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Abstract. We present a framework for registering cortical surfaces based on
tractography-informed structural connectivity. We define connectivity as a con-
tinuous kernel on the product space of the cortex, and develop a method for esti-
mating this kernel from tractography fiber models. Next, we formulate the kernel
registration problem, and present a means to non-linearly register two brains’ con-
tinuous connectivity profiles. We apply theoretical results from operator theory to
develop an algorithm for decomposing the connectome into its shared and indi-
vidual components. Lastly, we extend two discrete connectivity measures to the
continuous case, and apply our framework to 98 Alzheimer’s patients and
controls. Our measures show significant differences between the two groups.
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sis, Data Fusion.

1 Introduction

With the advent of diffusion MRI, and the wealth of information contained within this
modality, the subject of fusing structural connectivity information with anatomical
knowledge has seen tremendous development. This fusion is straightforward if we
restrict our diffusion analysis to summary voxel-wise measures such as Fractional
Anisotropy (FA) or Mean Diffusivity. The problem becomes more difficult when we
examine the connectivity information provided by tractography fiber models. Because
fibers sets are not topologically equivalent across individual brains the usual solutions
for image registration and segmentation problems cannot be trivially extended to the-
se objects. Thus, it is not obvious how to fuse them with anatomical image processing
in a straight-forward manner.

Several approaches have been proposed for fusing structural connectivity with
anatomy. Perhaps the most common of these relies on the concept of a connectivity
matrix or a graph between anatomically defined regions of interest (ROI). The
strength of a connection between each region pair is estimated by counting the num-
ber of fiber models between the two ROI’s [1]. The resulting graph can be analyzed
using the standard graph theory measures [2], which can reveal interesting global and
region-specific features of the brain’s connectome, such as its “small-worldness,”
or the degree to which the network is compartmentalized into sub-networks [2].
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Alternatively, the DICCCOLSs approach [3] seeks to identify small seed regions with-
in the cortex which contain fibers with a similar geometric signature. The idea is that
a geometric signature of the connection paths points to similar functional role across
brains. Another exciting approach clusters brain regions spectrally with only the
tractography seed regions as an anatomical prior [4].

Fiber- and anatomy-based registration fusion has also seen some development both
with surface and volumetric anatomy models. Siless et al. [5] developed a framework
based on geometric currents to drive inter-fiber set registration in combination with
T1-weighted MRI image registration. Alternatively, Petrovic [6] assumed cortical
alignment and registered thalamic surfaces based on the cortical fiber projections. In
all of these cases, the full fiber geometry plays an integral part in driving the corre-
spondence search, or some part of the brain is assumed to be perfectly aligned. The
same is true for the region identification technique of DICCOLS: structural connectiv-
ity equivalence is estimated indirectly with a brief summary measure, defined as a
histogram of orientations along the fiber. Unlike previous registration fusion ap-
proaches, we choose to apply the connectivity information supplied by the fiber mod-
el directly in a continuous registration setting, which significantly complicates the
problem. Our goal is to find a correspondence between brains so that the correspond-
ing regions are similarly connected. As in [1], we treat fiber geometry as a secondary
feature, useful only in identifying the implied connection between brain regions. In
this approach, two fibers with different geometry connecting the same pair of cortical
locations are deemed equivalent.

Extending the discrete connectivity modeling of [2] to the continuous setting, we
consider the connectome as a continuous kernel on the product space of the brain with
itself. This is a natural extension of the graph representation for the discrete case. We
treat each fiber as an instance of a connection on this space, with some possible geo-
metric error. This idea naturally leads to kernel density estimation on the connectome
space based on the set of fibers. Next, we would like to find a smooth non-linear in-
vertible spatial warp that minimizes the difference between two brains’ connectomes.
Direct optimization of this problem poses a significant computational challenge. In-
stead, we decompose the kernel into its corresponding eigenfunctions, here called
“eigen-networks,” and use Mercer’s Theorem for kernel matching and reconstruction.
This convenient decomposition allows us to estimate the shared and subject-specific
components of the connectome prior to registration, while the minimization problem
is reduced to the usual multi-channel registration on the original domain of the cortex.
We restrict our search to cortico-cortical and cortico-thalamic connections, which
allows us to use the white matter boundary surface of the cortex to compactly repre-
sent the domain of the brain. Finally, we propose two continuous graph theory
measures based on their discrete equivalents, and compute group differences between
48 Alzheimer’s patients and 50 control participants from the ADNI cohort.

2 Continuous Connectome Estimation

We define the continuous connectome as a symmetric non-negative real-valued func-
tion K:C=0QxQ - R" by (x,y) — K(x,y) from the product space of the corti-
cal domain to the non-negative real numbers. K(x,y) represents the strength of the
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connection between the points x and y in the brain. As we are dealing with cortical
surface models, our cortical domain is itself a mapping from the two-sphere into
space: Q = M:S? - R3. Since we perform our registration parametrically on $2, and
because our M is diffeomorphic and area-preserving [7], we may equivalently set
Q = S$? for convenience. While we do not have sufficiently resolved data to compute
the true fiber-based connectivity, except using the coarsest resolution, we can apply
the standard kernel density estimation. In this approach, we treat each fiber model as a
representation of potentially many true fibers, with some possible error in its place-
ment in the space C. Given Npyes fiber models, we project the two ends of each

model onto the gray-white matter boundary, resulting in sets of point pairs {pil, p;},
discounting fibers that do not have both ends sufficiently close to the boundary. We
apply the product of two Gaussian kernels on 2, [8] G,: §? x §? > RY, resulting in
our non-local connectome estimation:

Knon—local(x' Y) = Z Ga(x' pi) Ga(pé' Y)- (1)
1=i5Nfibe'rs

The parameter o is set empirically so that the spherical area within the half-

maximum of G, is equal to
fibers

An aspect of brain connectivity which does not arise in the discrete approach is the
modelling of local connections. Because tractography fiber models do not capture
local connections at our cortical mesh resolution, we estimate local connectivity based
on cortical geometry alone. We set local connectivity as

Klocal(x' Y) = Ga(x' Y)- (2)

A brief literature search [9] suggests we a golden ratio of local to global connectivity
at Ry = 1/3. Thus, we set the complete connectivity kernel as

”Knon—local ”)
”Klocal ” '

1

K= —
Nfibers

<Knon—local + RgKlocal (3)

where ||K|| = (ffCK(x.)’)zdxdy)l/z-

3 Kernel Registration

Given two connectomes K; (x,y), K,(x,y), we assume that K; and K, differ from
their mutual connectivity profile by a scale s, a smooth invertible warp f: Q — Q and
an additive individual component:

K12, mutual(x' Y) = S [Ki (fl [x]vfl[)’]) - Ki, indiv(fi[x]rfi[y:l)] . (4)

For convenience, we set f; = Id. The kernel norm defined in the previous section
suggests a cost function analogous to the L2 fidelity in image registration:
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C(Ky, Ky f) = f fc K; o) — Ko(FIx], FIYD] 2 dxdy )

There are two issues with this formulation. First, while we have scaled the full kernels
identically, we cannot know that their mutual connectomes will have the same scale.
Second, a direct optimization of (5) is computationally expensive, as every point up-
date requires full domain integration. Instead, we would like to estimate the mutual
and individual components of the kernels prior to registration, while decoupling the
two instances of f[x] in (5). To this end, we decompose the kernels into the
eigenfunctions, or “eigen-networks,” of their linear operators, Ae; = A;e;, where
Afly]l = fQK (x,¥)f(x)dx. According to Mercer’s Theorem [10], we can recon-
struct a symmetric positive definite (SPD) kernel by K(x,y) = X; ;e;(x)e; (¥).
This well-known result from operator theory provides an unexpected utility towards
solving the kernel registration problem. To use it, we must only satisfy the SPD con-
dition, which can be done by setting K (x,x) = fQ K(x,y)dy.

Since we assume that K;; ¢4 18 itself SPD, we can make the assumption in
(4) slightly stronger, asserting that the eigen-networks of Ki, e and K; inaiy
are orthogonal. On the other hand, because our non-linear correspondence search is
local, we assume that some spatial overlap between the corresponding eigen-networks
of Kip mutum and those of K; and K, must already exist. Note that a similar as-
sumption is prevalent in standard non-linear registration algorithms. This allows us to
estimate the mutual connectome by projecting the eigen-networks of the target
connectome onto the corresponding invariant subspaces of the moving template
connectome. We estimate the likelihood that for some small f, the transformed net-
work of A;, f * e}, belongsto A, by

(Azeil'eil)

P[{f = el}e spectrum(4,)] = 2
[|4ze |

(6)

where (g, h) = fQ gh. For networks passing a threshold, we estimate their eigenval-

(Aze}l, Azel)

(Azel, el)’

fined by w. Via this process, we identify the set of mutual eigen-networks of the
: — (1 L2

target and the moving template connectomes, Ey = {eik, e Wk}.

ue for A, as w = and project e} onto the invariant subspace of A, de-

A major difference between spectral decomposition of matrices and infinite-
dimensional operators relates to eigenvalue multiplicity. In particular, it is possible to
have non-isolated eigenvalues, and infinite-dimensional invariant subspaces. Howev-
er, because our operator kernels are finites sum of weighted basis functions, we can
say that the operators are finite-rank, and therefore necessarily compact [10]. This fact
has a nice practical implication: the multiplicity of the eigenvalues is at most counta-
ble with the only possible limit point at 0. This means that any neighborhood
N.(w), w > €, contains a finite number of eigenvalues counting multiplicity, which
makes step 1 in the following search feasible even in the true continuous case:
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Algorithm 1 (mutual connectome estimation)
Given SPD kernelsK;, K,, their corresponding operators A, A4,
and the ordered spectral decompositions {eil,A%}, {e Az} set

i
mutual networks Ey ={ei1k,e}i,wk}=NULL. k=1

For i=1:N
Compute P‘@ (6)
llazef|
if(P > P_tol)

2
e; _ 2
T,l)’ set Ei = {e]

1’7

1. Set w= /1§+w

Project e} onto span{E;}, epro; = Projspanieyel

2 —W_w' < E}

if(||epmj|| > proj_tol)

3. €proj = eproj/||eprol|
_ 2 2 2 _
4. n= maxj{(epmj, e’) | e € E;}, set eZ= €proj
5. Re-orthonormalize E;, starting with e?2
6. Estimate new eigenvalues Af = ||Azej2 |, ejz € E;
7. Wi = ﬂﬂ.zﬂ.l lk=l jk=7’l
8. Insert (elk, Jk,Wk) into Ey, k =k + 1
endif
endif

end
Return Ey

The mutual connectome can now be estimated as Kip myma(X,y) =
elcEn Atel (x)e} (y)e}. Finally, we define the mutual connectome mismatch cost:

C(Em. f) = f Z wi ek o) — e (FLxD|” d. @

‘k elk wk) €EEym

The solution of this functional is straightforward, and has been described elsewhere. It
is worth noting that the gradient direction (7) is invariant to kernel scale, as it is based
on normalized eigen-networks. As our parametric domain is $?, we use a recent
spherical fluid registration algorithm [7], incorporating mean and Gaussian curvature
mismatch in addition to (7). In this way we combine anatomical and connectivity
information, registering brain connectivity structure directly across subjects.

4 Continuous Connectomics

Use of graph theory in brain connectivity studies has exploded in recent years; to this
end, we contribute two weighted continuous analogues of the nodal degree and clus-
tering coefficient measures [2]. Nodal degree, defined for discrete weighted graphs as
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kq(x) = Xyeq, Ka (x,¥), where the subscript d means the discrete analogue of previ-
ous definitions, is defined here as the connectedness map

k(x) = fK(x,y)dy = K(x, x). (8)
Q

2tq(x)
kap () (kgp(x)-1)’
is the binarisation of kg, and tq(x) = Xy ,eq,[Ka(x, ¥)Ka(x, 2)K4(y,2)]*/? is the

geometric mean of triangles. Our analogue geometric triangle mean is defined as

The discrete clustering coefficient is defined as C,;(x) = where kg,

() = f fe [K G, y)K (6, 2K (v, 2)] dydz, ©)

and the analogue of kg, is defined as the area of k’s support:

2t(x)

Ck) = (10)

[yeaikiaso dy]z.

5 Implementation

Our cortical surfaces are extracted with FreeSurfer, and mapped into correspondence
on $? by registering mean and Gaussian curvatures [7]. Tractography is performed
by the Hough transform method [11], with fibers thresholded for length, resulting in
8-10K fibers. About 90% of these pass the threshold for interior ends being sufficient-
ly close to the white matter surface, set at 10 mm. Connectome kernels are projected
onto an equiangular spherical grid, with roughly 16.5K vertices per hemisphere, or
33K total. We use the Galerkin method [12] to estimate the eigen-network. The
Galerkin method reduces an operator eigenvalue problem to a finite matrix problem,
projecting the operator onto a finite set of basis functions. Our basis functions are the
step functions defined by the equiangular sampling. We compute up to N eigenvalues,
where N is the minimum number needed to approximate the kernel within a tolerance:
tol < ||K — Kyll/IIKIl, Kn(x,y) = XienAiei(x)e;(y). We ignore the diagonal for
this computation, as incorporating it gives optimistic error estimates.

We concede that a continuous formulation on paper often leads to the same imple-
mentation as a discrete one. In this case, though, the continuous formalism leads to a
basic implementation difference: the area weights of the samples are taken into con-
sideration. This is true both for the eigenvalue problem, which becomes generalized
by the area matrix, and for continuous connectivity measures. In the latter case, we
can think of the approximate kernel as a large weighted graph, with weighted nodes.

6 Experiments

We applied our method to 98 ADNI images. The participants were 48 AD patients
and 50 controls. We chose an additional representative control subject to serve as the
target. Following anatomical registration, we computed the connectome kernels and
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Fig. 1. Corrected p-maps for AD-NC difference in (A) clustering coefficient (10), and (B)
connectedness, a.k.a. continuous nodal degree (8). Although it is mostly occluded, the left
medial temporal lobe contains the most significant differences.

spectral decompositions of each subject. Each kernel had around 60M non-zero en-
tries, making the connectome roughly 95% sparse. We set the kernel approximation
tolerance at 0.1, requiring between 800 and 1200 eigen-networks. Approximately one-
third of the target networks were matched to each moving kernel, depending on the
participant. This set of networks was then registered to the target’s while maintaining
low curvature mismatch for anatomically correct correspondence, taking roughly 30
minutes for full combined connectivity registration.

In the first experiment, we computed the change in kernel mismatch, using
both full and mutual network sets for kernel approximation. Results are displayed in
Table 1, showing improvement in connectome alignment due to connectivity registra-
tion. In the second experiment, we performed a mass-univariate t-test over the cortical
surface comparing connectedness and clustering coefficient maps between AD and
control participants. Both measures passed False Discovery Rate (FDR) correction.
FDR threshold for connectedness was q = 1.0x10- for the right hemisphere, and q =
1.9x10- for the left. For clustering coefficient, g = 1.7x10-3 for the right hemisphere
and q = 2.5x10* for the left. In a related experiment, we made the same comparisons
based only on anatomical registration. While the uncorrected p-maps were similar,
right hemisphere connectedness and left clustering coefficient did not pass FDR. This
suggests improved sensitivity due to the connectome registration. Corrected p-maps
of these tests are displayed in Figure 1.

7 Conclusion

We have presented a framework for fusing connectivity information with cortical
surface anatomy for a joint analysis. There are four distinct contributions: (1) the
definition of a continuous connectome space and a method for estimating continuous
kernels from fiber models; (2) an algorithm for defining a mutual connectome shared
by two brains; (3) a spatial correspondence search between two connectome kernels,
directly registering the brains’ structural connectivities; (4) an adaptation of graph
theory measures to the continuous setting. The final result is a pipeline for joint corti-
cal surface and connectivity analysis that opens an exciting new way to explore the
brain. Future work will ground our connectome estimation more strongly in biological
knowledge and connect the eigen-network concept with functional connectivity.
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Table 1. Relative difference between target and moving template connectomes before (Col. 1)
and after (Col. 2) connectome registration (see section 5). Top row: full connectivity alignment.
Bottom row: joint connectivity alignment. (Mean and standard deviation of 98 subjects).

Anatomy only Anatomy + connectivity Individual improvement

Full 0.528 0.43 0.098
kernel +/-0.101 +/-0.12 +/-0.089

Mutual 0.32 0.12 0.2

kernel +/-0.082 +/-0.099 +/-0.089
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