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Abstract. In this paper we analyze the properties of the well-known seg-
mentation fusion algorithm STAPLE, using a novel inference technique
that analytically marginalizes out all model parameters. We demonstrate
both theoretically and empirically that when the number of raters is
large, or when consensus regions are included in the model, STAPLE
devolves into thresholding the average of the input segmentations. We
further show that when the number of raters is small, the STAPLE re-
sult may not be the optimal segmentation truth estimate, and its model
parameter estimates might not reflect the individual raters’ actual seg-
mentation performance. Our experiments indicate that these intrinsic
weaknesses are frequently exacerbated by the presence of undesirable
global optima and convergence issues. Together these results cast doubt
on the soundness and usefulness of typical STAPLE outcomes.

1 Introduction

Since its introduction a decade ago, the Simultaneous Truth and Performance
Level Estimation (STAPLE) algorithm [1] has become an established technique
for estimating the true underlying segmentation of a structure from multiple
imperfect segmentations. Its applications range from combining manual delin-
eations by different human expert raters, to fusing registration-based automatic
segmentations in multi-atlas label fusion methods. The algorithm is based on an
explicit probabilistic model of how an (unknown) true segmentation degrades
into (observed) imperfect segmentations, allowing for different frequencies of
segmentation errors by different raters. Starting from its basic formulation, it
has since been extended in several directions, including accounting for spatially-
varying rater performance [2,3], putting “error bars” on estimated rater perfor-
mance measures [4], and modeling missing or repeat segmentations [5].

A detailed theoretical understanding of the results produced by STAPLE and
its variants is hampered by the fact that the algorithm depends on a numerical
optimization procedure for the parameters of its model. Here, we show that this
optimization procedure can actually be avoided, since the parameters can be
marginalized out analytically. This allows us to theoretically predict the behavior
of STAPLE and its variants in several often-used scenarios – which we empirically
verify – revealing several undesirable properties.
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To the best of our knowledge, this is the first detailed analysis of the theoretical
properties of STAPLE, although it has been criticized before in empirical studies
(e.g., [6]).

2 Theoretical Analysis

2.1 The STAPLE Model

Let dj = (dj1, . . . , d
j
I)

T denote the segmentation of a structure by rater j, where

dji ∈ {0, 1} is the one of two possible labels assigned to voxel i, and I is the total
number of voxels. Given J raters, the collection of all segmentations is given
by D = (d1 . . .dJ ). Letting t = (t1, . . . , tI)

T with ti ∈ {0, 1} denote the true
underlying structure, the STAPLE algorithm is based on the following generative
model for the observed segmentations:

p(t|π) =
∏

i

πti and p(D|t, θ) =
∏

j

p(dj |t, θj), p(dj |t, θj) =
∏

i

θj
dj
i ,ti

.

Here the vector π = (π0, π1)
T , with 0 ≤ πt ≤ 1 and

∑
t πt = 1, contains the

expected frequencies of occurrence for each label t. Furthermore, θjd,t denotes
the probability that rater j assigns label d to a voxel if the true label is t, so

that
∑

d θ
j
d,t = 1. Finally, the vector θj = (θj

0

T
, θj

1

T
)T with θj

t = (θj0,t, θ
j
1,t)

T

collects the segmentation performance parameters of rater j, and the vector

θ = (θ1T , . . . , θJT
)T collects all performance parameters of all raters.

Letting the vector ω = (θT ,πT )T denote all the parameters of the model, a
prior of the form

p(ω) = p(π)p(θ), p(π) ∝ πα0
0 πα1

1 , p(θ) ∝
∏

j

∏

t

(θj0,t)
α0,t(θj1,t)

α1,t

is often used, where {αt, αd,t} are hyperparameters whose values are assumed
given. By selecting hyperparameter values αd,t = 0, ∀d, t (implying that all val-

ues of θjd,t are equally likely) and αt = ρ
∑

j

∑
i[d

j
i = t], ρ → ∞ (effectively

clamping the values of πt to the average frequency of occurrence in the raters’
segmentations), the original STAPLE model [1] is obtained. Alternatively, αd,t

can be set to specific positive values to encode an expectation of better-than-
random segmentation performance [2,5]; and by setting αt = 0, ∀t the expected
frequencies of occurrence πt can automatically be inferred from the data [5].

2.2 STAPLE Inference

Given the collection of available segmentations D, the STAPLE algorithm first
seeks the maximum a posteriori (MAP) estimate of the model parameters :

ω̂ = argmax
ω

p(ω|D) = argmax
θ,π

∏

i

⎛

⎝
∑

ti

(∏

j

θj
dj
i ,ti

)
πti

⎞

⎠ p(θ)p(π), (1)

using a dedicated expectation-maximization (EM) optimizer that exploits the
specific structure of Eq. (1). Once a MAP parameter estimate ω̂ is found, it is
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then used to infer the segmentation truth as: t̂STAPLE = argmaxt p(t|D, ω̂),
which involves only voxel-wise binary decisions [1]. In some cases one is also
interested in the performance parameters θj

t of individual raters. In that scenario,

the corresponding component θ̂
j

t is simply extracted from the high-dimensional
parameter vector ω̂ and inspected [1]. In addition, “error bounds” around these
values are sometimes computed by locally approximating the posterior p(ω|D)
using a Gaussian distribution and estimating its covariance structure [4].

2.3 STAPLE Inference as an Approximation

Given the raters’ segmentations D, the MAP estimate of the segmentation truth
is given by t̂ = argmaxt p(t|D), which will generally be different from the
STAPLE result t̂STAPLE obtained by maximizing p(t|D, ω̂). Furthermore, the
distribution p(θj

t |D) is a low-dimensional projection of a higher dimensional dis-
tribution p(ω|D); its properties – including its maximum – cannot generally be
inferred by simply ignoring all other components in ω.

The crux of this paper is that the STAPLE inference of both the segmentation
truth and performance parameters will only be a good approximation when the
distribution p(t|D) is strongly peaked around its optimal value t̂. To understand
this, it is instructive to write out the parameter posterior as:

p(ω|D) =
∑

t

p(ω|t,D)p(t|D) (2)

with
p(ω|t,D) =

p(t,D|ω)p(ω)

p(t,D)
= p(π|t)

∏

j

∏

t

p(θj
t |t,D), (3)

where p(π|t) and p(θj
t |t,D) are beta distributions. The last step in Eq. (3) is

based on the fact that the normalizer

p(t,D) =

∫

ω
p(t,D|ω)p(ω)dω =

∫

θ
p(D|t, θ)p(θ)dθ

∫

π
p(t|π)p(π)dπ ∝

B(N0 + α0 + 1, N1 + α1 + 1)

⎛

⎝
∏

j

∏

t

B
(
N j

0,t + α0,t + 1, N j
1,t + α1,t + 1

)
⎞

⎠(4)

involves a marginalization over the model parameters that is given in analytical
form. Here B(·, ·) denotes the beta function, N j

d,t the number of voxels assigned
to label d by rater j when the truth label in t is t, and Nt the total number of
voxels where the truth label is t.

Referring to Eq. (2), the posterior p(ω|D) is obtained by summing condi-
tional posteriors p(ω|t,D), one for each possible t and weighed according to
how probable that t is. When p(t|D) is strongly peaked around t̂, the resulting
summation will be dominated by the contribution of t̂ only: p(ω|D) � p(ω |̂t,D).
As Eq. (3) shows, this distribution factorizes across the individual parame-
ter components, so that the location of the maximum of p(θj

t |D) can indeed
be obtained by extracting the corresponding component from the joint maxi-
mum location ω̂. Furthermore, since the individual factors are (narrow) beta
distributions, their product will be strongly peaked around ω̂, so that in turn
p(t|D) =

∫
ω p(t|D,ω)p(ω|D)dω � p(t|D, ω̂) and therefore t̂STAPLE � t̂.
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2.4 Two Cases Where STAPLE Inference Will Be Accurate

There are two common scenarios, analyzed below, where p(t|D) is sharply peaked
around t̂ and where STAPLE therefore provides accurate inference. However, as
we shall see, both scenarios will also render the STAPLE results akin to simply
thresholding the average segmentation map d̄ =

∑
j d

j/J – similar to majority

voting which thresholds d̄ at level 0.5.
We start by writing the conditional posterior distribution of the segmentation

truth label in a single voxel. Because of Eq. (4), we have that

p(ti|D, t\i) ∝
⎛

⎝
∏

j

N j

dj
i ,ti\i

+ αdj
i ,ti

+ 1

∑
d(N

j
d,ti\i

+ αd,ti + 1)

⎞

⎠ (Nti\i + αt + 1), (5)

where t\i denotes the truth labels in all voxels except voxel i, and N j
d,t\i

and

Nt\i are the corresponding voxel counts.

Many Raters: When the number of raters is very large (J 	 0), we have that,
around the optimum t̂, the log of the ratio of conditional posterior probabilities
in a voxel i behaves approximately as a simple linear function of the fraction of
raters that assigned voxel i to foreground, denoted by fi =

∑
j d

j
i/J :

log

(
p(ti = 1|D, t̂\i)

p(ti = 0|D, t̂\i)

)
� st̂ · fi + ot̂, (6)

with slope st̂ = J(c̄0,0+ c̄1,1− c̄1,0− c̄0,1) and offset ot̂ = J(c̄0,1− c̄0,0)+(c1−c0),

where c̄d,t =
∑

j cj
d,t

J , cjd,t = log

(
N̂j

d,t
+αd,t+1

∑
d(N̂

j
d,t+αd,t+1)

)
, and ct = log

(
N̂t + αt + 1

)
.

This is because of the large number of summations involved when J 	 0 (law of
large numbers), and because N̂ j

d,t\i
� N̂ j

d,t and N̂t\i � N̂t. When the foreground

fraction fi exceeds a certain threshold, the “log odds” of Eq. (6) becomes positive
and the voxel is assigned to label ti = 1, independent of which raters exactly
labeled the voxel as fore- or background. Furthermore, the same threshold applies
to all voxels, since the slope st̂ and offset ot̂ are independent of i. Note that
the slope st̂ depends directly on J , so that the joint posterior p(t|D) will be
strongly peaked when J 	 0 – therefore t̂STAPLE can be expected to correspond
to a thresholded average segmentation map d̄ (although not necessarily at the
threshold level 0.5 used by majority voting).

Large Consensus Regions: Even if the number of raters J is small, Eq. (6)
will still be a good approximation when large values for the hyperparameters
αd,t are used, as these effectively make the different cjd,t similar across all raters.
This will happen when large “consensus regions” are included in the analysis,
i.e., image regions where all raters agree on the same label, since the net effect
of such voxels will be to act as large hyperparameters α0,0 	 0 (for background
areas) and α1,1 	 0 (for foreground areas) on the remaining, non-consensus
voxels. In that specific scenario, c0,1 and c1,0 will attain large negative values,
yielding a large slope st̂ indicative of a sharply peaked p(t|D), so that again
t̂STAPLE can be expected to be a thresholded map d̄ in this case as well.
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2.5 Direct Inference of Segmentation Truth

In addition to providing theoretical insight, Eq. (5) also suggests a new way of
directly inferring the segmentation truth using discrete optimization – without
estimating continuous model parameters first. In particular, starting from some
initial labeling, the MAP segmentation truth t̂ = argmaxt p(t|D) can be esti-
mated by visiting each voxel in turn, assigning it to the label that maximizes
Eq. (5), and repeating this procedure until no voxels change labels. A similar
procedure can also be used to generate Monte Carlo samples from p(t|D): by
repeatedly visiting each voxel, in random order, and assigning label ti with prob-
ability p(ti|D, t\i), a large number S of samples {t(s)}Ss=1 of the segmentation
truth can be obtained (so-called Gibbs sampling). Such samples can then be used
to assess the full posterior distribution of specific (combinations of) performance

parameters, e.g., p(θj
t |D) =

∑
t p(θ

j
t |t,D)p(t|D) � 1

S

∑S
s=1 p(θ

j
t |t(s),D).

3 Experiments

In order to verify our theoretical analysis, we performed experiments in the
context of multi-atlas label fusion, in which a manually annotated brain MR
scan of each of 39 subjects was non-linearly warped to the remaining 38 subjects
as described in [7]. These warps were applied to the manual segmentations of
10 brain structures (cerebral white matter, cerebral cortex, lateral ventricle,
thalamus, caudate, putamen, pallidum, hippocampus, and amygdala in the left
hemisphere, as well as brain stem), which were subsequently used as input to a
binary STAPLE set-up (treating each structure in turn as foreground and the
remaining voxels as background).

We studied three variations of STAPLE. In the original “Basic” variant [1],
all voxels in the image are considered; a flat prior on the segmentation perfor-
mance parameters is used (i.e., αd,t = 0); and a pre-computed spatial prior π
is clamped to the average relative size of the foreground/background in the in-
put segmentations. The “Restricted” variant is identical except that all voxels
in which all raters agreed on the same label (“consensus areas”) are excluded
from the analysis [8]. Finally, the “Advanced” variant also discards all consensus
areas, but encourages better-than-random segmentation performance by setting
α0,0 = α1,1 = 2 and α0,1 = α1,0 = 0 [5,2]; in addition α0 = α1 = 0 so that the
spatial prior π is automatically estimated from the data [5].

As is common in the literature, each variant was initialized with high sensitiv-
ity and specificity parameters (we used θj0,0 = θj1,1 = 0.99); for the “Advanced”
variant π1 was initialized as 0.5. To reduce the number of experiments, we only
studied a random subset of 20 subjects from the available 39. We ran experiments
in 2D, selecting, for each experiment, the coronal slice in which the structure
being studied was the largest in the co-registered 3D volumes. To quantify the in-
fluence of the number of raters, each experiment was run with the segmentations
restricted to the first 5, 15, and 37 of the available 38 ones.
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4 Results

Since our analysis predicts thresholding behavior in certain scenarios but not
the applicable threshold level (which itself depends on the found solution),
we conducted the following experiment. For each STAPLE result, we thresh-
olded d̄ at varying levels (l − 1/2)/J, l = 1, . . . , J and recorded the level yield-
ing the highest Dice score with t̂STAPLE . The resulting threshold levels and
corresponding Dice scores, averaged across all 20 subjects and all 10 struc-
tures, are shown in the table below (standard deviations are in parentheses):
ra- Basic Restricted Advanced
ters threshold Dice threshold Dice threshold Dice

5 0.30 (±0.00) 1.00 (±0.01) 0.41 (±0.04) 0.89 (±0.09) 0.45 (±0.05) 0.91 (±0.08)
15 0.17 (±0.03) 0.99 (±0.01) 0.46 (±0.05) 0.98 (±0.02) 0.46 (±0.06) 0.98 (±0.01)
37 0.14 (±0.06) 1.00 (±0.01) 0.44 (±0.14) 0.99 (±0.01) 0.43 (±0.15) 0.99 (±0.01)

For the Basic variant, which includes large consensus regions, the thresholding
behavior of STAPLE is apparent for all number of raters. The threshold level,
which corresponds to the point of zero-crossing −ot̂/st̂ of the line of Eq. (6), is
clearly below the majority voting 0.5 level because the size of the background is
very large, which through c1,0 increases st̂ but not ot̂. The threshold level also
decreases as more raters are added – thereby gradually yielding the union of
all segmentations – because the fixed spatial prior favors background, making
c1 < c0 and therefore rendering −ot̂/st̂ dependent on J .

Both the Restricted and Advanced variants, which only consider non-consensus
voxels, clearly exhibit the predicted thresholding behavior for J 	 0, with Dice
scores around 0.99 for both methods when J = 37, and around 0.98 when J = 15.
However, for the Restricted case these numbers mask a more complex underlying
phenomenon: As can be seen from Eq. (1), when p(π) clamps π to (0.5, 0.5)T and
p(θ) ∝ 1, p(ω|D) is invariant to swaps of the type θjd,0 ↔ θjd,1, which corresponds
to interchanging the role of the background and foreground label. Since the spa-
tial prior was very close to 0.5 across all experiments (mean value 0.46, standard
deviation 0.06), the posteriors p(ω|D) were typically bimodal (cf. Fig (1)). In
this variant a spatial prior different from 0.5 is the only factor discerning be-
tween the two modes, but in more than 20% of the cases for 15 and 37 raters,
finding the global optimum would have yielded a solution similar to thresholding
d̄ and subsequently inverting the labels. The fact that this is not apparent from
the table above is because STAPLE got trapped in the wrong solution in all
these cases (cf. Fig. (1)). When the number of raters was 5, STAPLE failed to
locate the global maximum in 55% of the cases; the spatial prior encouraged the
wrong solution in 46% of the cases.

The Advanced variant discerns between the two modes by encouraging perfor-
mance parameters that are better-than-random, and the resulting models were
found to always identify the correct solution. For all 15 and 37 rater cases, for
which p(ω|D) is strongly peaked, STAPLE also successfully located this solu-
tion. When initializing the proposed discrete optimizer at t̂STAPLE to see if fur-
ther improvements in log p(t|D) could be achieved, only modest improvements
were obtained (0.150 and 1.225 on average for 37 and 15 raters, respectively,
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Fig. 1. Example of the bimodal parameter posterior often seen with the Restricted
variant (37 raters, left lateral ventricle). The left shows a contour plot of p(θj1,1, θ

j
0,0|D)

for one rater j, computed using the proposed Gibbs sampler; the two other plots show
p(θj1,1|D) and p(θj0,0|D). The blue lines indicate the location of the (suboptimal) STA-
PLE parameter estimate – the global optimum would swap the fore- and background.

Fig. 2. Plot of the linear behavior of the “log odds”:
each cross corresponds to a voxel plotted against
its foreground fraction (Advanced variant, 37 raters,
left hippocampus). Voxels above the 0 level are as-
signed to foreground; a very similar result (Dice
overlap 0.989) can be obtained by thresholding d̄
at level 0.472 (indicated by the thick green line).

Fig. 3. Example of the broad, complex parameter posteriors often seen when only 5
raters are used (Advanced variant, left hippocampus). The plots are similar to those
shown in Fig. 1, except that local optima arrived at when re-initializing STAPLE
differently are shown in different colors. Tiles with the same color in the left plot
indicate initializations in a 10 × 10 grid that arrive at the same optimum (indicated
with a color-filled circle with the value of − log p(D|t)p(t) indicated). Note that the
(presumably global) yellow optimum is not found by STAPLE (shown in blue), and that
the local optima in the high-dimensional parameter space do not generally correspond
to local optima in the lower-dimensional marginal distributions.
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Fig. 4. When the number of raters
is small, STAPLE may not yield the
optimal segmentation truth estimate,
even when it finds globally optimal
parameters (as is the case in this ex-
ample). From left to right: majority
voting, STAPLE, and proposed dis-
crete optimizer (Advanced variant, 5
raters, left cerebral white matter).

corresponding to 1.162 and 3.404 ratios in probabilities), which is in line with
our theoretical predictions. Fig. (2) shows the “log odds” for each voxel under
consideration for a 37-rater case, plotted vs. its foreground fraction fi; the match
with the predicted line of Eq. (6) is clear. When only 5 raters were used, much
larger improvements in log p(t|D) could be obtained with the discrete optimizer:
11.850 on average, which corresponds to solutions that are over 100, 000 times
more likely. Some of this is attributable to the fact that p(ω|D) is often a com-
plex distribution that makes STAPLE susceptible to getting trapped in local
optima: For each case we repeatedly re-ran STAPLE using a 10× 10 parameter
grid for initialization of (θj1,1, θ

j
0,0) (cf. Fig. (3)), and found that in 23% a better

optimum could be located this way. However, even when the correct parameter
estimate ω̂ was found, the broad distribution p(ω|D) typically makes the STA-
PLE solution t̂STAPLE amendable to further improvement (Fig. (4)). Note in
Fig. (3) also the difficulty in interpreting the value of individual components of
ω̂ in these cases.

5 Discussion

In this paper we have analyzed the theoretical properties of the STAPLE al-
gorithm, revealing several fundamental shortcomings that cast doubt on the
soundness and usefulness of results obtained with this method. We note that,
although we only considered the binary STAPLE case here, the obtained results
readily translate to cases with more than two labels.
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