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Abstract. Selective and iterative method for performance level estimation 
(SIMPLE) is a multi-atlas segmentation technique that integrates atlas selection 
and label fusion that has proven effective for radiotherapy planning. Herein, we 
revisit atlas selection and fusion techniques in the context of segmenting the 
spleen in metastatic liver cancer patients with possible splenomegaly using 
clinically acquired computed tomography (CT). We re-derive the SIMPLE 
algorithm in the context of the statistical literature, and show that the atlas 
selection criteria rest on newly presented principled likelihood models. We 
show that SIMPLE performance can be improved by accounting for exogenous 
information through Bayesian priors (so called context learning). These 
innovations are integrated with the joint label fusion approach to reduce the 
impact of correlated errors among selected atlases. In a study of 65 subjects, the 
spleen was segmented with median Dice similarity coefficient of 0.93 and a 
mean surface distance error of 2.2 mm.  

Keywords: Selective and Iterative Method for Performance Level Estimation 
(SIMPLE), Context Learning, Multi-Atlas Segmentation, Abdomen. 

1 Introduction 

Multi-atlas segmentation is a technique for transferring information from canonical 
atlases to target images via registration. While this family of techniques has proven 
effective in neuroimaging [2], the importance of atlas selection has become 
increasingly clear for variable anatomical targets (e.g., the prostate [3]).  

Here, we revisit atlas selection and fusion techniques in the context of segmenting 
the spleen in metastatic liver cancer patients with possible splenomegaly using 
clinically acquired computed tomography (CT). Abdominal anatomy is variable both 
between individuals (e.g., weight, stature, age, disease status) and within individuals 
(e.g., pose, respiratory cycle, clothing). Splenomegaly exacerbates inter-individual 
spleen variability (and can result in a ≈10 fold increase in spleen volume over normal 
individuals) and complicates inter-subject registration (Figure 1). Note that in this 
situation a majority of atlases tend to be poorly registered, but a subset (shown for 
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The estimate of the parameters (M-Step) is obtained by maximizing the expected 
value of the conditional log likelihood function found in Eq. 3. For the error factor,  

Consider the binary segmentation for simplicity, let ்ܯ௉ ൌ ∑ ଵܹ௜ሺ௞ሻ௜:஽೔ೕୀଵ ி௉ܯ , ൌ ∑ ଴ܹ௜ሺ௞ሻ௜:஽೔ೕୀଵ ிேܯ , ൌ ∑ ଵܹ௜ሺ௞ሻ௜:஽೔ೕୀ଴ ே்ܯ , ൌ ∑ ଴ܹ௜ሺ௞ሻ௜:஽೔ೕୀ଴ ,  

and M் ൌ ௉்ܯ ൅ ிܯ ,ே்ܯ ൌ ி௉ܯ ൅ ఢೕܮ ிே. After taking partial derivative ofܯ ,  

௝߳ሺ௞ାଵሻ ൌ ்ܯிܯ ൅ ிܯ , ݅. ݁. , 1 െ ௝߳ሺ௞ାଵሻ ൌ ்ܯ்ܯ ൅ ி (5)ܯ

Then for the atlas selection decision 

௝ܿሺ௞ାଵሻ ൌ arg max௖ೕ ෍ lnൣܧ ݂൫ܦ௜௝ห ௜ܶ , ௝ܿ , ௝߳ሺ௞ାଵሻ൯|ࡰ, ௝ܿ ሺ௞ሻ , ௝߳ሺ௞ାଵሻ൧௜ൌ arg max௖ೕ ෍ ෍ ෍ ௦ܹ௜ሺ௞ሻ ln ௝௖ೕ௦ᇲ௦௦௜:஽೔ೕୀ௦ᇲ௦ᇲ .  (6)

In general, this is a combinatoric problem; however, assuming known true labels, it 
can be maximized separately for each 0/1 atlas selection decision. Noting the behavior 
of selecting/ignoring atlases in Eq. 6 is parameterized with the error factor ௝߳, and 
thus, as in Eq. 5, affected by the four summed values of True Positive (TP), False 
Positive (FP), False Negative (FN), and True Negative (TN). 

In SIMPLE, atlases are selected based on DSC with the previous majority vote 

estimate. Above, Eq. 3 reduces to a majority vote of atlases with ௝ܿሺ௞ሻ ൌ 1 and the 

relative weight of atlases is scaled by Eq. 5, which differs from DSC in that DSC does 
not factor the impacts of TN. Typical practice for a fusion approach might use the 
prior probability, ݂ሺ ௜ܶ ൌ  ሻ, to weight by expected volume of structure. With outlierݏ
atlases, one could reasonably expect a much larger region of confusion (i.e., non 
“consensus”[8]) than true anatomical volume. Hence, an informed prior would greatly 
deemphasize the TN and yield a metric similar to DSC. Therefore, we argue that 
SIMPLE is legitimately viewed as a statistical fusion algorithm that is approximately 
optimal for the non-linear rater model proposed in Eq. 1. 

2.1 Context Learning (CL)  

Different classes of tissues in CT images can be characterized with multi-dimensional 
Gaussian mixture models using intensity and spatial “context” features. On a voxel-
wise basis, let ࢜ א Թௗൈଵrepresent a ݀ dimensional feature vector, ݉ א  indicate ࡹ
the tissue membership, where ࡹ ൌ ሼ1, … , ሽܯ  is the set of possible tissues. The 
probability of the observed features given the tissue is ݉ can be represented with the 
mixture of ீܰ Gaussian distributions, 

௝߳ሺ௞ାଵሻ ൌ arg maxఢೕ ෍ lnൣܧ ݂൫ܦ௜௝ห ௜ܶ , ௝ܿሺ௞ሻ, ௝߳൯|ࡰ, ௝ܿ ሺ௞ሻ , ௝߳ሺ௞ሻ൧௜ൌ arg maxఢೕ ෍ ෍ ෍ ௦ܹ௜ሺ௞ሻ ln ௝௖ೕሺೖሻ௦ᇲ௦௦௜:஽೔ೕୀ௦ᇲ௦ᇲ ؠ ఢೕܮ  (4)
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݂ሺ࢜|݉ ൌ ሻݐ ൌ ෍ ௞௧ሺ2ሻௗଶ|࡯௞௧|ଵଶ ݌ݔ݁ ൤െ 12 ൫࢜ െ ௞௧൯்࡯௞௧ିଵሺ࢜ െ ௞௧ሻ൨ேಸ
௞ୀଵ  (7)

where ௞௧ א Թଵൈଵ , ௞௧ א Թௗൈଵ , and ࡯௞௧ א Թௗൈௗ  are the unknown mixture 
probability, mean, and covariance matrix to estimate for each Gaussian mixture 
component ݇ of each tissue type ݐ by the EM algorithm following [9].  

The context model can be learned from datasets with known tissue separations, and 
then the tissue likelihoods on unknown dataset can be inferred by Bayesian expansion 
and flat tissue membership probability from extracted feature vectors.  ݂ሺ݉ ൌ ሻ࢜|ݐ ൌ ݂ሺ࢜|݉ ൌ ሻ݂ሺ݉ݐ ൌ ∑ሻݐ ݂ሺ࢜|݉ ൌ ᇱሻ݂ሺ݉ݐ ൌ ᇱሻ௧ᇲݐ ൌ ݂ሺ࢜|݉ ൌ ∑ሻݐ ݂ሺ࢜|݉ ൌ ᇱሻ௧ᇲݐ  (8)

3 Methods and Results 

Under an Institutional Review Board (IRB) waiver, the first-session CT abdomen scans 
of 65 metastatic liver cancer patients were randomly selected from an ongoing 
colorectal cancer chemotherapy trial. Images are with variable field of views (approx. 
300 x 300 x 400 mm ~ 500 x 500 x 700 mm) and resolutions (approx. 0.5 x 0.5 x 1.5 
mm ~ 1.0 x 1.0 x 7.0 mm). Spleens were manually labeled by an experienced graduate 
student on a volumetric basis using the MIPAV software (NIH, Bethesda, MD [10]). 
All images and labels are cropped along the cranio-caudal axis with a tight border 
without excluding liver, spleen, and kidneys before any processing (following [1]).  

We used 12 of the 65 subjects as training datasets for learning context models for 
eight tissue types, including five manually traced organs (i.e., spleen, liver, kidneys, 
pancreas, and stomach) and three automatically retrieved tissues (i.e., muscle, fat, and 
other) using intensity clustering and excluding the traced organ regions. These 12 
datasets were not considered for quantitative evaluation in the leave-one-out analyses. 
Six context features were extracted, including intensity, gradient, and local variance, 
and three spatial coordinates with respect to a single landmark, which was loosely 
identified as the mid-frontal point of the lung at the plane with the largest cross-
sectional lung area. We specified the number of components of Gaussian mixture 
model, ீܰ ൌ 3. The spleen and non-spleen likelihoods on each target image were 
inferred, and used as a two-fold spatial prior to regularize the SIMPLE atlas selection, 
referred as CL+SIMPLE. We constrained the number of selected atlases as no less 
than five and no larger than ten. When using JLF, we specified the local search radii 
as 3 ൈ 3 ൈ 3 , the local patch radii as 2 ൈ 2 ൈ 2 , and set the intensity difference 
mapping parameter (ሻ, and the regularization term () as 2 and 0.1, respectively (i.e., 
default parameters). We appended Markov Random Field (MRF) for smoothing the 
Gaussian filtered ( ீߪ ൌ 1 ) result of CL+SIMPLE+JLF with the smoothness 
parameter as 0.2, and the incompatibility parameter as -5. 

3.1 Motivating Simulation 

To demonstrate and motivate the benefits of the CL+SIMPLE approach, a simulation 
was constructed using a single CT slice from a representative subject with the spleen 
manually labeled (see Figure 3). Eighty simulated observations were estimated by  
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Fig. 3. The results of the motivating simulation demonstrate the benefits of the CL+SIMPLE 
approach. Using a model in which simulations are drawn from a randomly generated affine 
transformation, CL+SIMPLE more accurately estimates the location, size, and orientation of 
the spleen, and significantly outperforms the considered benchmarks. 

applying a random five degree-of-freedom affine transformation to the target slice. 
Each transformation consisted of a rotational component as well as two translational 
and two scaling components, with the effect of each component drawn from a zero-
mean Gaussian distribution with standard deviations of 2 degrees for the rotational 
component, 1 mm for the translational components and 0.1 mm for the scaling 
components. A representative fusion result is shown for MV, JLF, SIMPLE, and CL-
SIMPLE, with CL+SIMPLE resulting in an estimate that substantially more 
accurately represents the shape, location, and orientation of the spleen. With 20 
Monte Carlo iterations, the spread of DSC values demonstrate significant 
improvement exhibited by CL+SIMPLE, with a median DSC improvement of 
approximately 0.15 over SIMPLE and JLF, and approximately 0.4 over majority vote.  

3.2 Volumetric Spleen Multi-atlas Segmentation 

We performed leave-one-out cross validation for the multi-atlas spleen segmentation 
for 53 scans (excluding the 12 subjects used for context learning). For each scan, all 
other scans (including the training dataset) were considered as atlases (hence, 64 
atlases), and aligned to the target with a multi-stage registration, in the order of rigid, 
affine and a multi-level non-rigid registration using free-form deformations with B-
spline control point spacings of 20, 10, and 5mm [11]. We tested on seven label 
fusion methods (as listed in Table 1). The performances of the methods were 
evaluated on DSC, symmetric mean surface distance (Sym. MSD), and symmetric 
Hausdorff distance (Sym. HD).  

Combined with CL, CL+SIMPLE and CL+SIMPLE+JLF improved mean DSC by 
at least 0.03 over SIMPLE and SIMPLE+JLF, respectively, while the direct 
integration of SIMPLE with JLF does not provide higher accuracy over JLF. 
CL+SIMPLE+JLF outperforms the other methods with the higher median DSC, 
narrower range of DSC, and lower MSD. An extra MRF step effectively removes 
outlier speckled structures in the segmentation (Figure 4), and thus further reduces the 
surface distance errors (Table 1). 

4 Discussion 

We reformulated SIMPLE as a statistical fusion algorithm that is approximately 
optimal for a newly presented non-linear rater model tailored for heterogeneous 
atlases. Revealed in the generalized SIMPLE theoretical framework, we find  
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0.73); however, we considered the direct comparison unfair since our atlas structure, 
i.e., single organ on 65 datasets, did not support some innovative aspects of the Wolz 
approach (re-weighting atlases based on different organs). Lastly, we note that 
proposed generative model naturally leads to an iterative atlas selection, which differs 
from the STEPS approach [12] that first locally ranks atlases, and uses the top local 
atlases for statistical fusion. In the further study, a systematic integration between 
CL+SIMPLE and JLF theories could yield atlas selection and label determination. 
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