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Abstract. Segmentation and parcellation of the thalamus is an impor-
tant step in providing volumetric assessment of the impact of disease
on brain structures. Conventionally, segmentation is carried out on T1-
weighted magnetic resonance (MR) images and nuclear parcellation us-
ing diffusion weighted MR images. We present the first fully automatic
method that incorporates both tissue contrasts and several derived fea-
tures to first segment and then parcellate the thalamus. We incorporate
fractional anisotrophy, fiber orientation from the 5D Knutsson representa-
tion of the principal eigenvectors, and connectivity between the thalamus
and the cortical lobes, as features. Combining these multiple information
sources allows us to identify discriminating dimensions and thus parcel-
late the thalamic nuclei. A hierarchical random forest framework with a
multidimensional feature per voxel, first distinguishes thalamus from back-
ground, and then separates each group of thalamic nuclei. Using a leave
one out cross-validation on 12 subjects we have a mean Dice score of 0.805
and 0.799 for the left and right thalami, respectively. We also report over-
lap for the thalamic nuclear groups.

Keywords: Brain imaging, diffusion MRI, magnetic resonance imaging,
machine learning, segmentation, thalamus parcellation.

1 Introduction

The thalamus is a sub-cortical gray matter (GM) structure in the brain of verte-
brates that is symmetric in the midline and located between the cerebral cortex
and midbrain [18]. Its principal function is the relaying of sensory and motor
signals to the cerebral cortex [18] and the regulation of consciousness, sleep,
and alertness. The thalamus consists of lamellae—myelinated fibers—which sep-
arate the thalamus into its components and are grouped based on the orienta-
tion and location of distinct clusters of neurons. The most well known of these
thalamic nuclear groups are the anterior nucleus (AN), medial dorsal (MD),
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ventral (VNG), pulvinar (PUL), lateral geniculate (LGN) and medial genicu-
late (MGN)—though each of these groups is made up of several smaller bundles
of fibers. These nuclear groups are differentially affected in neurodegenerative dis-
eases such as multiple sclerosis [8], Alzheimer’s disease [4], schizophrenia [6,10],
and Parkinson’s disease [12]. Unfortunately, much of our understanding of the
thalamus has come from neuropathological ex-vivo studies [6,10,12] which is not
surprising considering that thalamic nuclei present minimal contrast in conven-
tional MRI. Diffusion tensor imaging (DTI) presents a greater opportunity to
unlock the secrets of the thalamus, as distinct tract connectivities and cytoar-
chitectures [16] provide a platform to distinguish the nuclear groups in-vivo.
However, the exclusive use of DTI would make it impossible to distinguish the
thalamus from other adjacent structures.

Previous work [11,14,17,20,23,24] has been limited to methods dependent on
some level of manual interaction. This work presents two innovations: 1) it is the
first fully automatic multi-modal thalamus segmentation algorithm, and 2) it is
also the first fully automated thalamic nuclei parcellation—into AN, MD, VNG,
PUL, LGN, and MGN—using tensor-based features within the thalamus and
cortical connectivity features derived from tractography. Our method starts by
generating an estimate of the region of interest (ROI) of the thalamus. Within
this ROI, features are computed, including diffusion tensors and their principal
directions and probabilistic connectivities between each voxel and lobar labels
on the cerebral cortex. These features are used in a hierarchical random for-
est (RF) classifier framework, where the first RF segments the thalamus within
the ROI, and a second RF identifies the collection of nuclear groups. The method
is tested against manual delineation and its two phases (thalamic segmentation
and nuclear group identification) are compared to other methods.

2 Method

2.1 ROI Identification

To reduce the computational burden of training an RF we estimate bounding
boxes for the left and right thalami, denoted BL and BR respectively. These
ROIs are identified using a tissue segmentation and labeling approach based
on topology preservation and fuzzy classification [1]. For voxel j with spatial
position xj in the image domain Ω and with MR intensity Ij , there are functions
ujk which represent the membership of the voxel with respect to structure k. The
structures k have an intensity centroid of ck. We introduce rjk as a penalty term
that discourages unrealistic configurations such as the thalamus touching the
cerebellum. We have prior probabilities pjk coming from a statistical atlas and
weights wkm on the intensity difference between the centroids of two classes ck
and cm. These terms are combined to form the following energy minimization
problem,
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∑
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where q is a fuzziness parameter. The first term, on the right hand side of Equa-
tion (1) ensures voxels in the same structure have similar intensity values, while
the second term controls the smoothness of the memberships, and the final term
regulates the influence of the prior probability. β and γ are weights that balance
the relative influence of the terms. The energy is minimized while simultaneously
maintaining the topological arrangements of the objects achieved through max
membership assignment.

Given a fuzzy segmentation estimate of the left thalamus TL, BL is defined as

BL = {xj |(lL − rL) ≤ xj ≤ (hL + rL),xj ∈ Ω} (2)

where lL = argminxj∈TL
xj , hL = argmaxxj∈TL

xj , and rL = 0.1 × (hL − lL),
which pads TL by 10% along each axes. This process is repeated for BR from
its corresponding fuzzy segmentation TR. Henceforth, when we refer to B it is
implied that the process is repeated for both BL and BR, independently.

2.2 Knutsson Space and Edge Maps

DTI is acquired from diffusion weighted MRI, using a gradient spin echo pulse
sequence with a known b-value b and gradient direction g. The diffusion signal,
S(b,g), at each voxel is an attenuated version of the signal S0 that would be
recorded in the absence of diffusion weighting. The relationship can be specified
using the Stejskal-Tanner equation,

S(b,g) = S0e
−bgTDg (3)

where D is the 3× 3 symmetric diffusion tensor,

D =

⎡

⎣
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎤

⎦ = [u1 u2 u3]

⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ [u1 u2 u3]
T
. (4)

The eigenvalues (λ1, λ2, λ3) from Equation (4) have eigenvectors (u1,u2,u3).
Two common quantities computed from the eigenvalues are the mean diffusiv-

ity (MD) and fractional anisotrophy (FA), denoted M and F , respectively. The
principal eigenvector (PEV) u1 represents the direction of maximum diffusion.
As the diffusion occurs either in the direction of u1 or in the opposite direction
−u1 with equal probability, it is convenient to represent the direction u as an
orientation using the Knutsson map [15], which transforms the eigenvector u
from S

2 to K ⊂ R
5 by

K (u = (u1, u2, u3)) =

(
u2
1 − u2

2, 2u1u2, 2u1u3, 2u2u3,
1√
3

(
2u2

3 − u2
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2

))
.

(5)
This mapping takes opposing Cartesian vectors and sends them to the same
location in Knutsson space K—that is both length and direction are crushed in
the transformation to K. We can now generate an edge map using orientations
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(a) (b) (c) (d) (e) (f)

Fig. 1. Shown are (a) the MPRAGE I, (b) the FA F , and (c) the edgemap ‖G‖F .
Thalami estimates from (d) FreeSurfer [9], (e) our method (OM 18F), and (f) a manual
delineation.

in K. For v = (v1, . . . , v5) ∈ K we have the gradient matrix G and its Frobenius
norm ‖G‖F given by

G(v) =
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This is an edge map representing a change in the direction of the PEV, which
will allow us to distinguish thalamic nuclei.

2.3 Connectivity to the Cortical Mantle

Connectivity to the cortical mantle is calculated using probabilistic tractogra-
phy [3] implemented in the FSL toolkit. Six cortical masks corresponding to
thalamic connection sites are used as the targets for the tractography algorithm.
Ml is the set of voxels in a cortical mask and l is the cortical mask label. The six
labels for the cortical masks are {frontal, occipital, parietal, temporal, precentral,
postcentral}.

Connectivity Cl(x) is defined as the number of times a sample starting at the
voxel x forms a pathway connecting to any voxel y belonging to the cortical
mask with label l,

Cl(x) =
|{y|∃x → y ∈ Ml}|

|Ml|
. (7)

5000 samples are initiated per voxel in B and the path direction is determined
by local fiber directions.

2.4 Features and Random Forest Framework

The first features input into our RF framework are the relative position of xj ∈ B
and the MR intensity value at xj , Ij . These intensities provide clues about the
boundary of the thalamus with non-thalamus structures. The core distinguishing
features of the nuclear groups are fiber orientation and strength. Thus the next
set of features are the FA, MD, Knutsson mapping, and Frobenius norm, denoted
as Fj ,Mj, {K(xj)}, and ‖G(K(xj))‖F , respectively. The final features are the
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WHOLE THALAMUS SEGMENTATION
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Fig. 2. A comparison between our thalamus segmentation (OM 18F) and those of
Bazin and Pham [1] (TOADS) and Dale et al. [9] (FreeSurfer 5.3.0). The notches give
a 95% confidence interval for the difference in two medians.

connectivity between the position xj and the six cortical labels (i.e., the Cl(xj)’s),
denoted {C(xj)}. The complete feature vector fj is

fj = (xj , Ij , Fj, Mj , {K(xj)}, ‖G(K(xj))‖F , {C(xj)}) (8)

which gives us an 18-dimensional feature space.
Our hierarchical RF [5] approach uses fj for each voxel in the available training

data to build a collection of trees that first distinguishes the thalamus within B
from other tissues. This is a binary classification task identifying thalamus from
background. A second RF is then built using the same feature vector, trained to
provide a membership for each of the six thalamic nuclear groups given that we
know the thalamus from the first stage. The first stage thalamus identification
can be quite noisy due to peripheral objects have a thalamus-like appearance.
To reduce this artifact, we select the largest connected component foreground
object which we then close with a 3× 3× 3 structuring element. The learnt RFs
can be applied to a new subject, with the classification scores determining the
segmentation of the thalamus and subsequent parcellation of the nuclear groups.

3 Results

3.1 Data

Our data consists of 12 subjects from a study of cerebellar ataxia. The subject
images were acquired on a 3T MR scanner (Intera, Philips Medical Systems,
Netherlands) and have undergone standard neuroimaging processing: inhomo-
geneity correction [19], skull stripping [7], isotropic resampling [22] to 0.828 mm,
distortion correction [21], and probabilistic tractography [13]. A subject is shown
in Fig. 1 showing some of the input contrasts. We refer to our method as OM 18F,
as in our method using 18 features.

A manual rater first used the FA to find the thalamus boundary, then used the
Knutsson edge map to delineate nuclear structures that we identify as the AN,



174 J.V. Stough et al.

NUCLEAR GROUPS COMPARISON

AN+MD
L R

VNG
L R

PUL
L R

AN
L R

MD
L R

LGN
L R

MGN
L R0.0

0.2

0.4

0.6

0.8

1.0
D

IC
E

C
O

E
FF

IC
IE

N
T

OM 18F
L
R

BEHRENS
L
R

Fig. 3. The plot on the left is a comparison of the Dice score between our implemen-
tation of Behrens et al. [2] (B) (shades of brown) and our method (OM 18F) (shades
of green), see the text for details. On the right is the remaining nuclear groups we
can generate. Both plots are for our 12 subjects. Results for left and right thalami
are denoted L and R, respectively. The notches give a 95% confidence interval for the
difference in two medians.

MD, PUL, LGN, and MGN nuclei. VG is the complement of these structures,
within the thalamus boundary. We use these reproducible manual delineations
as a ground truth for our training and testing.

3.2 Thalamus Boundary

Our first results compare our estimate of the thalamus with those from two whole
brain segmentation software tools [1,9]. We used leave-one-out cross-validation
to train both our RFs, the results are averaged over the different cross-validation
runs and Dice scores are shown in Fig. 2. A paired Wilcoxon rank sum test com-
paring our method with Bazin and Pham [1] (TOADS) had a p-value < 0.001 for
both the left and right thalami (computed independently), indicating significant
improvement. A similar test between our method and Dale et al. [9] (FreeSurfer)
gives a p-value < 0.001 for the right thalamus; however for the left thalamus the
p-value is 0.00684, which is just shy of statistical improvement. We note that in
this stage, as in the next, there are two RFs one for the left thalamus and the
other for the right stemming from BL and BR, respectively. Example results and
comparison to our ground truth is shown in Fig. 1.

3.3 Thalamic Nuclei Segmentation

The second step in our hierarchical RF framework distinguishes thalamic nu-
clei assuming that the thalamus boundary is known from the first stage. The left
and right thalami were those identified in Section 3.2, which were passed through
their respective trained RFs to predict the nuclear groups. We also implemented
an automated algorithm based on Behrens et al. [2], which used only the cortical
labels to parcellate the thalamus. The fiber groupings in Behrens et al. [2] are
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(a) (b) (c) (d)

Fig. 4. Shown are axial slices of (a) a manual delineation and (b) our parcellation for
a right thalamus on one of our better results and (c) a manual delineation and (d) our
parcellation of a left thalamus for a bad result. The AN is shown in a slate blue anterior
to the thalamus, the VNG is the large blue body in the center of the thalamus, while
MD and PUL are shown in purple and orange, respectively.

different to ours, thus for comparison we merged AN & MD (AN+MD). Behrens
et al. [2] also excluded LGN and MGN from their parcellation. The compara-
ble nuclear groups—AN+MD; VNG; PUL—are shown in Fig. 3, as well as the
additional nuclear groups we can parcellate. A paired Wilcoxon rank sum test
comparing the results has a p-value < 0.001 for the VNG and PUL on both
thalami. We fail to reach significance when comparing for AN+MD, because
we train for AN and MD separately; training on the merging of these groups
would perform better. Examples of our parcellation for two subjects are shown
in Fig. 4.

4 Conclusion

In this paper we have presented the first fully automatic thalamic parcellation
method using multi-modal imaging data, and we make two important contribu-
tions. Firstly we use a multi-channel framework to segment the thalamus—the
first such method. Secondly, we provide a parcellation of the six core nuclear
groups of the thalamus in a fully automated fashion.
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