Topology Preservation and Anatomical Feasibility
in Random Walker Image Registration

Shawn Andrews, Lisa Tang, and Ghassan Hamarneh

Medical Image Analysis Lab, Simon Fraser University, Canada

Abstract. The random walker image registration (RWIR) method is a powerful
tool for aligning medical images that also provides useful uncertainty informa-
tion. However, it is difficult to ensure topology preservation in RWIR, which is
an important property in medical image registration as it is often necessary for
the anatomical feasibility of an alignment. In this paper, we introduce a tech-
nique for determining spatially adaptive regularization weights for RWIR that
ensure an anatomically feasible transformation. This technique only increases
the run time of the RWIR algorithm by about 10%, and avoids over-smoothing
by only increasing regularization in specific image regions. Our results show that
our technique ensures topology preservation and improves registration accuracy.

1 Introduction

Medical image registration (MIR), which is finding a spatial transformation that maps
anatomical objects in one image to corresponding objects in another image, is a key step
in many medical analysis tasks, including tracking disease progression, multi-modal
fusion, shape analysis, and atlas construction. To encourage anatomical feasibility, reg-
ularization is imposed on the transformation to encourage smoothness and topology
preservation (TP). However, regularizing sufficiently to ensure anatomical feasibility
without over-smoothing and losing accuracy can be difficult or computationally ex-
pensive. A variety of techniques have been proposed to ensure TP, including implicitly,
e.g. by expressing transformations as integrals over vector fields [1], or explicitly, e.g.
by penalizing the lack of TP in the regularization objective term [9].

Recently, registration approaches that represent transformations in the discrete do-
main have arisen [4,3,11,12]. In discrete approaches every pixel (or voxel) is assigned a
displacement vector from a predefined set, referred to as a discrete transformation, al-
lowing the image registration energy to be formulated as a Markov random field (MRF)
and well established optimization techniques such as graph cuts [2] to be utilized.

The discrete random walker image registration (RWIR) algorithm [3] uses a globally
optimizable Gaussian MRF energy for regularization and has been shown to achieve re-
sults comparable to other state-of-the-art registration schemes [3,10,7]. RWIR provides
a probabilistic registration that can be leveraged to calculate uncertainty. Registration
uncertainty can be utilized to direct clinicians to possible registration errors or image
abnormalities, and can influence diagnostic and therapeutic decisions. [8,6].

A useful feature of RWIR is that it seamlessly allows for spatially adaptive regular-
ization weights, which have been shown to improve registration accuracy compared to
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a constant regularization weight [11]. However, it is not clear a priori how much regu-
larization is required in RWIR to ensure topology preservation. One option to deal with
this is time consuming trial and error. Alternatively, post-processing techniques such as
scaling and squaring [1] can convert a transformation to one that preserves topology,
but such methods discard the uncertainty information provided by RWIR.

In this paper, we introduce a technique that determines if a set of regularization
weights for RWIR will result in a topology preserving transformation without having
to run the RWIR algorithm. We use our technique to iteratively increase regularization
in regions where topology is not preserved, avoiding over-smoothing in other regions.

2 Anatomical Feasibility in RWIR

2.1 RWIR Review

In RWIR, we wish to align two images, I; and I, defined over €2, a set of n pixels (or
voxels). We define  as the n by d matrix of pixel locations, where d is the dimension-
ality of the images. Transformations are represented using a discrete set of K displace-
ments, V = [vy,...,Vg|, where v; € RY. A probabilistic transformation assigns, to each
pixel a, probabilities for the displacement vectors, u? = [u4,...,u%] € Px. Px C RX
is the unit simplex of positive vectors that are normalized to sum to one. u; denotes a
vector of length n of the probabilities of v; at each pixel.

The first step in RWIR is to calculate prior probabilities for each pixel a and dis-
placement vy from a data similarity term fy;, (11,12, a,vi). The prior probabilities at a
are given by p* = [p{,..., p%| € Pk, p{ = fm(l1,12,a,Vi)/Z*, where Z, normalizes.

The second step is to construct a weighted image graph, with a node for each pixel
and a weighted edge between neighboring pixels, and use it to regularize the displace-
ment labels. The edge weights are stronger for pixels of similar intensities; for pixels
a and b, and B = 50, we use edge weight w, , = exp(—fB|I(a) —I(b)|). Defining W as
the n by n matrix of edge weights and D as the n by n diagonal matrix of the row sums
of W, then L = D — W is known as the combinatorial Laplacian of the image graph. The
probabilities uy are then calculated by minimizing the energy:

Egw(we) =w{ Lug + (we—p) ' T (we—py) , ke{l,...,K}, (n

where I" is an n by n diagonal matrix of spatially varying weights 1,...,%,, controlling
the trade-off between regularization and image similarity. We note the larger the value
for 7,, the more regularization is applied at pixel a. We must solve (1) for every k €
{1,...,K}, butdenoting U = [uy,...,ug] and P = [p,...,Pg], 7 by K matrices, we can
combine the K problems into one linear system of equations, which we solve for U to
get the RWIR probabilistic transformation:

(L+rhu=r-'p. 2

2.2 Anatomical Feasibility for Probabilistic Transformations

TP primarily requires that the Jacobian! of T, J(T), is positive everywhere. We adopt
the convention that a probabilistic transformation is TP if its expected transformation,

! For brevity, we refer to the Jacobian determinant as simply the Jacobian.
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with the expected displacement taken at each pixel, has a positive Jacobian everywhere.
Formally, the expected transformation corresponding to a probabilistic transformation
U is given by:

T =Q+UV'. 3)

T* is a discrete transformation, whose @' row corresponds to the location pixel a
is mapped to. J(T') is defined in the continuous case as a function of the derivatives
of the components of 7. So, to discretize the Jacobian, we must choose a discrete ap-
proximation of the derivative operators. It has been shown that if all combinations of
forward and backward difference operators along the d axis directions, A/ and AZ,
i€ {l,...,d}, are used to construct 2¢ approximate Jacobians, and if they are all posi-
tive everywhere, then the continuous bi- or tri-linear interpolated version of 7* will also
have positive Jacobian everywhere [5]. We thus define the discrete Jacobian at pixel a,
Ja(T), to be the minimum of the 2¢ approximate Jacobians.

We note that while TP is often a necessary condition for anatomical feasibility, it is
not always sufficient: transformations exhibiting excessive stretching may be anatom-
ically infeasible. These conditions can be identified by pixels with very large or small
(but still positive) Jacobians.

Our goal in the following sections is to choose spatially adaptive weights 71, ..., %, in
such a way that U, calculated from (2), corresponds to an anatomically feasible expected
transformation 7* with respect to its Jacobian values.

2.3 Efficient Jacobian Calculation

In this section, we introduce a technique for calculating the Jacobian of the expected
transformation J(T*) without needing to calculate the probabilistic transformation U.
This technique is orders of magnitude faster than the calculation of U via (2), allowing
regularization to be increased where needed, prior to running the RWIR algorithm.

In order to calculate J(7™), where T* = [t], ..., t;], we must calculate Ait; for i, j €

{1,...,d}, where A; € {AF,AB}. Combining (2) and (3) gives
Ay =4 (Qej+ (L+T7) TPV Tey) )

where e; is the j standard basis vector for RY. We define b =1 “TpvTe jand X; =

-1 . . .
(L+F _1) b;, and note that x; can be calculated without performing an expensive
matrix inversion by solving the system of equations

(L+F71>Xj:bj. (5)

We note the similarity between (2) (used to solve for U) and (5). The difference is that in
(5), the right hand side has 1 column, whereas in (2) the right hand side has K columns,
which is on the order of hundreds or even thousands in 3D registration.

Solving for x; allows us to rewrite (4) as:

Aitj- = Aier +AX; . (6)
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Fig. 1. A 1D example with circles representing pixels, unit distance apart, and arrows representing
their displacement vectors. (i) The red pixels have crossing displacements and thus a negative
Jacobian. (ii) After increasing regularization at the red pixels, the orange and purple pairs of
pixels now have crossing displacements instead. (iii) Increasing the regularization of pixels based
on their proximity to the location of the negative Jacobian in (i) results in a TP transformation.

Once (6) is solved for each (i, j) pair, we can calculate J(T*). By repeating this process
for each combination of forward and backward operators, we will determine if and
where the discrete Jacobian of the expected transformation is negative.

The calculations in this section consist mainly of efficient multiplications between
sparse matrices, with the exception being the need to solve (5) for each j € {1,...,d};
this is the computational bottleneck. Since d is usually only 2 or 3, this bottleneck is still
orders of magnitude faster than the full RWIR algorithm. This leads us to the strategy
of repeatedly calculating J(7*) with different settings for I' until we determine how
much regularization is needed at each pixel in order to ensure an anatomically feasible
Jacobian, as we detail in the next section.

2.4 Determining Regularization Weights

Using the technique from the previous section, one could increase regularization slightly
wherever the Jacobian is negative, recalculate the Jacobians, and iterate. This would
ensure TP and avoid over-regularization, but may require many iterations. We reduce
the number of iterations by using larger increases in regularization each iteration and
preemptively increasing regularization in a neighborhood around pixels with negative
Jacobian (as the non-invertibility may be “pushed out” to nearby pixels, see Fig. 1).

To make this concept concrete, we define a function ¢; : Q — R evaluating how
much additional regularization each pixel needs:

¢1(a) = Aymax | max(0,—Jp(T")) — Az ]la—=bl2 | , )
beQ | ~ ~ - N o~ 7
Amount of Violation Proximity

where A; and A, are positive scalar parameters. Larger values for A; and A, speed
convergence, but may result in over-regularization if too large. We found A; = 0.3 and
A2 = 5 provide a good trade-off. We increase the regularization at pixel a by updating
the trade-off weight y,:

Ya < Ya- (1+01(a)) . (®)

The update values for each pixel can be efficiently computed using dynamic program-
ming. With the updated I', J(T*) can be recalculated, and the update (8) performed
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again until all Jacobian values are positive. A TP probabilistic transformation U can
then be calculated using the updated matrix I".

While this method will ensure TP, it can easily be extended to enforce other restric-
tions on the Jacobian. For example, one may want a volume preserving transformation
that has Jacobian values close to 1. We can use J(7™*) to identify pixels with Jacobians
that are deemed too small or too large, e.g. outside of the range [A3, 4], A3 < A4. We
define a second function to capture this idea:

¢2(a) 22,1 max | max 0, 2,3—.];,(7"*), Jb(T*)—l4 — ),2\|a—b||2 . (9)
beQ ~ ~ N ~ - N~ o~ “
J Too Small J Too Large Proximity

By replacing ¢; with ¢, in (8) we not only regularize away negative Jacobian values,
but also Jacobian values that we deem anatomically infeasible. This targeted approach
avoids over-regularizing regions that already have feasible transformations, allowing
those regions to stay loyal to their prior probabilities.

3 Results

In this section, we perform experiments to demonstrate the benefits of our spatially
adaptive regularization scheme. We compare registration results from RWIR with and
without our technique for choosing I". We also establish the correlation between uncer-
tainty and error in probabilistic transformations, indicating that uncertainty information
should not be discarded by post-processing techniques designed for non-probabilistic
transformations. We focus on comparisons to RWIR instead of other techniques for en-
suring TP since previous MICCAI papers [3,10,7] have shown RWIR to be comparable
to other state-of-the-art techniques, and this comparison removes confounding factors.

Our experiments are performed on 40 T1-MR volumetric thigh images of dimension
250 x 250 x 40, each segmented into 16 regions, including 11 different muscles (Fig.
3). This data set was used because it contains regions with rich details leading to accu-
rate priors (e.g. around the bone) and other regions that are largely devoid of detail (e.g.
the homogeneous thigh muscles), so we expect well chosen spatially adaptive regular-
ization weights to be important for accurate registration. fj;,, is defined as the negative
exponential of the sum of squared intensity differences in a patch of size 5 x 5 x 5. We
used unoptimized MATLAB code run on a machine with 2 Quad Core Intel Xeon 2.33
GHz CPUs.

3.1 Synthetic Warpings

We applied known warps to each image and attempted to recover these warps using
RWIR. We generated 5 warps for each image by randomly displacing B-spline control
points, spaced 30 mm apart, where the displacements were sampled uniformly from
vectors up to 8 mm in magnitude.

For each of the 200 image/warp pairs, we compare the results of RWIR run using 3
different matrices I'". First, we use a spatially constant I" = cI, where [ is the identity
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Table 1. The results of running RWIR with different regularization matrices. RWIR-TP achieves
less error than the other registrations while also ensuring topology preservation, while only re-
quiring marginally longer computation time.

TRE (mm) % of Pixels with J < 0 Run Time (sec)

Priors P 2.83+0.18 16.6£1.0 -

RWIR-C  2.56£0.24 1.67+0.54 4957 +£533
RWIR-U  1.70£0.19 0.36+0.11 5056 +561
RWIR-TP 1.64+0.19 0.0£0.0 5657577

TRE vs. Uncertainty

W

Fig. 2. Mean TRE for different uncertainty

= percentiles. The mean TRE of the top k%
Eu :i\\i//%%’ most uncertain pixels was calculated, for £ =
E {1,...,99}. The mean TRE consistently in-
=3 creases across percentiles, indicating uncer-
% tainty could be used to identify errors in a
> registration. Particularly, we see a sharp in-

0 20 10 60 30 100 crease in TRE for the top 10% most uncer-

Uncertainty Percentiles tain pixels.

matrix and c is a scalar. We refer to the results of this registration as RWIR-C. Second,
we use uncertainty information from the prior probabilities P to construct I" (based on
an idea presented in previous works [10]):

_ —H (pa) ay __ & < a a 2
n=cen( ") HEY =3 St vl (o)
max k=1¢=1
where H is a measure of uncertainty found to correlate well with registration error
[6], and H,y is the maximum possible value for H. Using (10) results in stronger
regularization for pixels with uncertain prior probabilities. We refer to the results of this
registration as RWIR-U. Third, we use (8) with ¢, to iteratively update I', initialized
using (10) and iterating 10 times, which was found to be sufficient to ensure TP. We
refer to the results of this registration as RWIR-TP. In both RWIR-C and RWIR-U, ¢ was
empirically set to minimize target registration error (TRE). The Jacobian is restricted
to the range [0.5, 1.5], chosen based on the minimum and maximum Jacobian values of

arandom synthetic warping, constructed as stated above.

A comparison of the results achieved by the 3 registrations is shown in Table 1. The
regularization used in RWIR-TP ensures a positive Jacobian, while only requiring about
10% longer to run. Further, RWIR-TP achieves less error than RWIR techniques.

To demonstrate the benefits of a probabilistic registration, for each test we calcu-
lated uncertainty values for each pixel by applying H from (10) to the displacement
probabilities generated by RWIR-U and RWIR-TP. We found a Pearson correlation co-
efficient between the uncertainty and the TRE of 0.45 for RWIR-U and 0.50. Fig. 2
demonstrates the relationship between uncertainty and TRE by taking the top k% most
uncertain pixels, for k = {1,...,99}, and calculating their mean error. We see that error
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Table 2. TOs from registering pairs of images, averaged across all regions and tests. RWIR-TP
and RWIR-U achieve similar TOs, but RWIR-TP provides TP transformations. Note the target
overlap of RWIR-U is slightly higher than RWIR-TP because TO is only an approximate measure
of accuracy - an erroneous displacement (e.g. one causing negative Jacobian) may still map a
voxel to the correct label.

Original Priors P RWIR-U RWIR-TP
Target Overlap (TO) 0.6324+0.108 0.762+£0.134 0.8414+0.071  0.833+£0.062
% of Pixels with J <0 - 38.2+8.10 3.37+0.88 0.0+0.0

Original Alignment RWIR-U: min J = -5 RWIR-TP: min J >0

Fig.3. An example on real data demonstrating how our technique increases regularization
locally where necessary without over-regularizing other areas. While the registration results
are unchanged in most areas, RWIR-TP smooths out certain problem areas in the RWIR-U
registration.

steadily increases for more uncertain pixels, and that the top 10% most uncertain pixels
have significantly more error than an average pixel. Using post-processing techniques
to ensure topological invertibility would discard these uncertainty values.

3.2 Real Data

In this section, we demonstrate the usefulness of our method in a real medical imag-
ing application by taking each pair of thigh images and registering them to each other,
using both RWIR-U and RWIR-TP with the same bounds on the Jacobian as in Sec.
3.1. We evaluate registration results using the target overlap, the number of correctly
mapped foreground pixels divided by the total number of foreground pixels. We evalu-
ate anatomical feasibility by looking at the number of pixels with negative Jacobian.

The results of this experiment are summarized in Table 2, and an example slice of the
registered 3D images is seen in Fig. 3. We see that while the transformations resulting
from RWIR-U and RWIR-TP have very similar target overlaps, the RWIR-U transfor-
mations have 3.37 +0.88% of pixels with negative Jacobian on average, and thus are not
anatomically feasible transformations, whereas none of the RWIR-TP transformations
have negative Jacobians, and thus represent anatomically feasible alignments (again,
with only about 10% increased run time).
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Conclusion

Properly selecting regularization parameters is often key to accurate registration, yet in
general can be very difficult without expensive trial and error approaches, involving a
registration being performed multiple times and the results examined. Our method ef-
ficiently adjusts spatially adaptive regularization in order to provide explicit guarantees
regarding topology preservation without over-regularizing regions with accurate prior
probabilities. For future work, we will more rigorously examine how the values of A,
and A, affect the speed and accuracy of the registration for different applications.
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