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Abstract. The entorhinal cortex (ERC) and the perirhinal cortex (PRC) are sub-
regions of the medial temporal lobe (MTL) that play important roles in episodic 
memory representations, as well as serving as a conduit between other neocorti-
cal areas and the hippocampus. They are also the sites where neuronal damage 
first occurs in Alzheimer’s disease (AD). The ability to automatically quantify 
the volume and thickness of the ERC and PRC is desirable because these local-
ized measures can potentially serve as better imaging biomarkers for AD and 
other neurodegenerative diseases. However, large anatomical variation in the 
PRC makes it a challenging area for analysis. In order to address this problem, 
we propose an automatic segmentation, clustering, and thickness measurement 
approach that explicitly accounts for anatomical variation. The approach is tar-
geted to highly anisotropic (0.4x0.4x2.0mm3) T2-weighted MRI scans that are 
preferred by many authors for detailed imaging of the MTL, but which pose 
challenges for segmentation and shape analysis. After automatically labeling 
MTL substructures using multi-atlas segmentation, our method clusters subjects 
into groups based on the shape of the PRC, constructs unbiased population 
templates for each group, and uses the smooth surface representations obtained 
during template construction to extract regional thickness measurements in the 
space of each subject. The proposed thickness measures are evaluated in the 
context of discrimination between patients with Mild Cognitive Impairment 
(MCI) and normal controls (NC). 

1 Introduction 

Quantification of the volume and thickness of ERC, PRC and other MTL cortical 
subregions from in vivo MRI has been increasingly pursued because these structures 
play important roles in episodic memory models [1] and are the earliest sites affected 
by AD pathology [2]. However, the PRC exhibits large anatomical variability, which 
complicates quantitative analysis [3]. By examining a large sample of autopsy brains, 
Ding et al. [4] conclude that three main variants of the PRC exist, defined by mor-
phology of the collateral sulcus (CS): 1) continuous CS; 2) discontinuous CS with 
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anterior CS shorter than the posterior; 3) discontinuous CS with anterior CS longer 
than the posterior. Failure to account for this variability can degrade the accuracy of 
morphometric analysis and reduce the utility of PRC as an imaging biomarker. This 
paper provides a novel approach for automatically quantifying the thickness of MTL 
substructures while explicitly accounting for anatomical variability.  

Typically, the first step in quantitative MRI analysis is to segment the structures of 
interest, preferably automatically. However, little work on automatic segmentation of 
the PRC has been reported in the literature [5]. In this paper, we use the multi-atlas 
approach [6] in conjunction with a set of expert-labeled atlases that include labels for 
the ERC, PRC (further partitioned into Brodmann areas BA35 and BA36) as well as 
the hippocampal subfields (cornu ammonis, dentate gyrus and subiculum) to perform 
automatic segmentation. The method takes T1-weighted whole-brain scan (1mm3 
isotropic resolution) as well as a specialized anisotropic oblique coronal T2-weighted 
scan of the MTL (0.4x0.4x2mm3 resolution) as inputs, and outputs a multi-label seg-
mentation that has the same resolution as the T2-weighted image. The T2-weighted 
MRI has high in-plane resolution that allows substructures in the hippocampal region 
to be distinguished visually in the way that 1mm3 isotropic T1-weighted MRI cannot. 
Similar T2-weighted MRI scans have been used for manual segmentation of MTL 
substructures by several authors, e.g. [7,8]. 

Regional thickness measurements are often preferred to volume in morphometric 
studies of cortical structures like ERC and PRC because 1) they capture localized 
changes and 2) they are more robust to the variability of the locations of the bounda-
ries in the automatic segmentation. While there is substantial prior work on measuring 
cortical thickness in MRI [9,10], most approaches do not provide a specific PRC 
thickness measurement. The notable exception is [5], who use a probabilistic template 
derived from postmortem MRI to label and measure the thickness of the PRC in the in 
vivo MRI. However, this single-template approach does not account for the anatomi-
cal variability described by Ding et al. [4]. In this paper, we propose a thickness 
measurement pipeline that attempts to automatically discover anatomical variants 
present in the population using a combination of deformable image registration and 
spectral clustering [11]. Our work is inspired by recent applications of clustering to 
atlas propagation and group-wise image registration [12], but is distinct in that clus-
tering is applied to the output of multi-atlas segmentation rather than raw MRI data. 
The main contribution of this paper is introducing this concept in the analysis of PRC, 
which is the perfect application for this technique. 

To demonstrate clinical utility, we evaluate our technique in a dataset from a re-
search study of MCI, often conceptualized as a prodromal stage of AD, and normal 
aging. The proposed clustering-based approach yields stronger statistical power in 
discriminating the MCI patients from NC group than volumetric measurements as 
well as alternative thickness measures. 

2 Materials 

MRI scans of 83 participants (40 with diagnosis of MCI, 43 controls) from a research 
study conducted at the Penn Memory Center at the University of Pennsylvania were 
used to evaluate the proposed technique. Scans were acquired on a 3T Siemens Trio 
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scanner. MRI protocols include a T1-weighted (MPRAGE) 1mm3 isotropic whole-
brain scan and a 0.4x0.4x2mm3 T2-weighted (TSE) scan with partial brain coverage 
and an oblique coronal slice orientation (Fig 1a,b).  

Automatic segmentation for each subject was generated by applying the multi-atlas 
approach in [6] to the subject`s T1-weighted and T2-weighted scans (Fig 1c). The 
output segmentations, consist of 7 labels (cornu ammonis, dentate gyrus, subiculum, 
ERC, BA35, BA36 and CS), were then used for our proposed pipeline. 

3 Method 

Given the automatic segmentation, which has large step edge discontinuities in the 
MRI slice direction, our goal is to approximate it with a smooth surface mesh repre-
sentation that is topologically consistent across all subjects sharing the same PRC 
anatomical subtype, and from which a regional thickness map can be extracted. Our 
proposed approach consists of three steps: 1) cluster subjects into groups based on 
their PRC anatomy; 2) build an unbiased population template for each group and gen-
erate a mesh in the template space; 3) warp the mesh back to the space of each subject 
and measure thickness for each vertex on the mesh. We treat each hemisphere inde-
pendently throughout the analysis. The computational complexity of clustering and 
thickness analysis is negligible compared to multi-atlas segmentation. The detail of 
each step is described below. 

3.1 Automatic Clustering of Anatomical Subtypes  

Spectral clustering [11] is used to divide subjects into groups with similar PRC anat-
omy. Spectral clustering is a dimension reduction algorithm that projects the pairwise 
similarity relationship onto a lower-dimensional space in which anatomical variants 
can be easily separated using k-means clustering [13]. 

To compute the pairwise similarity matrix (denoted as S), we first perform pairwise 
registration between all the multi-label segmentations using ANTs affine and high-
dimensional deformable algorithms [14]. The registration minimizes the sum of mean 
square intensity difference metrics computed separately for each label. Generalized Dice 
Similarity Coefficient (DSC) [15] is computed for labels BA35 and BA36 between the 
warped segmentation of subject ݅ and the segmentation of subject ݆, and denoted as ܦ௜௝ . The underlying assumption is that after registration, overlap between multi-label 
segmentations will be greater when the pair of subjects have the same anatomical vari-
ant of the PRC than when they have different variants. In order to have a symmetric 
measurement and also exaggerate the similarity value between subjects with similar 
PRC anatomy, we compute similarity between subject ݅ and subject ݆ as: 
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where parameter σ controls the size of neighborhood in the graph (discussed below). 
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Based on S, we can construct a fully connected, undirected graph whose vertices 
are the subjects and weights are the similarity between subjects pairs. Then, the nor-
malized graph Laplacian [11] is computed as ܮ = ܶି଴.ହሺܶ − ܵሻܶି଴.ହ , where T is 
diagonal matrix with element ݐ௜௜ = ∑ ௜௝଼ଷ௝ୀଵݏ  for ݅ = 1,… , 83. The k (number of clus-
ters) eigenvectors corresponding to the k smallest eigenvalues of L can be regarded as 
the feature vectors for all the subjects in the lower-dimensional space.  

We set the number of clusters k equal to three based on Ding`s observation in his 
study [4]. By doing this, all the subjects are projected onto a sphere in ℝଷ. Subse-
quently, k-means clustering [13] is applied to divide subjects into three groups. Con-
sidering both brain hemispheres, six groups in total are generated. Since the k-means 
algorithm is randomly initialized, and may yield different partitions, we repeat  
k-means clustering 20 times and choose the partition with the highest average gener-
alized DSC between the warped template segmentation and the subject`s segmenta-
tion (will be discussed in Sect. 3.3) to be the final partition. 

3.2 Unbiased Population Averaging and Surface Mesh Generation 

For each group, an unbiased population template is constructed from the multi-label 
segmentations by applying the iterative unbiased template building algorithm [14] and 
implementing the shape averaging approach in [16]. The metric optimized in this step 
during the subject-template registration is the same as the pairwise registrations 
above. Within each group, we choose the segmentation that is most similar to the 
others in its group (based on the pairwise similarity matrix) as the initial template to 
guide the template building process. The posterior probability maps for all the seven 
labels in the template space are used to vote to get the template segmentation. 

For each group, a surface mesh is then generated for the union of the ERC, BA35 
and BA36 labels, which are the structures of interest in this paper. As shown in Fig. 1 
(d) and (e), the surface mesh is much smoother than the multi-atlas segmentation. 

3.3 Thickness Measurement 

Surface meshes are then warped back to the space of each subject using the corre-
sponding diffeomorphic field computed in the template building step. Using this 
smooth surface approximation of the previous blocky labels (Fig. 1d,e), regional 
thickness can be computed by extracting the pruned Voronoi skeleton of the smooth 
mesh [17] and measuring the distance between each surface vertex and the closest 
point on the pruned Voronoi skeleton. 

To measure how faithful the smooth template-based mesh approximation is to the 
input segmentations, we compute the average DSC between the multi-atlas segmenta-
tion of each subject and the segmentation obtained by warping the corresponding 
template’s segmentation into the space of the subject. 
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Fig. 1. Sagittal slice of T1-weighted image (a) and T2-weighted image (b). (c) Automatic seg-
mentation. (d) Blocky automatic segmentation mesh. (e) Smooth surface mesh representation. 

4 Experiments and Results 

4.1 Volumetric and Thickness Measurements 

We apply our method to the clinical dataset in Sect. 2 and measure the discriminative 
ability of the thickness measured obtained using the proposed “three-group” (TG) 
approach to three quantitative measures. As the first alternative, we measure thickness 
using a “single-group” (SG), which assigns all the subjects in each hemisphere to the 
same group, and thus does not account for PRC anatomical variation. As additional 
comparison measures, we (a) compute the normalized volume (volume of structure 
divided by its length of segmentation in the anterior-posterior direction) for ERC, 
BA35 and BA36 for both hemispheres directly from the multi-atlas segmentation and 
(b) extract a cortical thickness map from the T1-weighted MRI using an established 
method [9], and integrate this map over the ERC, BA35 and BA36 labels, which are 
first mapped into the space of the T1-weighted MRI using rigid registration. 

4.2 Results 

Among the 83 subjects, 30, 20 and 33 of them were clustered into group 1, 2 and 3 
separately for the left hemisphere. On the right, the number of subjects in group 1, 2 
and 3 are 26, 26 and 31 respectively. Fig. 2 shows the smooth meshes for all the six 
templates (three per hemisphere) from the TG approach. Group 1 templates resemble 
the continuous CS variant. Discontinuous CS is observed in group 2 and 3 which 
differ, as expected, by the relative length of the anterior and posterior CS (i.e. anterior 
CS is shorter in group 2 while it is longer in group 3). This indicates spectral cluster-
ing is able to automatically identify the three anatomical variants [7]. Fig. 2 also 
shows the meshes for SG, which look like a blend of the three meshes from TG. The 
odd shape of BA36 of the left SG template (indicated by the white circle in SG tem-
plates) is likely the result of ignoring the anatomical variation. The shapes of the tem-
plates indicate that a single template is limited in its ability to represent all subject 
segmentations well. 

To evaluate this in a more quantitative way, we compute the average DSC for 
ERC, BA35, BA36 and CS between the warped template segmentation and subject`s 
segmentation in the space of each subject, which are shown in Table 1. As can be 
observed, the TG approach yields higher overlap for all the labels except ERC. Note 
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the dramatic increase in CS overlap, which indicates the warped meshes are better 
able to represent the segmentation using the TG approach. Another observation is the 
overlap remains almost the same for ERC. This demonstrates that TG approach does 
not degrade the measurement accuracy for a relatively consistent adjacent structure. 

Table 1. Average for ERC, BA35, BA36 and CS between warped template segmentation and 
subject`s automatic segmentation using “single-group” (SG) and “three-groups” (TG) 
approaches (computed in subject space) 

 
Left Hemisphere Right Hemisphere 

ERC BA35 BA36 CS ERC BA35 BA36 CS 

SG 
0.983 

(± 0.005) 
0.954 

(± 0.015) 
0.934 

(± 0.022) 
0.591 

(± 0.151) 
0.982 

(± 0.010) 
0.948 

(± 0.014) 
0.962 

(± 0.016) 
0.666 

(± 0.123) 

TG 0.983 
(± 0.005) 

0.965 
(± 0.016) 

0.959 
(± 0.018) 

0.803 
(± 0.082) 

0.983 
(± 0.010) 

0.958 
(± 0.010) 

0.970 
(± 0.012) 

0.749 
(± 0.133) 

 

 

Fig. 2. Left and right surface meshes for SG and TG approaches viewing from superior and 
inferior. White circle shows the odd shape at the left SG template. 

To further evaluate the proposed technique`s performance in clinical applications, 
we fit a general linear model to the thickness measurements with group membership, 
age, and intracranial volume as covariates, and report the t-statistic for the NC-MCI 
contrast. We also perform ROC analysis to the outputs of the four measurement ap-
proaches and report area under the curve (AUC) for group discrimination between 
MCI and NC groups.  Intracranial volume is computed the same way as that in [6]. 
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The thickness for each label is computed by integrating thickness value for all the 
vertices on the surface mesh belong to that label. The results are shown in Table 2. 

From Table 2, it can be observed that SG and TG demonstrate stronger effects in 
distinguishing the two groups in ERC and BA35 (especially left BA35). However, 
thickness measurement using T1-weighted MRI turns out to be the best performer for 
BA36. Importantly, based on the work of Braak and Braak [2], as well as others, 
greater discrimination in ERC and BA35 is more biologically plausible given the 
earlier and greater neurofibrillary tangle pathology in these regions than BA36 [1]. 
Poorer performance in BA36 of SG and TG may result from poorer localization in the 
T1 approach. Overall, the results of SG and TG are more consistent with the known 
early pathology of this region in AD [1]. Comparing to SG, which shows relatively 
good performance, the TG approach, which accounts for anatomic variability, does 
appear to boost further the statistical power of thickness measurement. Another inter-
esting observation is the left-right asymmetry in PRC, which shows up regardless of 
how we analyze the data (volumetry vs. thickness, T1 vs. T2) and might be explained 
by a bias towards verbal memory deficits in the MCI cohort. 

Table 2. Statistical analysis results for the four measurements conducted in this paper 

Label Measurement 
Left Hemisphere Right Hemisphere 

T-test P-value AUC T-test P-value AUC 

ERC 

T1 Thickness 2.34 0.022 0.61 2.23 0.029 0.61 
Volume 2.64 0.0099 0.67 1.22 0.23 0.58 

SG Thickness 2.99 0.0037 0.66 2.75 0.0073 0.67 
TG Thickness 3.36 0.0012 0.68 2.73 0.0078 0.66 

BA35 

T1 Thickness 2.19 0.031 0.63 1.95 0.055 0.66 
Volume 4.46 2.6e-5 0.77 1.91 0.060 0.64 

SG Thickness 5.39 6.8e-7 0.82 2.31 0.023 0.67 
TG Thickness 5.58 3.1e-7 0.83 2.32 0.023 0.65 

BA36 

T1 Thickness 4.01 1.3e-4 0.73 1.44 0.15 0.60 

Volume 3.18 0.0021 0.68 -0.01 0.99 0.49 
SG Thickness 2.96 0.0040 0.67 0.70 0.49 0.55 
TG Thickness 3.32 0.0014 0.67 1.27 0.21 0.58 

5 Conclusion 

In this paper, we proposed a novel automatic clustering and thickness measurement 
pipeline for PRC based on automatic segmentation. For evaluation, we applied our 
technique to dataset of patients with MCI, often enriched in individuals with prodro-
mal AD, and NC adults. The comparison between the surface meshes for TG and SG 
approaches demonstrates that group partitioning is a critical step to deal with anatom-
ical variation within PRC, a key for accurately measuring thickness based on automat-
ic segmentation. The statistical analysis supports the notion that the TG approach 
enhances power of discrimination between MCI and NC adults compared to volumet-
ric measurement, the SG approach, and thickness measurement based on T1-weighted 
scans. As such, this method may have important utility in the early diagnosis and 
monitoring of AD, as well as providing accurate measurements to enhance brain-
behavior studies of these regions. 
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