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Abstract. Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is a powerful protocol for assessing tumour progression from
changes in tissue contrast enhancement. Manual colorectal tumour de-
lineation is a challenging and time consuming task due to the complex
enhancement patterns in the 4D sequence. There is a need for a con-
sistent approach to colorectal tumour segmentation in DCE-MRI and
we propose a novel method based on detection of the tumour from sig-
nal enhancement characteristics of homogeneous tumour subregions and
their neighbourhoods. Our method successfully detected 20 of 23 cases
with a mean Dice score of 0.68 ± 0.15 compared to expert annotations,
which is not significantly different from expert inter-rater variability of
0.73 ± 0.13 and 0.77 ± 0.10. In comparison, a standard DCE-MRI tu-
mour segmentation technique, fuzzy c-means, obtained a Dice score of
0.28 ± 0.17.

1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is becom-
ing a key modality for monitoring of tumour progression and response to ther-
apy. DCE-MRI scans show contrast uptake in tissue, and, in principle, provide
information about the perfusion and vascularity. A bolus of contrast agent is
injected into a peripheral vein and travels through the circulatory system and
into the extravascular-extracellular space (EES) – leading to characteristic tis-
sue signal enhancement curves. These can be parameterised by pharmacokinetic
(PK) models [9] and provide a measurement of tumour changes to monitor pa-
tient outcomes [2]. It is increasingly recognised that tumour heterogeneity is
present in colorectal tumours due to the structure of the vasculature, hypoxia
and necrosis, and that it is key to assessing the likely efficacy of therapy.

Accurate tumour segmentations are required for DCE-MRI in order to cor-
rectly characterise these changes. This is a challenging and time consuming task
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to perform manually, partly because of the complex signal enhancement pat-
terns, limited soft tissue contrast and low resolution of the 4D DCE-MRI scan.
Alternatively, high resolution T2-weighted images can be acquired, manually
annotated and non-rigidly registered to the DCE-MRI, but this is also time
consuming. Instead, DCE-MRI contrast uptake curves potentially offer tumour
specific features for automated segmentation.

In DCE-MRI, PK models [9] are popular methods of quantifying contrast en-
hancement but results are sensitive to the choice of compartment model, which in
turn depends on the tissue. In practice, no single model may be adequate for the
whole region, and Hamy et al. [6] use principal component analysis (PCA). To-
date DCE-MRI colorectal tumour segmentation remains relatively unexplored.
Fuzzy c-means has become established as a method to segment tumours in DCE-
MRI images [3], which has the advantage that it is unsupervised. It iteratively
assigns a fuzzy label to each voxel based on the distance of the enhancement
curve from each cluster centre. However, the complex anatomy of the lower ab-
domen renders unsupervised clustering less effective. Fulkerson et al. [5] use a
quick-shift superpixel representation of a 2D image for object recognition using
a support vector machine classifier with features extracted from each superpixel
and its neighbours. Mahapatra et al. [8] also develop a supervoxel approach for
localisation of regions contraining Crohn’s disease in conventional 3D MRI. Both
[5], [8] use 2D and 3D supervoxel representations. However, unlike previous anal-
ysis, we develop a method for 4D contrast varying imaging using novel PCA and
SLIC coupling using heterogeneous local neighbourhood characteristics.

We propose a novel method to automatically segment colorectal tumours from
DCE-MRI scans as a key first step toward representing and quantifying hetero-
geneity. The method generates a supervoxel representation of the dynamic image
and detects supervoxel regions that contain tumour based on features of the su-
pervoxel and neighbourhood characteristics. Our contributions include: a novel
method to automatically segment colorectal tumours from DCE-MRI (the au-
thors are not aware of any existing method), robust learning from poorly defined
masks, extension of simple iterative clustering (SLIC) [1] to 4D DCE-MRI, and
supervoxel neighbourhood based learning for encoding tumour characteristics.
Sec. 2 outlines the dataset, in Sec. 3 our segmentation method is introduced,
and the method is evaluated on 23 colorectal cancer cases in Sec. 4.

2 Materials

T1-weighted DCE-MRI scans were acquired from 23 patients with rectal ade-
nocarcinomas using a 1.5 T GE scanner with a gradient echo, fat-suppressed
sequence (LAVA) (TR=4.5 ms, TE=2.2 ms and flip angle 12o). The scans were
acquired prior to downstaging chemo-radiotherapy. MultihanceTMwas injected
just after the scan start, and images were acquired every 12 s for between 20 and
25 successive periods at a resolution of 0.78 × 0.78 × 2.0 mm. High resolution
small FOV axial-oblique T2-weighted images were acquired prior to the DCE-
MRI scan with a resolution of 0.39× 0.39× 3.30mm (TR=14ms, TE=12ms, flip
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Fig. 1. Colorectal MRI images with annotations a) DCE-MRI axial slice (with tumour
annotation) b,c) Corresponding T2 MRI showing inter-rater variability

angle 40o). Scans were acquired axial to the tumour at the point of invasion in
order to minimise partial volume effects.

Colorectal tumours were delineated on the high resolution T2-weighted scans
by a radiologist and registered to the DCE-MRI scans. The T2 and DCE-MRI
scans were acquired consecutively and the majority of the alignment is performed
using the DICOM coordinates. The T2 scans were then resampled and registered
to the baseline DCE-MRI (prior to contrast) to correct for minor abdominal
motion in the time between scans [7]. Using this transformation, masks could be
aligned to the DCE-MRI volume, and were checked by a radiologist. However,
manual segmentation of colorectal tumours is a challenging task because of:
partial volume effects in the axial plane, complex anatomy in the lower rectum
making it difficult to delineate normal anatomical structures, wall thickening due
to venous congestion, and mucinous tumours. Fig. 1 shows a single axial slice
of the T1-weighted DCE-MRI (at a fixed time) and the T2-weighted MRI. Two
annotations are shown to illustrate expert variability, and this sets a fundamental
limit on the evaluation of any method against the radiologist “ground truth”.

3 Method

Our colorectal tumour segmentation method uses a PCA representation of the
contrast uptake curves as input to an n-feature Simple Linear Iterative Clustering
(SLIC) algorithm of the heterogeneous tumour and surrounding tissue in DCE-
MRI. This section describes the preprocessing, supervoxel extraction, derivation
of features from the supervoxels, and the segmentation of unseen cases.

Preprocessing: A subregion is defined by detecting the MRI foreground
based on Otsu thresholding to find the patient boundary. The patient boundary
was used to automatically crop the DCE-MRI to an ROI surrounding tumour
(approximately 25% of the original volume) based on the general location of the
rectum. Processed tumour volume-of-interest. The registered DCE-MRI
tumour annotation provides the ground truth to learn to characterise the tu-
mour in the image. Small failures in the ground truth result in poor learning
and, therefore, supervoxels entirely contained within the annotation were used
with linear discriminant analysis (LDA) to assign a posterior probability to each
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Fig. 2. Signal enhancement curves for the tumour and surrounding tissue where shape
relates to tissue perfusion and vascularity. Green, blue and cyan are selected from
regions of the tumour, red shows the rectal wall and mucosa, orange shows surrounding
tissue, and brown the lumen. This figure illustrates the heterogeneity in the tumour,
as well as similarities between subregions of the tumour.

voxel of being part of the tumour. Supervoxels containing at least 20% of the an-
notation with a high tumour probability were classified as tumour. This provided
a more robust ground truth for training (Fig. 3). Injection time and image
normalisation. Injection time may vary between scans and was detected from
the steepest gradient in contrast enhancement in the image (contrast in the ar-
teries). Signal enhancement curves were also normalised by the 80th percentile
of the maximum contrast.

Supervoxel Representation: Fig. 2 shows signal enhancement curves for re-
gions in the tumour (red mask) and surrounding tissue – illustrating the hetero-
geneity in the tumour, as well as similarities within subregions. Examples such as
this motivate use of a supervoxel representation to cluster consistent subregions
and extract the connectivity between subregions of the tumour, lumen and wall.

PCA applies a linear transform to project corresponding points into uncorre-
lated space and for dimensionality reduction. The eigenvectors from the covari-
ance matrix of the features are used to apply this projection: b = ΦT (x − x̄)
where x is the signal enhancement curve, b is the representation in uncorrelated
space and ΦT is the transposed eigenvectors of the covariance. A single enhance-
ment curve is represented as the mean shape and a linear combination of each
principal component by x ≈ x̄ + Φb. Standard deviation of each mode is given
by the eigenvalue σi =

√
λi. The enhancement curves are represented by the first

5 principal modes (99% of the variation). Fig. 3a shows variation of the curves
with two standard deviations from the curve mean (μ± 2σi).

SLIC [1] typically generates superpixels from an image using an adaptation
of k-means clustering and penalising distance from the cluster centre. SLIC has
been shown to be a fast method with good performance [1]. SLIC initialises k
cluster centres by sampling the grid regularly with distance S =

√
(N/k), where

N denotes the number of voxels. A distance function is defined that usually
combines a color/intensity distance and spatial distance measure, and voxels are
assigned to the closest cluster by searching a 2S x 2S x 2S neighbourhood (3D
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Fig. 3. SLIC supervoxel generation a) Two standard deviations of the first 4 modes of
variation from the mean enhancement curve b) Supervoxels shown on a single slice and
at a single time point of the 4D DCE-MRI volume (registered tumour mask in blue
and preprocessed in orange) c) Posterior probabilities used for mask preprocessing.

volume). We have extended SLIC to an n-feature image to enable extraction of
supervoxels from a DCE-MRI image based on the features of the enhancement.
The feature distance (df ) and spatial distance(ds) are defined as:

d2f =
1

n

n∑

k

(bjk − bik)2, d2s =
3∑

k

(xjk − xik)2 (1)

where bjk is the kth principal component of the jth voxel, and (xj1, xj2, xj3) is the
3D coordinate of the jth voxel in mm. As discussed, we use n=5 components. The
range of each principal component is normalised between [0, 1] for the volume.
The distances can be combined as a relative distance measure by:

D =
√
df + (ds/r) (2)

where r = S
compactness is a weight. Compactness was chosen to be 0.05 and the

average cluster size was chosen be 400 voxels by qualitatively assessing the ability
of the supervoxel algorithm to correctly separate thin structures such as mucosal
walls for the first 4 cases. Fig. 3 shows the modes of variation used to characterise
the curves and a 2D axial slice of the 3D supervoxel representation.

Features from Supervoxel Neighbourhoods: Principal components are
found for the voxel contrast enhancement curves, and n-feature SLIC was used to
generate supervoxel clusters (vi). The mean and standard deviation of the PCA
modes (bi) in each supervoxel (vi) were used as features (fi) to characterise the
enhancement. Features were all normalised between [0, 1]. Superpixel connectiv-
ity is used by Fulkerson et al. [5] to capture neighbourhood variation. We use
rotationally invariant supervoxel feature magnitude of the gradient to capture
changes related to the tumour, because the tumour can be characterised as a
contiguous region, with structure in the tumour heterogeneity, that may abut
lumen that contains non-enhancing air or stool, and a thin rectal wall/mucosa
(Fig. 2). The supervoxel adjacency graph G(V,E) was found where each super-
voxel vi ∈ V and edges (E) connect adjacent supervoxels (vi, vj). The vector
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(dij) between centroids of adjacent supervoxels (vi, vj) and the unit vector d̂ij
was then calculated. Using G, rotationally invariant descriptors related to the
gradient magnitude the neighbouring supervoxel features were used to encode
neighbourhood variation and approximated for each feature by:

f�i =
√

(fx+1 − fx−1)2 + (fy+1 − fy−1)2 + (fz+1 − fz−1)2 (3)

where fi ∈ fi is a single feature from six neighbouring supervoxels with d̂ij
most representative of the six-connected neighbour orientations. Therefore, each
supervoxel is represented by 10 features from the mean and standard deviation
of the modes of each supervoxel, and 10 features from the neighbourhood.

Classification and Evaluation: To date we have evaluated two classifiers:
LDA and random forests, which are increasingly used in medical imaging appli-
cations [8]. Patients 1-4 were used for parameter tuning and leave-one-out cross
validation (LOOCV) was used to evaluate the algorithm by testing on each pa-
tient and training on the remainder. The classifier was trained on all training
set supervoxels and used to classify supervoxels in a test case. Finally, connected
region size and the central moment of inertia are used to exclude additional
smaller regions (shown in Fig. 4). These results were compared to the standard
fuzzy c-means algorithm for DCE-MRI tumour segmentation [3].

4 Results

The registered expert annotations from the T2 images provide the ground truth
in order to train and evaluate our algorithm on DCE-MRI. The tumour centre
is accurate but edges may vary making annotation preprocessing an important
step (Sec. 3). Variability in the T2 manual annotations and registration error
were assessed to quantify the uncertainty. Ten cases were relabelled by two radi-
ologists and inter-rater voxelwise Dice scores of 0.73± 0.13 and 0.77± 0.10 were
found when comparing to the original annotations. Registration error was quan-
tified by an expert correcting the registered mask on the DCE-MRI using the T2
as reference for four cases (case 1-4). The Dice score between the registered mask
and corrected mask was 0.94 ± 0.01. Fig. 4 shows the original annotations, tu-
mour probabilities assigned to each supervoxel during classification, and the final
segmentation for two cases. Segmentations are consistent but with variability on
the border which agrees with inter-observer variability. Our method successfully
detected 20 cases but failed to detect 3 cases (16, 18, 20), which showed slower
tumour contrast uptake. The detected cases were segmented with a voxelwise
mean Dice score of 0.68 ± 0.15 (compared to the processed ground truth), and
0.56±0.13 for the original ground truth. The mean Dice scores for the automated
algorithm were not significantly different from either of the experts (p=0.33 and
p=0.06 using a Wilcoxon rank sum test). Fuzzy c-means [3] was considerably
poorer with 0.28 ± 0.17 and 0.19 ± 0.14 for the processed and original masks,
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Fig. 4. A single slice through tumour example segmentations, a-d) case 6 axial slice,
e-h) case 2 sagittal slice: Expert segmentations (a, e), Tumour probabilities assigned
to the supervoxels during classification (transparent has prob < 0.02) (b, f), and (d, h)
segmentations from our method. 3D representations are also shown of d) and f).

Fig. 5. Dice score for the supervoxel classification method and fuzzy c-means method
compared to the processed ground truth and the original ground truth

respectively. Fig. 5 shows the Dice score for each case using our supervoxel clas-
sifier and fuzzy c-means, compared to the preprocessed mask and original mask.
RF achieved poorer results than the LDA results implemented here, which was
probably due to the limited size of the training set leading to more sophisticated
classifiers overfitting to the training set. This method was developed in Python
and C++, and took an average of 3.7 ± 2.4 minutes to segment an unseen case
(4 times faster than an expert of approximately 15 minutes).

5 Discussion

We introduced, a novel method to segment colorectal tumours directly from
4D DCE-MRI scans using the signal enhancement patterns of the tumour and
surrounding regions. This has not been previously addressed, achieves results
equivalent to the inter-observer variability in segmentation for most cases, and
is considerably better than the standard fuzzy c-means technique. It also demon-
strates the potential of contrast enhancement curves to quantify tissue differences
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and tumour heterogeneity. Our method is automatic, except for two cases, where
the presence of uterine fibroids resulted in similar appearance in DCE-MRI, and
required manual exclusion (cases 8, 11). Future research will apply this method
to a larger dataset, including post-therapy cases, and include a more explicit
model-based representation of the tumour to distinguish fibroids. As an initial
assessment of motion correction, we registered the DCE-MRI temporal sequences
that showed considerable motion with an adapted feature-based diffeomorphic
registration method for motion compensation [4]. We obtained up to an 11%
improvement and will further explore this potential increment in future work.
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