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Abstract. Robust visual tracking of instruments is an important task
in retinal microsurgery. In this context, the instruments are subject to
a large variety of appearance changes due to illumination and other
changes during a procedure, which makes the task very challenging. Most
existing methods require collecting a sufficient amount of labelled data
and yet perform poorly in handling appearance changes that are unseen
in training data. To address these problems, we propose a new approach
for robust instrument tracking. Specifically, we adopt an online learn-
ing technique that collects appearance samples of instruments on the fly
and gradually learns a target-specific detector. Online learning enables
the detector to reinforce its model and become more robust over time.
The performance of the proposed method has been evaluated on a fully
annotated dataset of retinal instruments in in-vivo retinal microsurgery
and on a laparoscopy image sequence. In all experimental results, our
proposed tracking approach shows superior performance compared to
several other state-of-the-art approaches.

1 Introduction

Retinal microsurgery (RM) is an important treatment for sight-threatening
conditions. The procedure is performed by a surgeon using a microscope for
visualization and manipulating a set of surgical instruments. The operating sur-
geon faces several difficulties such as indirect visualization of the surgical target,
hand tremors and lack of tactile feedback. To overcome these difficulties, new
techniques have been developed. Accurate visual tracking of surgical tools in
microscopic images is an important technique to complement the previously de-
veloped smart tools. In this paper, we focus on the task of robust visual tracking
of instruments in in-vivo RM monocular image sequences.

This task is challenging due to the great variability in the appearance of surgi-
cal tools because of illumination and other factors. Many existing methods focus
on training the appearance model based on color features or the instrument
geometry [1-4]. However, these methods often perform poorly under complex
appearance changes due to their oversimplified appearance models. Sznitman
et al. proposed an approach, namely Data-Driven Visual Tracking (DDVT) [5],
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which integrates an instrument detector based on deformable features with a
simple gradient-based tracker. DDVT is able to run in video frame rate and
achieves state-of-the-art results on challenging human in-vivo surgery datasets.
To our best knowledge, DDVT is by far the best visual tracking approach in RM.
However, there are two drawbacks to DDVT. First, it needs manually labelled in-
strument positions in many video frames for training the offline detector. Second,
it performs poorly in handling appearance changes that were not observed in the
training sequences and could not be modelled by the trained offline detector.

Currently, it draws more and more attentions to integrate online learning
techniques in visual tracking system [6, 7]. How to extract new reliable samples
without corrupting the current model is a key problem to this kind of systems.
Therefore, many techniques have been exploited to constrain the learning process
[8, 9]. However, many existing models are not robust enough to apply on RM
tracking problem due to the challenges discussed above.

To this end, we propose a new approach based on online learning—Instrument
Tracker via Online Learning (ITOL). In this approach, we adopt the paradigm
of combining tracking and detection in the same framework [10, 11]. ITOL uses
a robust gradient-based tracker capable of failure detection as the basic tracker.
Then, a cascade appearance classifier is used as the instrument detector. The ap-
pearance model of the detector is initialized by manually clicking the instrument
position in the first frame. It is adaptively trained and updated on the fly. Sam-
ples for online updating are collected by a filtering process, which selects “unfa-
miliar” positive samples and “hard” negative samples. The obtained training set
is used to augment the model of the detector and prevent the detector from mak-
ing the similar mistakes. The performance of the proposed approach is evaluated
in three human in-vivo retinal microsurgery videos and one laparoscopy image
sequence. The experimental results demonstrate that our method significantly
outperforms the state-of-the-art approaches.

The rest of this paper is organized as follows: Section 2 introduces the frame-
work and each components of our approach. Then we present our experimental
results in Section 3 and conclude the proposed approach in Section 4.

2 Method

In this section, we will detail our proposed method ITOL. Methods for visual
tracking usually fall into two groups: tracking through local optimization and
tracking by detection [2]. Tracking through local optimization is fast, accurate
and able to handle appearance changes of the target. However, continuous tem-
plate updating is needed in order to maintain accurate position tracking when
there are significant changes in target appearance [5]. Tracking by detection has
the advantage of being able to handle target disappearance, but the ability of
detection is limited by the training data.

Instrument tracking is challenging due to often unexpected appearance changes
and extreme deformations of the instrument. We use a multi-component tracking
framework to address these problems. A flowchart diagram of the framework is
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shown in Fig. 1. First, a robust gradient-based tracker with the ability of fail-
ure detection is used to handle unexpected appearance changes. Then an instru-
ment detector is adopted to compensate for tracking loss and it automatically
re-initializes the tracker when the instrument reappears after disappearance or
tracking loss. To provide more reliable tracking results, outputs of the tracker
and the detector will be integrated into a unique target position by a component
named integrator. Finally, a component named sample expert will be used to
efficiently select image patches for online updating of appearance model of the
detector. In the whole framework, we only need to manually click the position
of the instrument in the first frame for training data. Then, the tracking system
is fully automatic. Details of each component of the system will be discussed in
the following sections.

Instrument position and template update
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Fig. 1. Diagram of our ITOL framework

2.1 Robust Tracker

The tracker is used to handle instrument appearance changes and bring in new
appearance samples. In many cases, although the appearance in the current
frame is new to the current model of the detector, it is gradually adapted over
time from seen samples. Since we use a gradient based tracker, which is only
concerned with similarity between two consecutive frames, it can adaptively
collect new appearance samples while tracking. The tracker is based on the
Median Flow (MF) algorithm [12]. In the Median Flow tracker, the target is
represented by a bounding box around it. For robustness, the bounding box is
divided into a k x k grid (k = 10 in our experiments), where each cell of the
grid is tracked by the pyramidal L-K algorithm [13]. The displacement of the
target is voted by 50% of the most reliable cells. The reliability level of a cell is
measured by normalized cross-correlation (NCC).MF also uses a quantity named
Forward-Backward (FB) error for failure detection. The tracking is performed
both forward and backward along the time axis and the FB error is computed
based on the discrepancies between these two trajectories of the target [12]. Since
the instrument sometimes move severely or is out of view, this failure detection
ability is critical to prevent the tracker from importing false samples.
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2.2 Cascade Detector

The gradient-based MF tracker assumes that the target is always in view and
under continuous changes. In practice, instruments or tools during RM often
undergo large appearance changes, which breaks the assumption. An online de-
tector is developed to compensate for this shortcoming of the tracker and to
re-initialize the tracker when an instrument reappears after loss. The detector
scans the current frame by sliding window and decides whether the target is
present in each window. A complex object detector often requires high com-
putational cost, which makes it impossible for real-time surgical tracking. This
problem is addressed by combining successively more complex classifiers in a
cascade structure, which rejects most negative windows in the early stages of
the cascade thus increasing the processing speed of the detector [14].

In our method, each frame is scanned by the detector at multiple scales using
sliding window. All the candidate bounding boxes will be resized to the same
size. Inspired by [11], we use a three-stage detector. The first stage is a vari-
ance filter that checks if the variance of the patch is under certain threshold
related to the variance of trained positive samples. The variance filter can be
evaluated efficiently by using integral images [14]. The second stage is random
ferns (forest) [15] on patches for comparing the pixel values. Pixels in a patch
are first divided into several groups. The probability is then computed for each
group based on the number of times that the same feature combination appeared
in previous frames as positive or negative examples. The final confidence score
is computed by averaging the probabilities of each group. The third stage is a
1-Nearest-Neighbour (INN) classifier using Normalized Correlation Coefficient
(NCC) as the distance between the candidate patch and two sets of patches:
positive patches and negative patches. Usually, the first two stages are able to
reject more than 95% of the candidate windows, which makes the detector very
efficient. In fact, this detector is able to run at nearly 30fps in our experiments.

2.3 Integrator

As discussed above, the detector and the tracker have their respective advantages
and disadvantages. Therefore, we use the integrator to integrates their outputs
to achieve an optimal estimation. The rules for this integration are: 1) If neither
the tracker nor the detector output any positions, the target is declared as not
visible; 2) Otherwise, all the outputs of the tracker and the detector are clustered
into one by their scores. Suppose s, is the similarity between a candidate patch
and its nearest neighbour in the positive sample set and s_ is the similarity
between the patch and its nearest neighbour in the negative sample set, and
p = " Then the score of the patch is defined as s = l}rp.
2.4 Online Updating of Detector’s Model

The sample expert is designed to select new training samples for online model
updating of the detector. Online updating make the detector capable of handling
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unexpected appearance changes and more robust to the noises. Given new sam-
ples, the updating process is straightforward. For random ferns, the probability
of each branch is updated by adding the results of the pixel comparison. The
INN classifier simply adds new samples to its sample sets.

The online learning method is detailed in the following. To prevent false pos-
itive samples, the sample expert use higher threshold than the detector. Then
we consider these bounding boxes as potential positive samples. Starting from
the output of the integrator, the sample expert will generate the new positive
samples by choosing bounding boxes that are very close to the output one. Sec-
ond, we filter them by our 1NN classifier and only accept the samples that are
rejected by the 1NN classifier. The second step has two effects: 1) It rules out
those “easy” samples to avoid redundancy; 2) The remaining samples are “new”
enough so that the model will improve very rapidly. In order to accelerate the
growth of the model, positive sample are rotated and blurred to generate more
data. For negative examples, a common practice is focusing on “hard” samples.
Therefore, only samples that have passed the first two stages of the detector and
far away from the output are considered candidates of negative samples.

3 Experiment and Results

In this section, we conduct experiments to evaluate ITOL on two public datasets:
Retina Microsurgery Dataset and Laparoscopy Sequence [5].

— Retina Microsurgey Dataset consists of 3 sequences of in-vivo vitreo-
retinal surgery, which contains a total of 1171 images (640 x 480 pixels).
See Fig. 2 for examples. These sequences are challenging due to variations
in illumination type and quantity, light source position and the presence of
blur and shadows.

— Laparoscopy Sequence consists of 1000 images with labelled locations of
the tool tip. The original video is from Youtube. There are two instruments
in each image, hence there are roughly 2000 instrument locations.

We compare our method ITOL with four baseline methods: DDVT [5],
SCV [16], MI [4], SSD [17]. We also compare two components used in the
proposed method: Median-Flow (MF) and Detector-Tracker (DT). MF
is the gradient-based tracker that we used. DT is MF plus the cascade de-
tector without online model updating. For fair comparison, two measures are
used by following the experimental setting of [5]: the accuracy on the threshold-
ing distance to groundtruth and the number of the consecutive tracking frame.
The accuracy is defined as the percentage of the detection within ¢ pixels of the
groundtruth annotation. We vary § from 15 to 40 in experiments (same as the
setting in DDVT [5]).

The proposed method is implemented in Matlab. All experiments are con-
ducted on a Desktop PC, 3.4GHz Intel Core i7-3770 and 12GB RAM. Our
method runs at nearly 20fps and should run even faster implemented on parallel
architecture (e.g. GPU or Mutlti-core).
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3.1 Retina Microsurgery Dataset

The experimental results on the RM dataset are shown in Fig. 2. Results of each
video sequence are shown in one row. In all the results, DDVT [5] outperforms
the others except the proposed ITOL. ITOL also outperforms MF and DT,
which validates the benefits of the online detector. Similar trends have been
witness in all three videos where ITOL always achieves the best accuracy and
unstableness. We accredit the advantages of the proposed ITOL to the online
learning component that effectively updates the detector and makes it adapt to
the appearance changes of instruments. One thing that is worth to note is DDVT
uses the offline detector and therefore requires sufficient amount of training data
before tracking (e.g. 500 manually labelled frames [5] ), while our method bases
on online learning techniques and only requires one labelled position in the first
frame as training data before tracking.
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Fig. 2. The results on Retina Microsurgery Dataset. For values of accuracy (the 2nd
column), the higher the better. For values of unstableness (the 3rd column), the lower
the better.

3.2 Laparoscopy Sequence

Finally, we also evaluate our method on the laparoscopic instrument sequence.
The sequence is provided by [5]. DDTV uses the first 500 images for training
and the last 500 images for testing. For fair comparison, we follow the setting
of [5] and use the last 500 images for testing. However, we only need one im-
age frame for training before tracking because of the online learning technique.
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There are two tools in this video. For better visualization, we separately present
the experimental results of two instruments in Fig. 3, one in each row. In the
sequence, the first tool is under big changes in terms of the instrument struc-
ture and movement. Our method significantly outperforms DDVT [5] and two
component methods. The second tool is relatively stable in shapes and positions
in the whole testing image sequence. The results of the proposed approach are
similar to those of the DDVT.
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Fig. 3. The results on Laparoscopy Sequence. For values of accuracy (the 2nd column),
the higher the better. For values of unstableness (the 3rd column), the lower the better.

4 Conlcusion and Discussion

We proposed a novel approach, dubbed ITOL, for visual tracking of retinal in-
struments during in-vivo retinal microsurgery. Our method consists of four com-
ponents: a robust gradient-based tracker, a cascade detector, an integrator and
a sample expert. While the first three components make a robust and automatic
tracker, the sample expert works to achieve online updating of the appearance
model of the detector. ITOL only needs manually labelled position in the first
frame and all remaining steps are fully automated, which makes it an approach
needing much less user input than other existing methods. ITOL can also auto-
matically re-initialize the tracker after failure. Experimental results on two video
datasets demonstrate that the proposed method outperforms the state-of-the-art
approaches. Our method makes tracking in RM much more feasible than before.
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