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Abstract. Stem cell-derived cardiomyocytes hold tremendous potential for drug
development and safety testing related to cardiovascular health. The characteri-
zation of cardiomyocytes is most commonly performed using electrophysiologi-
cal systems, which are expensive, laborious to use, and may induce undesirable
cellular response. Here, we present a new method for non-invasive characteriza-
tion of cardiomyocytes using video microscopy and image analysis. We describe
an automated pipeline that consists of segmentation of beating regions, robust
beating signal calculation, signal quantification and modeling, and hierarchical
clustering. Unlike previous imaging-based methods, our approach enables clini-
cal applications by capturing beating patterns and arrhythmias across healthy and
diseased cells with varied densities. We demonstrate the strengths of our algo-
rithm by characterizing the effects of two commercial drugs known to modulate
beating frequency and irregularity. Our results provide, to our knowledge, the first
clinically-relevant demonstration of a fully-automated and non-invasive imaging-
based beating assay for characterization of stem cell-derived cardiomyocytes.

1 Introduction

Stem cell research holds enormous potential for studying and treating a wide range of
human diseases [1]. In recent years, there has been significant progress in using induced
pluripotent stem cells (iPSCs) for modeling of human disease. A promising and growing
application of iPSCs is the generation of patient-specific cardiomyocytes, which can
be used in preclinical testing of new drugs that may cause drug-induced arrhythmia
or QT prolongation, as well as post-market safety testing or re-purposing of existing
drugs [2, 3]. Due to their important clinical applications, beating characterization of
stem-cell derived cardiomyocytes is of great interest.

The characterization of iPSC-derived cardiomyocytes is most commonly performed
using electrophysiological signals measured through manual or automated patch-clamp
systems as well as micro-electrode arrays (MEA)s [4]. While considered the gold-
standard for characterization, patch-clamp methods are expensive, laborious and inva-
sive. MEA systems also require high cell plating density, and due to the direct contact
between cells and electrodes, may cause undesirable cellular response.

Several image analysis methods have recently been proposed [5-7] using the
apparent cell motion, captured by video microscopy, as an alternative to directly mea-
suring the electrophysiology of the cells. These methods have demonstrated the feasibil-
ity of non-invasive characterization of cardiomyocyte beating. In [5] and [6] a motion
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field is estimated from the intensity images and then a single one-dimensional time-
domain signal that captures the essential feature of the beating of the cardiomyocytes
is constructed. Motion field estimation, however, is not accurate when the culture lacks
enough texture, or contractions are very strong [7]. Moreover, constructing a meaning-
ful temporal beating signal from the full motion field is impossible unless the cell den-
sity is high and uniform across the culture. To address these problems, in a subsequent
work [7], an alternative approach has been proposed where images are first segmented
into a set of regions, each representing a group of cells that beat together, and a set of
features are calculated for each region. Their nearly periodic motion feature, however,
is based on an explicit assumption that the beating pattern of each region is periodic or
nearly periodic, hence limiting the applicability of the method in studying irregularities
of cell beating and arrhythmia.

Although the above works show promising results, in order to successfully capture
dynamics of cardiomyocyte beating from microscopy images in clinical setting, several
challenges need to be addressed. The method should be able to handle variations in
the culture density, ranging from sparse single-cell plating to dense monolayer plating,
and work for both healthy and diseased cell lines as well as cell cultures treated by
drugs. The plating density of cells affects the synchronicity of beating; densely-plated
cells usually beat synchronously, while sparsely plated cells can beat asynchronously
and with different frequencies for each cell. In addition, the beating pattern for healthy
cardiomyocytes is nearly-periodic (but not perfectly periodic), while the beating pattern
for unhealthy or perturbed cells can be highly irregular, and with varying contraction
forces. Finally, the cardiomyocyte population is not always pure, and can contain other
types of cells that proliferate, thereby changing the behavior and appearance of the
culture over time.

In this work, we present a new method that can reliably extract and quantify beating
signals from cardiomyocyte cell cultures. Our presented pipeline enables, for the first
time, automated extraction of quantitative parameters that are of interest in clinical re-
search from cultures with different cell density and with either regular or irregular beat-
ing patterns. The robustness of the presented method has been confirmed by successful
analysis of more than 500 videos from different cell lines, and culture conditions. As
demonstrated in this paper, our method successfully captures the impact of chemical
compounds on the beating rate.

2 Method

Figure 1 shows a block diagram depicting the steps of the proposed method. The input
is a phase-contrast image sequence {I; };—; .. n, acquired with high capture frequency
(e.g. 24 frames/sec) of a cardiomyocyte cell culture. Images are first segmented into re-
gions that consist of cells that exhibit a cyclic motion (beating cells), regions that consist
of cells that do not show a cyclic motion (non-beating cells), and background. The re-
sult is a mask, consisting of a group of regions, R,,,m = 1, ..., M, where each region
represents cells that are spaced close to each other and beat at relatively same time.
Next a beating signal is calculated for each region R,,. A raw beating signal w,, (t) is
constructed by calculating the correlation coefficient of subsequent frames over R,,. A
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Fig. 1. Block diagram of the proposed method

resting-state reference image is obtained and then a single-peak beating signal x,, (¢) is
calculated by computing the correlation coefficient of the frames and the resting-state
reference image over R,,. Subsequently, features that describe the beating signal, such
as its variation of period over time, are extracted. This is achieved by robust peak detec-
tion and signal modeling through fitting a mixture of Gaussians to the signal. Finally,
a hierarchical clustering algorithm is performed to identify regions with unique beating
characteristics and merge adjacent regions that have similar beating characteristics.

2.1 Segmentation

The first step in the proposed image analysis pipeline is segmentation of beating cells
from the stationary regions of the image that include non-beating cells and the back-
ground. Since there is no difference between beating cells and non-beating cells in
terms of their morphology and texture, and there is no clear boundary between the cells
in the high density cell cultures, segmentation of individual beating cells is not feasible.
Here, we construct a mask of beating regions defined as the intersection of a foreground
mask, generated based on the first image in the sequence, and the standard deviation
mask, generated over the entire image sequence. Since the cardiomyocyte cells could
have a flat structure, the background estimation is done by computing the standard de-
viation map using a large window. As also proposed in [7], the standard deviation of
the image intensity over time is calculated for each location of the image and the re-
sulting standard deviation map is thresholded, followed by morphological operations to
fill out holes and remove small segmented regions. The output is a set of M connected
regions, R,,,m = 1, ..., M. Figure 2 shows two examples of cardiomyocyte image se-
quences, along with their corresponding computed standard deviation maps and final
segmentation.

2.2 Beating Signal Estimation

We estimate a beating signal for each segmented region R,,. We make the assump-
tion that disconnected regions in the image may have different beating signals but each
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Dataset 1

Dataset 2

(a)

Fig.2. An example of segmentation of beating regions for two datasets: (a) a frame of the raw
image, (b) the corresponding temporal standard deviation map in log scale, and (c) binary seg-
mentation of the beating regions. Top and bottom rows represent an example of high-density and
low-density cell plating, respectively.
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Fig.3. An example of the beating signal extracted for one of the segmented regions: (a) raw
(dual-peak) signal, u(t), and (b) single-peak signal x(¢). A zoomed-in version of w(¢) and z(t)
are shown, along with the Gaussian mixture model fit to x(¢) and its peaks.

connected region has a single beating signal. This assumption has worked well in prac-
tice. An alternative, without affecting the rest of the pipeline, is to partition each con-
nected region R,, to non-overlapping fixed-sized blocks, derive the beating signal for
each block, and then cluster similar beating signals to generate a distinct set of beating
signals.

For every image I; and each segmented region R,,, we form a one-dimensional vector
of pixel intensities, denoted by A, (t). Starting from the second image in the sequence
(t = 2), the correlation coefficient of intensity vectors of the image and its preceding
image in the sequence is computed. We denote the beating signal calculated from the
correlation of the successive images for each region R, by u,(t), i.e.,

Um (t) = 1 — corr(Ap, (t), Am(t — 1)). (D)

where A,,(t) and A,,(t — 1) are the intensity vectors corresponding to a segmented
region R, at frame ¢ and ¢ — 1, respectively.

Figure 3 shows an example of a beating signal obtained for cardiomyocyte dataset
1. This raw signal typically exhibits three states: a resting-state, where the correlation
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of successive images is high, a contraction state, and a relaxation state. Although the
beating pattern and frequency can be measured from this signal, automatic identification
of beating intervals is challenging due to the presence of double peaks and the lack
of prior knowledge on their relative magnitude or distances. To obtain a single-peak
signal, we first estimate a reference image by taking the median of resting-state images,
identified as the frames that have small u,, (t) and du,,(t)/dt. A single-peak signal is
then generated by computing the correlation coefficient of the intensity vector of the
reference image with those of all images in the sequence:

T (t) =1 — corr(B,,, Am(t)), )

where B,, is the intensity vector that corresponds to the resting state of the R,,,. Figure
4 shows an example of the resulting signal z,, (t).

2.3 Signal Quantification and Modeling

Once the beating signal is estimated, signal processing techniques in the time and/or
frequency domains can be applied to calculate quantitative features that describe the
beating signal. To capture irregularity and dynamics of beating over time, we perform
the analysis in the time domain. We first identify the peaks of z,,(t). A vector of
estimated beating intervals 7, is constructed by calculating the duration between suc-
cessive peaks. We define the effective beating rate as f,, = median(7,,) and the ir-
regularity of beating pattern as f,,,(max(7,,) — min(7,,))/2. In addition to the beating
intervals, it is important to measure the duration of each beat as well. For robust es-
timation of this parameter, we model the beating signal with a mixture of Gaussians,
Zi wiN (i, ), where p;’s coincide with the location of the extracted peaks and w;’s
and ¢’s are estimated by minimizing the difference between the Gaussian mixture signal
and x,,, (t). The duration of each beat is estimated by 60.

2.4 Clustering

The aim of clustering routine is to extract a distinct set of beating signals for the image
sequence. The definition of “distinct” can be application-dependent: one might be in-
terested in grouping the regions that beat at the same frequency but not necessarily in
synchrony. Alternatively, in the case of low-density cell plating, it might of interest to
identify groups of cells that are in close proximity and beat synchronously. Furthermore,
since the number of clusters is unknown a priori, clustering approaches that require the
number of clusters, such as k-means, are not suitable. Here, we propose a framework
which is flexible to accommodate different applications. First, for each time-series sig-
nal, x,,(t), we calculate a descriptor vector that contains the application-dependent
parameters that will define similarity between the signals. Here, we use the effective
beating rate and the time stamp of the first three peaks. To incorporate spatial informa-
tion, we first calculate the pairwise distance between the regions, using a distance map
for each region for efficient computation. Regions with the spatial distance smaller than
a given threshold are identified as potential candidates for synchronous beating. We
then calculate the pairwise distance between the descriptive vectors and feed these into
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Fig. 4. Clustering of beating regions based on their spatial proximity and similarity of beating
signal. The input to the clustering routine is a set of cell segmentations with associated beating
signals, some of which may be synchronous, and the output is a set of clusters and associated
signals with distinct beating profiles.

an agglomerative hierarchical clustering routine. Figure 4 shows a block diagram of the
above flow along with an example of beating regions and their corresponding signals
(left) and clustered regions and distinct beating signals (right). As can be seen, regions
3,5, and 6 are grouped together (cluster 5 on the right) and regions 7 and 8 are grouped
together (cluster 9 on the right). Identifying such clusters based on the synchrony of the
beating signals provides an indication of the underlying physiological communication
between the cells and is of interest for clinical studies.

3 Results

To assess the performance of the presented method, we performed a series of exper-
iments using iPSC-derived cardiomyocytes obtained from commercial vendors. Car-
diomyocytes were cultured in multi-well plates following standard culture protocols,
with varied plating densities. Imaging data was collected using custom-built 10x phase-
contrast microscopes, with capture frequency of 24 frames/sec and typical duration of
15 to 30 seconds. The images were saved in tiff format with 640x480 pixels. The mi-
croscopes were constructed using off-the-shelf components, including high-precision
multi-well plate scanners, and were configured to work with stage-top incubators that
provide precise environmental control during imaging.

We collected and analyzed more than 500 videos of cardiomyocyte cultures
from different lines, plated with varied cell culture densities. We observed variation
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Fig. 5. Examples of estimated beating signals. Effective beat rate (BR), a measure of beating
irregularity (IR), and the average beat duration (DU) are automatically measured for each se-
quence. Signals are extracted from varied cell cultures: Diseased lines (a,h), controls (b,d), after
addition of a compound (f), single-cell plating (c, g, i), after media change (e.j).

of beating characteristics over time, after media changes, and with addition of chemical
compounds. We used a subset of the videos to experimentally tune parameters such as
thresholds for segmentation, peak detection, and cutoff distance in clustering, and the
parameters were then fixed for all of our analysis. Figure 5 shows a sample set of beating
signals with different profiles, detected and quantified automatically using our method.
We confirmed the accuracy of our beating frequency measurements by comparing them
to manually derived values from the captured videos. We rendered a movie for each
dataset at the frame rate of image capture. A person watched the movie to confirm the
number of beating regions and frequencies.

In order to show that our method can characterize the cellular response from
different drugs, we performed a set of controlled experiments using Cisapride (a gas-
trointestinal drug withdrawn from market due to risk of induced arrhythmias) and Nore-
pinephrine (a neurotransmitter used to increase blood pressure and heart rate) applied
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Fig. 6. Characterizing the effect of different compounds: (a) changes in beating irregularity due to
addition of Cisapride measured over 6 days, and (b) changes in beating frequency due to addition
of Norepinephrine measured over 2 days
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to high-confluency cell cultures. As shown in Fig. 6, we measured an average 3-fold
increase of beating irregularity with Cisapride-treated cells compared with the controls,
observed over 6 days, as well as a dose-dependent increase of beating frequency for
Norepinephrine-treated cells, observed over 2 days. These results provide, to our knowl-
edge, the first clinically-relevant demonstration of a fully-automated and non-invasive
imaging-based beating assay for characterization of iPSC-derived cardiomyocytes.

4 Conclusion

We presented a new method for non-invasive characterization of stem cell-derived car-
diomyocytes using video microscopy and image intensity-based analysis. We described
a novel image analysis pipeline for beating signal analysis that enables automated ex-
traction of quantitative parameters that are of interest in clinical research. Our technique
accommodates cultures with different cell density and with either regular or irregular
beating patterns. We used our method to characterize the effects of two commercial
drugs known to modulate beating frequency and irregularity, and showed results for
successfully measuring a dose-dependent response. The presented method uses corre-
lation coefficient of images to capture the change in their signal intensity, a simple,
yet effective approach in combination with the rest of proposed pipeline in estimating
the parameters of interest from varied cardiomyocyte cell cultures. Our future work is
focused on estimating additional parameters of interest such as contraction strength,
pattern, and accurate shape modeling of the beats.
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