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Abstract. We present a novel approach to determine a local q-space
metric that is optimal from an information theoretic perspective with
respect to the expected signal statistics. It should be noted that the ap-
proach does not attempt to optimize the quality of a pre-defined math-
ematical representation, the estimator. In contrast, our suggestion aims
at obtaining the maximum amount of information without enforcing a
particular feature representation.

Results for three significantly different average propagator distribu-
tions are presented. The results show that the optimal q-space metric
has a strong dependence on the assumed distribution in the targeted
tissue. In many practical cases educated guesses can be made regarding
the average propagator distribution present. In such cases the presented
analysis can produce a metric that is optimal with respect to this distri-
bution. The metric will be different at different q-space locations and is
defined by the amount of additional information that is obtained when
adding a second sample at a given offset from a first sample. The inten-
tion is to use the obtained metric as a guide for the generation of specific
efficient q-space sample distributions for the targeted tissue.

1 Introduction

The discussion concerning optimal q-space sampling strategies has been lively
from the very start of diffusion imaging and is continuing to be a major topic of
research [1] - [10]. Existing sampling schemes are based on experience combined
with more or less ad hoc approaches of which many display interesting features.
There is, however, no consensus regarding the choice of q-sample distribution in
any given situation. Here we try to improve this situation by introducing a novel
approach to determine a local q-space metric that is optimal from an information
theoretic perspective with respect to the expected signal statistics.

The metric will be dependent on the q-space location an indicates the infor-
mation gain, as a function of distance and direction, when adding a sample in
a second q-space location. The obtained metric can then serve as a guide for
the generation of specific q-space sample distributions e.q. sample distributions
obtained in the manner described in [10]. It should be noted that the approach
differs significantly from the classical estimation theory approach, e.g. one based
on Cramer-Rao bounds [12]. The latter requires a pre defined mathematical
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representation, the estimator. Our suggestion aims at obtaining the maximum
amount of information without enforcing a particular feature representation.

2 Theory

The mutual information (originally termed rate of transmission) between to
signals relates directly to the entropies involved and can be estimated from the
joint signal statistics [11]. Using a Gaussian signal+noise source model, which is
a quite reasonable starting point in the present context, the estimate is directly
related to the canonical correlation between two signals, a and b, and is given
in bits by:

Iab = −1

2
log2

(
[Caa||Cbb|

|C|
)

where C =

(
Caa Cab

Cab Cbb

)
(1)

and C.. are covariance matrices. For the one-dimensional case this reduces to:
Iab = − 1

2 log2(1 − ρ2ab), where ρab is the correlation between the two variables.
This expression can also be used to estimate the information from a single signal
by measuring the correlation between the signal with and added noise realization
and the same signal without noise. In order to obtain an estimate of a local
information based q-space metric we can compute the information gain, IΔ,
from measuring in a second q-space location, qb, given that we already have a
measure at a first location, qa. IΔ is obtained as the information due to the second
measurement alone minus the mutual information between the two measured
signals, i.e. the information that is already present due to the first measurement:

IΔ = Ib0b − Iab =
1

2
log2

(
1− ρ2ab
1− ρ2b0b

)
(2)

In this expression b0 is the true, noise free, source signal at the second location.

It can be noted that equation (2) will give IΔ = 1
2 log2

(
2 SNR+1
SNR+1

)
if the second

measurement is taken at the same location as the first. For reasonably high
SNR (signal to noise ratio) this corresponds 0.5 bits or, equivalently, improving
measurement SNR by

√
2 (3 dB).

It should also be noted that the Gaussian and additive assumptions are not
crucial since mutual information between two variables is a monotonically in-
creasing function of the correlation even in highly non-Gaussian and non-additive
cases [13].

3 Method

To obtain the statistics of the q-space signals we generate a large number of
q-space response examples. Using these examples correlation estimates between
any two q-space locations, as well as correlations between different instances of
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the same location, can be estimated. From these correlations the added infor-
mation from measuring in a second q-space location, given a first measurement
in any other location, can be found. The fact that each voxel in will contain a
huge number of different propagators determining the q-space signals, and that
a substantial intra voxel variation in propagator size and shape can be expected,
makes it natural to use a Gaussian as a first approximation of the q-space re-
sponse magnitude.

Fig. 1. The upper row illustrates three archetypal average propagator distributions.
The plots show iso-surfaces of the Gaussian examples with centers distributed evenly
in a volume of tissue. From left to right is shown: Allsorts - Varying in orientation,
shape and size (Left). Round - Almost spherical propagators of varying in size (Center).
Stick - Highly anisotropic only varying in orientation (Right). For each distribution the
bottom row shows Ia0a(‖q‖), the amount of information that is given by the first
sample at a given radius in q-space.

The example generator was set to produce 3D Gaussian q-space responses
having one long axis and two equal short axes. All generated distributions had
300 different long axes orientations evenly distributed to cover all 3D orienta-
tions. The size of the average propagators was also varied. The total number of
the propagator examples of a given ’tissue volume’ was set to vary as the in-
verse of the volume, i.e. the total volume of the smaller propagators was equal to
the total volume of the larger propagators. The average size of the propagators
was set to vary logarithmically in the specified range. The ratio between the
long and short axes was also set to vary logarithmically in the specified range
while keeping the propagator volume constant. The intention is to study a few
archetypal situations that can be easily understood, not to mimic real tissue. A
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multitude of approaches for modelling biological tissue have been put forward
and such models can readily be incorporated in the present framework. Doing
so is, however, beyond the scope of this paper.

Listed below and shown in figure 1 are the three different distributions gen-
erated to study the effects different average diffusion propagator distributions
will have on the q-space sampling metric. All three generated distributions are
rotation invariant. Also note that the individual spatial propagator positions are
not important for our analysis.

Allsorts - Long/short axis ratios from 1 to 10 and volumes from 0.5 to 2.

Round - A long/short axis ratio of 1.15 and volumes from 0.22 to 4.5.

Stick - A long/short axis ratio of 10 and volumes from 0.5 to 2.

The lower part of figure 1 shows the information given by the first sample as
a function of q-space radius. The q-space radius refered to in the present work
is a relative entity, the relation to physical q-space depends on scanner setup
and actual noise levels. That the information decreases with q-space radius is a
consequence of the diminishing average signal energy present for all three distri-
butions (and for all reasonable other distributions).

4 Results

The Allsorts distribution: Figure 2 shows the result of the estimated q-space
metric for the Allsorts distribution. The lilac colored iso-surfaces show the 3D
q-space locations where the information gain from a second sample, given a first
sample in the center (yellow), reaches ΔI = 2 bits. Results for five different radii
(0, 0.25, 0.5, 0.75 and 1.0) of the first sample are shown. The radii were chosen to
highlight the typical information gain behaviors that will be present in different
parts of q-space. Since the setup is rotationally invariant the results will be the
same along any axis through the origin. The upper plot shows iso-surfaces along
four different directions in one octant of q-space and is intended to demonstrate
that the metric is rotation invariant. The lower part of figure 2 shows the five
results obtained for the initial point located at different positions on the x-axis.
A short summary of the situation at different q-space radii, r, is given below:

– At r=0: The second sample must be moved quite far from the first to gain
more information, i.e. very sparse sampling is needed, a sample at q=0 picks
up most of the information available at the center.

– At r=0.25: The information gain now quickly increases in an approximately
isotropic fashion when the second location is moved away from the first. This
indicates that a relatively dense sampling is preferable here.

– At r=0.5: The situation resembles the previous one but a slight anisotropy
of the 2-bit iso-surface can be noted. The second sample has to be moved
further in the radial direction than in an angular direction to give the same
information gain.

– At r=0.75: The anisotropy is becoming more pronounced indicating that
moving the second location in the angular direction is clearly preferable to
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Fig. 2. Figure showing the result of the estimated q-space metric for the Allsorts dis-
tribution. The lilac colored iso-surfaces show where the information gain from a second
sample, given a first sample in the center (yellow), reaches ΔI = 2 bits. The figure
shows the results for five different radii of the first sample. The upper plot shows one
octant of q-space and is intended to demonstrate that the metric is rotation invariant.
The lower plot shows only the cases where the first sample is on the x-axes. The multi
colored surfaces show the information gain when moving the second sample away from
the first, the gain in bits is indicated by the numbers 1-4 on the upper part of the
y-axis. The iso-contours on the x-y plane below are drawn for every 0.5 bits.
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Fig. 3. Figure demonstrating the estimated q-space metric dependence on the prop-
agator distribution. The upper plot shows the result for the Round distribution. The
lilac colored iso-surfaces show where the information gain from a second sample, given
a first sample in the center (yellow), reaches ΔI = 1 bit. The lower plot shows the
result for the Stick distribution. Here the iso-surfaces are drawn at ΔI = 2 bits. For
both plots the iso-contour line are drawn 0.5 bits apart.
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a change in radius. The volume enclosed by the iso-surface is also larger
indicating that a less dense sampling is needed. The sampling distance in
the radial direction should be lower than that in the angular direction.

– At r=1.0: The iso-surface now takes the shape of a cone implying that
the information gain is largest when moving simultaneously inwards and
angularly. This is due to that the SNR at this radius quickly decreases with
increasing radius due to loss of signal strength.

The Round and Stick Distributions: By studying distribution that are
individually more uniform and ’removed’ from the Allsorts distribution in two
different ways further insights can be gained. The plot at the top of figure 3
shows the results when using the Round distribution and below the results from
using the Stick distribution is plotted. Comparing the two results the following
can be noted:

– At r=0: In both cases the second sample still must be moved relatively
far from the first to gain more information. This effect is very pronounced
for the Round distribution and the plots indicate that the second sample
most be moved roughly four times as far as for the Stick distribution to gain
the same amount of information. (Note that the iso-surfaces are drawn at
different levels, ΔI = 1 bit and ΔI = 2 bits.)

– At r=0.25: Here the difference between the two distribution is even bigger.
For the Round distribution very little is gained by by displacing the second
sample angularly, the preferred displacement direction is clearly radial. In
contrast the information gain increases very quickly in an isotropic fashion
for the Stick distribution.

– At r=0.5 and r=0.75: The situation resembles the previous one but an
increasing anisotropy of the 2-bit iso-surface can be noted for the Stick dis-
tribution. The second sample has to be moved further in the radial direction
than in an angular direction to give the same information gain. A common
feature is that the information gain vs displacement distance is decreasing
for both distributions with increasing q-space radius.

– At r=1.0: The Stick distribution iso-surface now takes the shape of an
open cone implying that the information gain is largest when moving simul-
taneously inwards and angularly. For the Round distribution the iso-surface
almost becomes a plane. This indicates that we are close to a radius were
higher information gain can only be obtained by moving towards the center,
we are approaching the information ’edge’ of q-space.

A general difference that is globally present is that it that the average infor-
mation gain from a second sample is much lower for the Round distribution than
for the Stick distribution. This is, most likely, a consequence of that the former
distribution has a lower overall variability, i.e. lower entropy.

5 Discussion and Conclusion

Although the interpretation of the results may be accordance with the gut feeling
of some experienced researchers in the field we believe that our analysis provides
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a novel view allowing a quantification of said feeling. Our analysis also stresses
the fact that the actual average propagator distribution in the targeted tissue has
a major effect on what is the optimal q-space sampling strategy. In many cases
tissue models can be employed and educated guesses can be made regarding the
average propagator distribution present. In such cases the presented analysis can,
for example, be used to find parameters for the 3D q-space sample distribution
scheme described in [10]. In this way full q-space sampling, optimal with respect
to a given expected distribution of diffusion propagators can be produced. This
will also allow tuning of q-space distributions to maximize resolution for targeted
tissue features.
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