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Abstract. The detection of abnormal intensities in brain images caused
by the presence of pathologies is currently under great scrutiny. Selecting
appropriate models for pathological data is of critical importance for an
unbiased and biologically plausible model fit, which in itself enables a
better understanding of the underlying data and biological processes.
Besides, it impacts on one’s ability to extract pathologically meaningful
imaging biomarkers. With this aim in mind, this work proposes a fully
unsupervised hierarchical model selection framework for neuroimaging
data which permits the stratification of different types of abnormal image
patterns without prior knowledge about the subject’s pathological status.

1 Introduction

Measures of pathological load visible on MRI and comparison with healthy tis-
sues can be used to ascertain clinical correlations and infer disease progression [6].
As the presence of pathology leads to unexpected observations (i.e. outlier inten-
sities), from a modelling perspective, two main problems arise: first, bias is in-
troduced in the model parameters’ estimation by the pathological outliers when
segmenting non-pathological tissues [3], [12]; second, there is a need for prior
knowledge in order to design better pathology-specific segmentation algorithms.
Due to pathology specific tuning and the reliance on knowledge-based heuristic
rules [14], [7], these methods are not easily transposed from one pathology to
another [1]. Furthermore, multiple types of outliers might be present [16].

Using a finite weighted sum of Gaussian components, also known as a Gaussian
mixture model (GMM), is probably the most widespread way of modelling the
distribution of observed intensities in neuroimaging data [2]. Optimising the
model parameters is usually performed through the Expectation-Maximisation
algorithm (EM) introduced in [4]. Due to the presence of pathology, an a priori
fixed number of Gaussian components might not be appropriate to tackle the
problems related to the presence of pathology-linked intensities [5]. Moreover, as
underlined in [10] and [15], natural appearing features such as the cerebrospinal
fluid (CSF) are not well explained by a single Gaussian component due to the
high variability of their contents.

This work proposes a Bayesian inference criterion (BIC) regularised adap-
tive hierarchical Gaussian mixture model selection framework, enabling an au-
tomated selection of the number of components necessary to model both the
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outlier (pathologies such as lesions, tumours or vasculature) and the inlier part
(normal anatomical tissues such as white matter (WM), grey matter (GM), CSF
or non-brain (NB)) of the observed data. The model selection framework exploits
a split-and-merge strategy (SM) [9] for model search, which combined with the
BIC, ensures a balance between computational burden, model fit and model
complexity. Additional spatial knowledge is introduced through the use of prob-
abilistic tissue atlases and a Markov Random Field (MRF) [14]. After describing
the data generative model and the model selection and inference strategies, we
present results illustrating the generality of the proposed method both on sim-
ulated and clinical data.

2 Methods

2.1 General Modelling and EM Algorithm

The proposed framework models the intensity observations as a hierarchical mix-
ture of Gaussian and uniform components. In the following, Y denotes the set of
N log-transformed intensity vectors of dimension d, {y1, · · · ,yn, · · ·yN}, where
N and d are respectively the number of voxels and the number of
available modalities (T1w, T2w, PD, etc). The data likelihood for model K
is defined as F (Y|ΘK), where ΘK represents the model parameters. More
specifically, we propose a three level hierarchical model: a first level (l) char-
acterising if an observation is an outlier or an inlier, a second level (j) char-
acterising its tissue class (i.e. if an inlier/outlier voxel belongs to WM, GM,
CSF or NB) and a third level (k) characterising the multiple intensity clus-
ters/distributions of each inlier or outlier tissue class. In order to robustly model
the data, one can separate the first level of the model into two density func-
tions I and O, that correspond respectively to the inlier part, modelling the
healthy tissues, and to the outlier part, related to the unexpected tissues, such
that F (yn|ΘK) = bI · I (yn|ΘK) + bO · O (yn|ΘK) with bI + bO = 1. In this
scenario, previously proposed models have classically assumed a uniform distri-
bution for O [17]. At the second level of the hierarchical model, the distribu-
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are respectively the mixing weight for l, the class weight for lj and the like-
lihood of the data at voxel n for the tissue class lj. In the third level of this
multi-layered model, indexed by k, each anatomical class density distribution
is finally modelled by a mixture of Gaussian and/or uniform components such
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, where μ and Λ are respec-

tively the multivariate mean and covariance matrix. Assuming iid observations,
the multi-layered mixture model can finally be written as follows:
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Fig. 1. Example of hierarchical model with 4 main tissue classes (GM, WM, CSF and
NB). The lighter colored components follow a uniform distribution.
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The final model structure is depicted in Figure 1 where both the inlier and
outlier versions of the GM, WM, CSF and NB classes are separated into their
sub-clusters. The EM algorithm is used within this setting to optimise the model
parameters. Introducing the labelling configuration setZ={z1, · · · , zn, · · · , zN},
where zn is a unity vector of dimension

∑
l

∑
j Klj , with one component being

equal to 1 and all the others to 0, the EM algorithm alternates between the expec-
tation of the complete data log-likelihood E

Θ
(t)
K

[log (F (Y|Z,ΘK,π)F (Z|π))]
at iteration t, also known as the E-step, and the maximisation of this func-
tion with respect to the different parameters, also known as the M-step, where
π = {B,A,W} are the sets of weights attributed to the different components
of the mixture levels. At this point, three main types of parameters have to
be optimised: first, the parameters of each Gaussian distribution θljk ; second,
the contribution wljk

of each distribution to the overall observation model; and
third and most importantly, the number of Gaussian components Klj necessary
to describe the underlying distribution of tissue class lj .

2.2 Spatial and Smoothness Priors

Probabilistic tissue atlases are used to introduce knowledge in the generative
model about the location of each tissue class lj . As bl is initialised to a global

value, π has to be normalised to π = {B̃, Ã,W}, so that ∀n,∑J
j=1 ãnj = 1

and
∑

l∈{I,O} b̃nl =
∑

l∈{I,O} b̃l = 1. The priors B̃ and Ã follow a Dirichlet

distribution as in [11].
In addition, a MRF is used to spatially regularise the labelling ljk as in [11,14].

This work defines a symmetric MRF energy matrixH of sizeKlj×Klj containing
the neighborhood clique energies, such that

H(l′j′k′ , ljk) = H(ljk, l
′
j′k′) =

⎧
⎨

⎩

0 if j = j′

0.2 if (j, j′) = (WM,CSF) or (G/WM,NB)
0.1 otherwise
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Let pm be the set of responsabilities for voxel m, updated with Bayes’ Rule dur-
ing the E-step. Under a mean field approximation, with Nn the set of neighbours
of voxel n, the labelling Z can be defined as:

F (Z|H,π) ∝
N∏
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∏

l∈I,O

J∏

j=1

Klj∏

k=1

[
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2.3 Model Selection

The flexibility of the proposed model lies in the automatic selection of the ap-
propriate number of components Klj needed to model each lj class. Ideally, this
parameter could be optimised using a Markov Chain Monte Carlo algorithm.
However, due to the computational complexity of such an approach, here, a split-
and-merge (SM) algorithm is used for model selection [9,13]. In this framework,
a merge operation consists of transforming two close enough Gaussian distri-
butions of the same lj class, ljk1 and ljk2 , into a single component ljk . A split
operation is the transformation of a single distribution, Gaussian or Uniform,
into two subcomponents. The symmetric Kullback-Leibler Divergence (KLD) is
used to define which component(s) should be split (largest KLD compared to the
observations) or merged (smallest KLD between the components’ distributions).
The SM algorithm alternates between a split and a merge operation given the
current model estimates. Parameters’ initialisation when splitting or merging
Gaussian distribution(s) follows the strategy used in [9]. As no closed-form solu-
tion exists when splitting a uniform distribution, a 2-class k-means algorithm is
used to estimate the 2 sub-clusters of the samples Ulj . The mean and covariance
of the cluster with the smallest variance is used to initialise a new Gaussian
class. Finally, the proposed method is optimised using an iterative conditional
modes (ICM) approach, where it switches between the optimisation of the model
parameters and the model selection. In order to provide a bias-variance trade-off
between accuracy and complexity of the model, the Bayesian inference criterion
for model K, expressed as BIC(K) = κ log (F (Y|ΘK)) − C(K) is used as an
objective function. It penalises the log-likelihood of the model according to the

cost function C(K) =
[∑

l

∑
j Klj

(
(d+1)d

2 + 1
)
− j
]
· log(N · κ) that depends

on the number of free parameters to optimise. Here, κ is a correction factor
accounting for the proportion of voxels considered as independent [8]. For each
ICM iteration, the model evolves given the most probable model. If the selected
model fails to increase the objective function BIC(K) after convergence of the
EM, the next most probable model is tested. The SM search stops when all
models have been tested.

Implementation Details. In this implementation, the weight for the inlier
uniform class is set to 0, as inlier classes are expected to follow a GMM. Also, in
order to avoid instability in the inference strategy, the Dirichlet priors are only
updated when the initial model converges. The code and further implementation
details will be made publicly available.
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Table 1. DSC and KLD when using EMS and BaMoS for different modality combi-
nations and lesion loads on the Brainweb MS model

Mild Moderate Severe
Modalities EMS BaMoS EMS BaMoS EMS BaMoS

DSC (%)

T1T2PD 4.13 53.31 28.77 54.8 53.78 65.45
T1T2 2.43 50.94 16.57 52.08 35.28 63.82
T1PD 13.93 24.63 50.44 59.67 69.24 78.77
T2PD 3.74 11.58 27.42 39.50 53.43 64.42

KLD(×10)

T1T2PD 6.10 4.21 6.16 4.12 6.13 4.08
T1T2 0.95 0.29 0.95 0.28 0.93 0.28
T1PD 1.98 0.46 1.99 0.46 1.99 0.45
T2PD 3.03 1.01 3.05 1.00 3.05 0.99

3 Validation

3.1 Simulated Images - Brainweb

The simulated multiple sclerosis (MS) lesion model provided by Brainweb
http://brainweb.bic.mni.mcgill.ca, with ground truth lesion segmenta-
tions, was used to evaluate the performance of the proposed model, here de-
noted as BaMoS (Bayesian Model Selection). All combinations of the 3 available
modalities (T1w, T2w, PD) on the 3 lesion loads (mild, moderate, severe), at
3% of noise and without magnetic field inhomogeneity were assessed. In this
experiment, the parameter bO was initialised to 0.01. The proposed method
was compared with the classical lesion segmentation method by van Leemput et
al. [14], here denoted as EMS, with the parameter 3 for the Mahalanobis distance
threshold and MRF parameters as defined in Sec 2.2. The outlier components
Ojk of the proposed model with μOjk

> μIWM and j = WM, for the T2 and PD
modalities, were automatically selected as lesion-related intensity clusters. These
MS lesion clusters are then added together to form the total lesion segmenta-
tion. The Dice similarity coefficient (DSC) and the KLD between the modelled
distribution and the observations, here used to compare respectively the binary
lesion segmentation overlap and the quality of the model fit, are gathered in
Table 1, showing the general improvement brought by BaMoS. Figure 2 depicts
the different intensity clusters associated with MS lesions. Note that each lesion
component is related to the lesion density in the ground truth.

3.2 Clinical Data - Type 2 Diabetes

Type 2 Diabetes (T2DB) patients typically present white matter hyperintensities
(WMH) that correlate with cognitive decline. Segmentation of such variable out-
liers is needed to study their evolution and their clinical correlates. The behavior
of BaMoS on clinical data with multiple types of outliers was evaluated using
data with WMH from the MICCAI MRBrainS2013 challenge. For this study,
brain images from T2DB patients and controls (age > 50) were acquired on a

http://brainweb.bic.mni.mcgill.ca
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Fig. 2. Top) A zoomed-in section of the T1w (a), T2w (b) and PD (c) simulated
Brainweb images with severe MS lesion load followed by the ground truth lesion seg-
mentation (d). Bottom) The three automatically extracted probabilistic lesion maps
(e-g), followed by their sum (h) overlayed on the T2 image.

Fig. 3. Components of interest obtained using BaMoS. From left to right) FLAIR image
(a), inlier component of WM related to penumbra (b), lesion-related WM outliers (c -
d) and WM outlier component localising cysteine-iron complex deposition in the globus
pallidus (e).

3T Philips scanner. Multi-slice T2-FLAIR images (0.958 × 0.958 × 3 mm) and
T1w 3D registered images were used. Further details about the acquisition and
preprocessing can be found at http://mrbrains13.isi.uu.nl. Manual WMH
segmentation was performed on 16 FLAIR images. BaMoS was run using the
parameters detailed in Sec. 3.1 after extraction of the brain tissues and reg-
istration of the statistical atlases to the T1w image. The results obtained for
BaMoS and EMS are gathered in Table 2. A 1-tailed t-test showed a significant
improvement in terms of both model fit (p-value<0.01) and DSC (p-value<0.05)
for BaMoS compared to EMS. The R2 measure of correlation with the manu-
ally segmented WMH’s volumes was improved with BaMoS (0.938) compared
to EMS (0.887). Figure 3 presents an example of different components of inter-
est separated by BaMoS. BaMoS automatically found separate clusters for both

http://mrbrains13.isi.uu.nl
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Table 2. DSC and KLD when comparing EMS and BaMoS performance on WMH
segmentation for the studied T2DB and control cases

Case 1 2 4 5 6 7 8 9 10 11 13 15 17 18 19 20

DSC (%)

EMS 24.2 5.4 40.9 47.4 69.2 5.9 45.7 7.3 20.0 55.5 33.3 24.7 41.7 52.9 3.7 9.3

BaMoS 57.6 8.0 67.8 64.2 80.3 0 69.1 4.0 19.4 49.1 32.0 0 56.4 75.3 4.3 15.3

KLD (×10)

EMS 1.23 1.06 1.59 1.36 1.22 1.34 1.17 1.08 1.57 1.30 1.11 1.27 1.23 1.39 1.38 1.25

BaMoS 0.67 0.84 0.69 0.86 0.73 0.71 0.88 0.65 0.76 0.72 0.69 0.84 0.83 2.21 0.76 0.74

WM lesion-related hyperintensities and WM hypointensities, strengthening the
generalisability argument of the proposed method. The lesion-penumbra related
subclass of the WM inlier class might be of interest to study WMH evolution and
apparition. In low performance cases, corresponding to milder hyperintensities,
the information in the data and model complexity constraints did not support
the existence of an extra outlier lesion-related subclass. Finally, we noted the
stability in the number of components for each inlier class of the selected model
across all subjects.

4 Discussion and Conclusion

This work presents an automated model selection strategy that differentiates
between different types of outliers. The main interest of the developed outliers
modelling strategy resides in its generality. Indeed, its performance in terms of
detection of specific types of outliers, such as MS lesions or white matter hy-
perintensities, is comparable to other methods specifically tuned towards this
goal. However, the proposed method can also simultaneously model other types
of outliers (e.g. vessels, iron deposition, etc). This property is of major interest
in neurodegenerative disease studies, since different pathological changes might
be present concomitantly. Furthermore, the ability to distinguish different lesion
densities and their spatial location might be of further interest to help charac-
terise the underlying pathophysiological process. Further work will investigate
the balance between the different model parameters, their relationship with the
image characteristics and the contribution of the different used modalities.

Acknowledgements. This work was supported by the Wolfson Foundation, the
Faculty of Engineering Science UCL, EPSRC (EP/W046410/1, EP/H046410/1,
EP/J020990/1, EP/K005278), the MRC (MR/J01107X/1), the EU-FP7 project
VPH-DARE@ IT (FP7-ICT-2011-9-601055), NIHR Queen Square Dementia
Biomedical Research UK, the NIHR UCLH/UCL Biomedical Research Centre
(High Impact Initiative) and Alzheimer’s Research UK (ARUK). The Dementia
Research Centre is supported by ARUK, Brain Research Trust and the Wolfson



330 C.H. Sudre et al.

Foundation. The authors would like to thank the staff and patients of the Vas-
cular Cognitive Impairment Group at UMC Utrecht without whom collection
and generation of the diabetes-related data would not be possible.

References

1. Admiraal-Behloul, F., van den Heuvel, D., Olofsen, H., van Osch, M., van der
Grond, J., van Buchem, M., Reiber, J.: Fully automatic segmentation of white
matter hyperintensities in MR images of the elderly. NeuroImage 28 (2005)

2. Balafar, M.A.: Gaussian mixture model based segmentation methods for brain MRI
images. Artificial Intelligence Review (2012)

3. Battaglini, M., Jenkinson, M., De Stefano, N.: Evaluating and reducing the impact
of white matter lesions on brain volume measurements. HBM 33, 2062–2071 (2012)

4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM Algorithm. J. R. Stat. Soc. B 39(1), 1–38 (1977)

5. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and den-
sity estimation. J. Am. Statist. Assoc. 97(458), 611–631 (2002)
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