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Abstract. In this work we propose a novel method to correct echo planar imag-
ing (EPI) distortions in diffusion MRI data acquired with reversed phase encoding
directions (“blip-up blip-down” acquisitions). The transformation model is sym-
metric, diffeomorphic and capable of capturing large deformations. It can take
advantage of a structural MRI target and include the contribution of diffusion
weighted images, in addition to EPI images acquired without diffusion sensiti-
zation. The proposed correction significantly outperform existing strategies, as-
suring anatomically accurate characterization of the orientation, mean diffusivity,
and anisotropy of white matter structures in the human brain.

1 Introduction

Susceptibility and concomitant field distortions in echo planar images (EPI) have been
shown to affect diffusion MRI tractography findings [7]. Correction methods have typ-
ically involved By field maps [8] or anatomical image targets [12]. The corrections
achieved with these methods, however, are suboptimal in areas of large field inhomo-
geneities, with associated large distortions and large signal pile-ups or expansions. More
recently, a methodology which involves the acquisition of the same EPI image twice
with reversed phase-encoding gradient originally proposed by [5,4] has been revisited,
due to its potential ability to better handle regions of severely piled-up or expanded
signals. The original implementation of this method employed the “line-integral” prin-
ciple, which stated that the cumulative signal along a phase encoding line between
corresponding points in the up and down image should be equal and that these points
should be equidistant to the true anatomical location. The original correction method
suffered from numerical instabilities and non-smooth deformation fields because of its
1D nature. Andersson et al. proposed a different strategy [1], which aimed to estimate
the By map from up and down images together in an image restoration framework. This
method, has been released as the “fopup” tool within the popular FSL package. Elastic
or diffemorphic registration based approaches have also been proposed [6,10].

Tools that utilize blip up - blip down acquisitions generally show the potential for su-
perior performance compared to methods using only a single phase encoding direction.
However, in many applications to real clinical data, the correction can still be unsatis-
factory. This is likely due to inconsistencies between the real data and the underlying
physical model, which assumes a stable By field regardless of subject motion, magnetic
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drift or heating. Additional artifacts not accounted for, such as Gibbs ringing, ghosts,
gradient non-linearities, phase cancellations and the effects of hitting the noise floor,
further complicates the problem. In this work, our aim is to propose a robust correction
framework for blip-up blip-down acquisitions that suffer less from these limitations.

2 Methodology

The main distinctive properties of the proposed registration framework include:

— Deformations: The transformation model is symmetric, diffeomorphic and capable
of capturing large deformations with its time varying velocity based model [2].

— Two deformations: Instead of one deformation field (and its inverse), we employ
two co-dependent deformation fields, which are still almost inverses of each other
but with enough flexibility to account for differences in By field between blip up
and down acquisitions.

— Structural image information: Constraining the flow of the velocity fields compos-
ing the deformation fields to pass through a distortion-free structural image at the
middle time point is hypothesized to significantly improve registration accuracy.

— Diffusion image information: In typical blip-up blip-down correction frameworks,
regions homogeneous in » = 0 images tend to be freely deformable with insufficient
spatial constraints. With other methods, we observed that even with near-perfect
alignment between the b = 0 s/mm? images and the structural image, DTI-derived
directionally encoded color (DEC) maps sometimes reveal anatomically inaccurate
corrections. Therefore, the proposed method also employs information extracted
form blip up blip down diffusion weighted images to improve anatomical accuracy.

— Anisotropic deformation regularization: A new form of deformation regularization
is employed to prevent bleeding of small structures into others. Instead of using
traditional Gaussian or B-Splines kernels, this method employs a PDE based regu-
larization that results in locally anisotropic smoothing of the deformation fields.

An illustration of the complete correction pipeline is presented in Figure 1. This
manuscript will focus on the "DR-BUDDI correction” phase of this pipeline.

2.1 Blip-Up Blip Down Correction

The symmetric registration idea employed in this work originates from the SyN algo-
rithm of Avants used in the popular ANTS registration toolkit [2,3]. The original SyN
optimization function formulation aims to register the fixed (/,,) and moving image
(Ljown) onto a middle image at t = 0.5 as: (without the regularization term)

& = /Q CC(Lip(91(x,0.5)), Taoun(92(x,0.5)),X)dQ2 M

where £ signifies the image domain, CC is the cross-correlation metric, /,,, is the mean
subtracted version of /., ¢ (X, ) the displacement field that maps the up image to down
and ¢ (x,7) the field mapping the down image to up. Even though theoretically ¢; and
¢, should be of equal norm, the middle images I,,,(¢1(x,0.5)) and Zzp,n ($2(x,0.5) can
lie anywhere on the hyperplane between the original images and do not necessarily have
to be the distortion-free images, which is a single point on this hyperplane.
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Fig. 1. DWIs are first corrected for motion&eddy currents distortions, then a quick tensor fitting is
performed to computed the estimated b = 0 images and synthetic DWIs. Quadratic registration is
performed with the b = and the structural images to estimate the concomitant fields. Subsequently,
the blip up-down correction is performed. All transformations are combined to yield the distortion-
free up and down data, which are later combined to produce the final ’signal corrected” dataset.

2.2 Metric 1 - Incorporating Geometrical Structural Information

To constrain the flow of displacement velocity fields, the middle images are constrained
to pass through a distortion-free structural image . at the middle time point as:

&= /g (CC (Lup (91 (x,0.5)) ,.%) +CC (L Liown (92 (x,0.5))))dQ ()

This metric encourages the similarity between the structural image and the middle im-
ages. Note that it is different from registering the two images to the structural because
the displacement fields ¢; and ¢, are of the same norm and can be inter-related (Sec-
tion 2.4). Therefore, this formulation enforces the up image to go through the structural
image at t = 0.5 during registration. Displacements can be computed as decribed in [2]:

& 2< 1, S > <Ly, > )
00 ™ < sz s\ T gy, St |17 OOV O

where Iy, is 1,,5(¢1(x,0.5)) and < A,B >= ¥ (A(x) — ua)(B(x) — up). This metric is
suitable for calculating geometric displacements but it does not take into account the
signal redistribution that should accompany the deformation.

2.3 Metric 2 - Addressing Signal Redistribution

As described by Bowtell [4], once a correspondence between the up and down images
is established, signal redistribution can be computed with geometric average as:

I.I
K =2 "o , :/ CC(K,S,x)dQ 4
I;ip"f_lt/j 62 0 ( ) ( )

own
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This metric optimizes the similarity between the anatomical and the final signal-
redistributed images. Displacements can then be computed with chain-rule as: 952 =

& 9K
IK 90, "

& 2<K, 7> ( <K', > ) 5)

0K <K K ><9.9>\" <K, K>
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Metric 2 ensures proper signal redistribution only for the combined image K. The cor-
rection of the individual images /,, and I,,, may not be optimal. Therefore, in our
algorithm we use a (equally) weighted combination of Metric 1 and 2.

2.4 Constraints and Other Properties of the Registration

Phase Encoding Direction (pé): The gradient formulations of Equations 3 and 5 result
in free-deformations, which need to be constrained along 17% to physically model the
system. Let %, and g0, be the rotational components of the quadratic registration
that maps the up and down images to the structural image respectively. Because the
diffeomorphic registration is performed on the structural space, pé become oblique. For
simplicity, let 17% be the y-axis, then the gradients are projected as:

0
851' aél
T -
eu _/up [0] ) {aq)] }Féu” = (a(]) *Peu )P@up

Enforcing Deformation Equality: Theoretically, only one deformation field ¢; and its

inverse ¢, ! would be sufficient to correct the up and down images. Because of the
reasons mentioned in Section 2, we found that employing two co-dependent fields ¢,
and ¢, with soft-constraints outperforms the former model. Another term is added to
the cost function as: éif =&+ B||¢1 — ¢, '||. Then displacements can be rewritten as:

&7 9& B &\ " &
a¢1 (X) - (9¢1 (X) (jT jdown (9@) (X) - (9¢1 (X)> (7)

where f is a continuous user-defined parameter that forces ¢ and ¢, ! to be identical
when set to one and leave them unconstrained when zero.

2.5 Image Modality for /,, and /;,,,

Other methods compute the deformation fields using only non-diffusion weighted b =0
images. Having 7, contrast, b = 0 images are homogeneous in regions such as the brain
stem, where different tracts are in close proximity. Using only » = 0 images may cause
improper distortions of different pathways, sometimes even merging them into a single
tract. To address this problem, we perform a vector-image based registration, using
synthesized DWIs in addition to the b = 0 image. The displacements are computed
as a weighted sum over different channels. The number of diffusion weighted images
used in registration is a user defined parameter (default=6) with DWIs synthesized with
b = 1000 s/mm? and gradients generated from electro-static repulsion algorithm.



222 M.O. Irfanoglu et al.

2.6 Deformation Regularization

Traditionally, regularization of displacement fields have been achieved with convolution
of Gaussian or B-Splines kernels. In this work, we preferred to employ an anisotropic
filter to avoid blending of neighboring regions such as the brain stem and the surround-
ing cerebro-spinal fluid. For this purpose, vector valued image regularization framework
proposed by Tschumperlé [11] is employed as: ¢, /dt = trace(TH®?). The Hessian
matrix H is computed from the x, y and z components of the deformation field ¢; and the
structure tensor field T is computed directly from the vector images I}, - Five smoothing
iterations are performed for regularizing the fields.

3 Experiments

High-quality, good spatial resolution data (matrix size=128 x 128, 2mm isotropic, SNR >
30) with very large distortions were collected from one subject on a GE 37 scanner with
no parallel imaging. Diffusion scans consisted of 10 5= 0 and 60 b = 1100 s/mm? im-
ages. The acquisition was repeated for both phase encode directions; Anterior-Posterior
(AP) and Right-Left (RL) with both blips, yielding four datasets: AP,, AP, RLj,, RL;,.
The assessment of the quality of the correction was based on the assumption that better
corrections should lead to higher similarity between tensor quantities computed from
corrected AP and RL data. This assesment was performed both by visual inspection of
the corrected b = 0 images to the structural image and the directionally encoded color
(DEC) maps [9] and analysis of difference images of Fractional Anisotropy (FA) maps.
Results from two existing methods, topup and Holland method, were also generated. To
validate our hypotheses of Section 2, we also performed tests to show the contributions
of using a structural image, using DWIs v.s. using just the » = 0 image and using only
a single deformation field.

4 Results

Figure 2 displays the distorted up and down b = 0 images at two slice levels.

The corrected images with the pro-
posed and existing methods for the
first slice level can be found in Fig-
ure 3. The proposed algorithm pro-
duces very sharp tissue interfaces,
an anatomically accurate shape and
very similar AP, and RL.,, com-
pared to the other methods. The
Holland method does not converge
because the phase encode direction
of the AP and PA were not collinear
in this dataset due to subject motion.

The agreement between the FA maps Fig.2. The original distorted blip up and blip
of the corrected AP and RL data is down images for two slice levels, for both the AP

and RL data. The distortions in this dataset are
very large.

a) Up&down images from AP data b)Up&down images from RL data

high with the proposed method (Fig-
ure 4.a).
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a) Proposed

Fig. 3. Corrected b=0 images for a) proposed , b) Topup and ¢) Holland methods along with the
structural image (d), with AP, (top) and RL.. (bottom), for the first slice level

No structures are present in the AP,,,—RL, difference maps
whereas the fopup method shows misalignement especially around
the genu of the Corpus Callosum and internal capsule (Figure 4.b).
The median of the absolute value of all brain voxels in the difference
image was significantly lower for DR-BUDDI compared to "topup”
(p ~ 0 with non-parametric Wilcoxon test).

Figure 5 displays the corrections for the brain stem level. At this
level, CSF surrounding the brain stem bleeds into the white matter
with all methods with varying degrees. Figure 6 displays the enlarged
RL.or» DEC maps of this region. With the proposed method, CST
and inferior cerebellar peduncles are clearly distinct and show high
anisotropy, whereas with the topup method, the two lateral CST bun-
dles are split into three with an artifactual bundle created at the mid-
sagittal line. The transverse pontine fibers also bleed into CSE. With
Holland’s method, the two CST bundles are instead merged into one.

Fig.4. FA differ-
ences

a) Proposed

ructura

a Propose

Fig. 5. Corrected images for a) proposed , b) Topup and c¢) Holland methods
along with the structural image for the second slice level Fig.6. DEC

maps
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4.1 Validation of Distinctive Properties

Results presented so far indicates that the proposed method performs better than ex-
isting techniques. In this section, we will focus on specific properties of the proposed
method and analyze their independent contributions to the overall DR-BUDDI pipeline.

Effect of Using the Structural Image: We analyzed the contribution
of using a structural image to guide the flow of the velocity fields. In
general we found that the use of the structural image makes the registra-
tion more robust and anatomically correct. In Figure 7 we show the same
brain used in Figure 3, with and without using a structural image in the
registration. The correction obtained without using the structural image

shows imperfect correction in the frontal areas.

Effect of Using DWIs: Figure 8
displays the effect of using DWIs
with the b = 0 image for correc-
tion. The Pons is homogeneous
in T,W and using only the b = 0
may not contain enough informa-
tion for a correct registration of
pathways within the Pons. In fact,
Figure 8.b shows that the Trans-

Fig.7. Struc-
tural effect

Fig. 8. Effects of using DWIs for correction

verse pontine fibers in the ventral aspect of the Pons (arrows) appear broken. Including
DWIs within a vector-image registration framework solves this issue (Figure 8.c).

Effect of Two Deformations: The effect of using two
deformation fields v.s. one was tested by setting f3 to 1
in Equation 7. Figure 9 displays the displacement fields
obtained, at the first slice level, with one and two defor-
mation models. The initial observation is that even with
the two deformation model, the displacement fields
are almost inverses of each other, which is an implicit
property of our system. However, there are differences
between ¢; and ¢ also between ¢, and ¢~ '. Two de-
formation model is able to model a larger displacement
with ¢; in the orbito-frontal regions, whereas this was
not needed for the moving image as indicated by the
similarity of ¢, and ¢! in this region. The two defor-
mation model is also able to capture more local details
due to the smoothing effect that the other model inher-
ently contains.

-
2

&

."_
n*/

Fig.9. Displacement fields with
two deformation model (top row)
and single deformation model
(bottom row)
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5 Conclusions

In this work, we proposed a novel blip-up blip-down correction method for diffusion
MRI. Our method is based on a symmetric, diffeomorphic registration framework, ro-
bust at dealing with common issues such as Gibbs ringing, ghosts and motion artifacts.
One of our main observations is that it is not sufficient to quality assess only the b =0
s /mm? images for diffusion MRI as the DEC maps could reveal spurious, anatomically
incorrect features that are not apparent on the former. Therefore, we decided that it was
of fundamental importance to make use of DWIs for correction. Using DWIs improved
correction quality throughout the white matter but the effects were more pronounced
in the brain stem. All the other factors such as the use of a structural MRI, anisotropic
regularization and the deformation model also contributed significantly to the overall
performance. Future work involves the acquisition of phantom data and creation of
simulated models to systematically analyze the limitations of the assumptions underly-
ing blip up/down strategies, such as hitting the noise floor in high q regimes, and phase
cancellations in k-space, which invalidate the mass preservation principle.
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