtle but critical brain structural changes
induced by mental diseases. Therefore, a learning approach is proposed in [6],
denoted as DL-SGBN, to introduce class discrimination into the SGBN models.
DL-SGBN employs Fisher kernel to extract sample-based features from SGBNs,
and minimizes a generalization error bound for SVM classifiers with these SGBN-
induced features. In that work, the class discrimination is learned by optimizing
the classification performance of SVMs, which does not guarantee the equivalent
improvement on SGBNs. However, SGBN models are the ultimate goal in such
research since they represent the brain connectivity.

In this paper, we propose a new method to learn discriminative SGBN models
from neuroimaging data, which overcomes the drawbacks of the state-of-the-art
works mentioned above. We propose a max-margin framework to jointly learn
two SGBNs, one for each class, for both discrimination and representation. Un-
like DL-SGBN in [6], our framework optimizes a criterion directly built upon the
classification performance of SGBNs, thus further improves the discriminative
power of the models from DL-SGBN (and H-SGBN). Our method is different
from the literature of BN classifiers where a single BN is learned to represent the
differences of two classes (in either structure or parameter but not in both) [7,8].
These methods work on discrete variables, while the brain ROI measurements
are usually continuous variables whose discretization is often hard to decide.
Our experiment shows significant improvement of our proposed method over the
state-of-the-art works of H-SGBN and DL-SGBN in terms of the discriminative
power of SGBNs. The notations of symbols frequently appearing in this paper
are summarized in Table 1.

2 Background

Because this paper is based on sparse Gaussian Bayesian Network (SGBN)
model, in the following, we review the fundamentals of SGBN in the original
paper [2]. For DL-SGBN, the discriminative learning of SGBN, please refer to [6]
for the technical details. We compare with both methods experimentally.
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Table 1. Notation

xi a random variable

x a sample of m variables: x = [x1, x2, · · · , xm]�

X the data matrix of n samples, X ∈ R
n×m

xi,: the i-th row of X, representing a sample

x:,i the i-th column of X, representing the realization of the random variable xi

on n samples

W the parameters of a Gaussian Bayesian Network: W = [w1, · · · ,wm], W ∈ R
m×m

Pai a vector containing the parents of xi

PAi a matrix whose j-th column represents a realization of Pai on the j-th sample.

G an m×m matrix for BN: if there is a directed edge from xi to xj , Gij = 1,

otherwise Gij = 0

P an m×m matrix for BN: if there is a directed path from xi to xj , Pij = 1,

otherwise Pij = 0

A graph of BN G expresses the factorization property of a joint distribution
p(x) =

∏

i=1,··· ,m
p(xi|Pai). The conditional probability p(xi|Pai) is assumed to

follow a Gaussian distribution in Gaussian BN (GBN). Each node xi is regressed
over its parent nodes Pai: xi = w�

i Pai+εi, where the vectorwi is the regression
coefficients, and εi ∼ N (0, σ2

i ). A BN is a directed acyclic graph (DAG), i.e.,
there is no closed path within the graph. Identifying parent sets is critical for BN
learning. Traditional methods often consist of two stages: determine candidate
parent sets and further prune them by some criteria. A drawback rises that a
missing true parent in the first stage will never be recovered. The work in [2]
proposed a different approach (H-SGBN) based on sparse GBN (SGBN). In H-
SGBN, each node xi is regressed over all the other nodes, and its parent set is
implicitly selected by the regression coefficients wi that are estimated by:

min
W

m∑

i=1

‖x:,i −PA�
i wi‖22 + λ1‖wi‖1 (1)

s.t. Wji ×Pij = 0, ∀i, j = 1, · · · ,m, i �= j.

All the symbols are defined as in Table 1. A challenge for BN learning is how to
enforce the DAG property, i.e., avoiding directed cycles in the graph. A sufficient
and necessary condition for being a DAG is proposed in [2], which requires
Wji ×Pij = 0 for all i and j. Note that Pij is an implicit function of Wji. H-
SGBN has been shown to outperform the conventional two-stage methods with
higher accuracy for the network edge recovery in [2].

3 Our Proposed Method

As a generative model, BN models the density of the data, revealing how the
data could be generated through an underlying process. This is desirable in



324 L. Zhou et al.

the exploratory research of brain, where discovering new knowledges about the
brain and the mental diseases is critical. When used for classification, a BN is
trained for each class independently and a sample is categorized to the class that
produces the higher probability. However, the BNs individually trained by each
class may ignore some subtle but critical network differences that distinguish two
classes. Since we usually have access to both classes in comparison (e.g., AD and
normal control), it is argued in [6] that the parameters of the two SGBNs, one
for each class, should be learned from the two classes jointly in order to retain
the essential discrimination. Therefore, a joint learning method DL-SGBN is
proposed in [6], which introduces group discrimination into SGBNs by optimizing
the performance of SVM classifiers with SGBN-induced features. Although this
leads to a relatively simple optimization problem, optimizing the performance of
SVMs does not necessarily equal to optimizing the discrimination of SGBNs that
represent the brain networks. We believe that, the discrimination of SGBNs can
be further improved if we directly optimize their (instead of SVMs’) classification
performance. Therefore we propose a new learning framework based on max-
margin formulation directly built on SGBNs. We call our method MM-SGBN.

For binary classification, maximizing the minimum margin between two
classes can be obtained by maximizing the minimum conditional likelihood ratio
(MCLR):

MCLR(W) =
n

min
i=1

P (yi|xi,Wyi)

P (ȳi|xi,Wȳi)
,

where n is the number of samples. Without loss of generality, yi and ȳi ∈ {−1, 1},
representing the true and false labels for the i-th sample, respectively. The pa-
rameter Wyi = W1 if yi = 1, or Wyi = W2 if yi = −1. We can see that
MCLR identifies the most confusing sample whose probability of the true class
assignment is close to or even less than that of the false class assignment. Hence,
maximizing MCLR targets the maximal separation of the most confusing sam-
ples in the two classes. It is not difficult to see that MCLR can naturally handle
multi-class case when replacing the denominator by the maximal probability
induced by all false class assignments. Taking log-likelihood of MCLR, we have

log MCLR(W) =
n

min
i=1

(log p(xi|yi,Wyi)− log p(xi|ȳi,Wȳi)) + const, (2)

which can be shown as a quadratic function of W in the case of SGBN. In order
to maximize MCLR, we require the log-likelihood difference in Eqn. (2) larger
than a margin for all samples and maximize the margin. To deal with hard
separations, we employ a soft margin formulation as follows.

min
W1,W2,ξi,r

λ

n∑

i=1

ξi − r (3)

s.t. yi (L(W1,xi)− L(W2,xi)) ≥ r − ξi, ∀i (3a)

ξi ≥ 0, r ≥ 0, (3b)

f(X1,W1) ≤ T1, f(X2,W2) ≤ T2 (3c)

W1 ∈ DAG, W2 ∈ DAG (3d)
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Algorithm 1. MM-SGBN: Discriminative Learning

Input: data X1,X2 ∈ R
n×m, label y ∈ R

n×1

1. Obtain the initial solution for Eqn. (3):

Get initial W(0) = [W
(0)
1 ,W

(0)
2 ] by Eqn. (1);

Get initial r(0) and ε
(0)
i by solving Eqn. (3) with only the two constraints (3a)

and (3b) and a fixed W = W(0).
2. Select a subsets of parameters (Wi,j) that satisfy:

i) the gradient (change) of SGBN model at these parameters are highly correlated
with the class label, and ii) the corresponding edges present in the graph.
3. Optimize the parameters of the selected nodes by Eqn.(3).

Eqn. (3) has three components addressing class separation (3a), model represen-
tation (3c) and DAG property (3d), respectively.

The constraints in (3a) enforce the likelihood of xi to its true class larger than
that to its false class by a margin r. The variable ξi is the slack variables indi-
cating the intrusion of the margin. The function L(·) denotes the log-likelihood:

L(W,x) =

m∑

i=1

−(xi −Pa�
i wi)

2

2σ2
i

− log(2π
√
σi).

The constraints in (3c) control the fitting errors to maintain reasonable rep-
resentation. Adding these constraints also avoids the scaling problem of W. The
function f(·) measures the squared fitting errors of the corresponding SGBNs
for the data X1 and X2 from the two classes. It is defined as

f(X,W) =

m∑

i=1

‖x:,i −PA�
i wi‖22.

The parameters of T1 and T2 are application dependent and predefined by users
to control how much representation could be sacrificed for discrimination.

The constraints in (3d) are the DAG constraint proposed in Eqn. (1), i.e.,
W1{ji} × P1{ij} = 0, W2{ji} × P2{ij} = 0, ∀i, j = 1, · · · ,m, i �= j. By these
constraints, we enforce the validity of both graphs.

The optimization in Eqn. (3) is quadratic programming, which can be solved
iteratively by fmincon-SQP (sequential quadratic programming) in Matlab. The
details are given in Algorithm 1.

Our method differs from the conventional BN classifiers [7,8] that solely focus
on classification. In those methods, only one BN is learned to merely represent
the “difference” of the two classes. They no longer model the individual class
as our method does, and hence are less interpretative. Moreover, they cannot
handle the continuous variables of brain imaging measures, and inherit the draw-
backs of the traditional two-stage methods. In practice, learning the whole set
of SGBN parameters could become unreliable when the training samples are
insufficient. Therefore, we follow the line in [6] to optimize only a selected sub-
set of parameters. Note that this does not introduce the same problem as the
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traditional two-stage methods. It is just an engineering trick to handle small
sample size problem and becomes unnecessary when sufficient training data are
available. In contrast, identifying the candidate-parent sets is an indispensable
step in two-stage methods to obtain computationally tractable solutions.

4 Experiment

We evaluate our proposed MM-SGBN against the single class method H-SGBN
from [2] and the discriminative learning method DL-SGBN from [6]. For com-
parison, following [6], we apply all methods on the publicly accessible ADNI1

database to analyze brain effective connectivity for AD. Three data sets are used
from two imaging modalities of MRI and FDG-PET downloaded from ADNI.

MRI data set includes 120 T1-weighted MR images belonging to 50 mild cogni-
tive impairment (MCI) patients and 70 normal controls (NC). These images are
preprocessed by the typical procedure of intensity correction, skull stripping, and
cerebellum removal. They are segmented into gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) using the standard FSL2 package, and par-
cellate them into Regions of Interest (ROI) based on an ROI atlas after spatial
normalization. The GM volumes of each ROI are used as network nodes. Forty
ROIs similar to [6] are used3, mainly in the temporal lobe and around.
PET data set includes 103 FDG-PET images (and their corresponding MR
images) of 51 AD patients and 52 NC. The MR images belonging to different
subjects are co-registered and partitioned into ROIs as mentioned above. The
ROI partitions are copied onto their corresponding PET images by a rigid trans-
formation. The average tracer uptakes within each ROI in PET images are used
as network nodes. Forty discriminative ROIs to AD are used.
MRI-II data set is similar to the MRI data set but using 40 different ROIs
covering the typical brain regions spread over the frontal, parietal, occipital and
temporal lobes.

We test how the learning process improves the discriminative power of the
individual SGBNs estimated by each class. The individual SGBNs are obtained
by H-SGBN. We test two methods for discriminative learning: our max-margin-
based method MM-SGBN and DL-SGBN in [6]. In order to maintain represen-
tation capability, we allow maximal 1% additional squared fitting errors (that
is, Ti = 1.01× Ti0, (i = 1, 2), where Ti0 is the squared fitting error of the initial
solution) to be introduced during the learning process. To classify a test sample,
we compare the values of its likelihood and assign the sample to the class with a
higher likelihood. The test accuracies are averaged over the 50 randomly parti-
tioned training-test groups and presented in Table. 2. Paired t-tests (two-tailed)
are also conducted to examine the statistical significance of the results.

1 http://www.adni-info.org/
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
3 Forty ROIs are used to be comparable to that in [2,6].

http://www.adni-info.org/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Table 2. Test Classification Accuracy Averaged over 50 Training-Test Groups (left)
and p-values of Paired t-tests (right)

Accuracy p-value

H-SGBN DL-SGBN MM-SGBN H-SGBN vs. H-SGBN vs. DL-SGBN vs.

(%) (%) (%) DL-SGBN MM-SGBN MM-SGBN

MRI 66.08 72.92 76.25 7e-7 0 1e-4

PET 61.47 66.74 69.92 4e-4 0 5e-6

MRI-II 57.08 63.92 67.17 7e-6 0 3e-3

From the results we observe that: i) Both DL-SGBN and MM-SGBN can greatly
improve the discriminative power of the SGBNs estimated from individual classes
by H-SGBN. DL-SGBN increases the test accuracy by 6.8% for MRI, 5.3% for
PET and 6.8% for MRI-II. MM-SGBN increases the test accuracy by 10.2%
for MRI, 8.5% for PET and 10.1% for MRI-II. These improvements are all sta-
tistically significant as shown by the very small p-values. This indicates the
effectiveness of jointly learning two classes. ii) Our proposed MM-SGBN gener-
ates the best classification accuracies over all the data sets, which also further
improves the classification accuracy of the DL-SGBN by 3.4% for MRI, 3.2% for
PET and 3.3% for MRI-II. These improvements are all statistically significant.
The advantages of MM-SGBN over DL-SGBN come from directly optimizing the
discriminative power of SGBNs, instead of getting indirect help from optimiz-
ing the performance of SVM on SGBN-induced features. iii) Remind that these
improvements on discrimination are achieved with no more than 1% increase of
squared fitting errors, as explicitly controlled via the user-defined parameters T1

and T2. Note that the rate of 1% is application dependent. More tolerance of
fitting errors can potentially bring more discrimination. When we relax fitting
error to 10%, another 3% increase of test accuracy could be further achieved.

An example of 18 edge weight changes learned by DL-SGBN and MM-SGBN
on PET data is given in Fig. 2, where the SGBN networks from two classes are
vectorized and concatenated as x-axis. As shown, both methods learn similar

500 1000 1500 2000 2500 3000

−1

−0.5

0

0.5

C
h

an
g

e 
o

f 
W

ei
g

h
ts

"precuneus L" to
"precuneus R"

"globus palladus L" to "anterior limb of
internal capsule L"

0 500 1000 1500 2000 2500 3000

−1

−0.5

0

0.5

1

C
h

an
g

e 
o

f 
W

ei
g

h
ts

"precuneus L" to
"precuneus R"

"globus palladus L" to "anterior
limb of internal capsule L"

(a)DL-SGBN (b) MM-SGBN

Fig. 2. Change of edge weights learned by DL-SGBN and MM-SGBN
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discriminative patterns despite of using different learning criteria. However, MM-
SGBN significantly increases the positive weight of the edge from “precuneus L”
to “precuneus R”, and reduces the negative weight from “globus palladus L to
“anterior limb of internal capsule L”. Such differences may lead to the superior
performance of MM-SGBN on this dataset and are worthy of further research.

5 Conclusion

In this paper, we propose a max-margin framework directly built on SGBN
models to learn causal relationship of brain regions from neuroimaging data.
Compared with the state-of-the-art, our method significantly improves the dis-
crimination of the obtained SGBNs, as well as maintaining good representation
capacity of the SGBN models.
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