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Abstract. The reconstruction of 4D images from 2D navigator and data
slices requires sufficient observations per motion state to avoid blurred
images and motion artifacts between slices. Especially images from rare
motion states, like deep inhalations during free-breathing, suffer from
too few observations.

To address this problem, we propose to actively generate more suitable
images instead of only selecting from the available images. The method
is based on learning the relationship between navigator and data-slice
motion by linear regression after dimensionality reduction. This can then
be used to predict new data slices for a given navigator by warping
existing data slices by their predicted displacement field. The method was
evaluated for 4D-MRIs of the liver under free-breathing, where sliding
boundaries pose an additional challenge for image registration.

Leave-one-out tests for five short sequences of ten volunteers showed
that the proposed prediction method improved on average the residual
mean (95%) motion between the ground truth and predicted data slice
from 0.9mm (1.9mm) to 0.8mm (1.6mm) in comparison to the best selec-
tion method. The approach was particularly suited for unusual motion
states, where the mean error was reduced by 40% (2.2mm vs. 1.3mm).

1 Introduction

Minimal invasive radiation therapies for the abdomen during free-breathing re-
quire guidance for keeping the beam on the moving target. For proton and fo-
cused ultrasound therapies, the position of other structures, like bones or vessels,
passed through by the beam are also of great importance for accurate calculation
of the Bragg Peak, and avoidance of hot and cold spots. Real-time observation
and tracking of all structures of interest during therapy is currently not possi-
ble. Motion models, which predict the motion of the remaining structures from
partial observations have been proposed [1, 2]. For capturing respiratory irregu-
larities, these rely on learning the motion patterns from 4D-MRIs, which allow
in comparison to 4D-CTs, for long term observations.
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Fig. 1. Illustration of MR sequence with alternating navigator (N) and data slices
(D1,...,D3). (Courtesy von Siebenthal [3])

4D-MRIs can be created by an interleaved acquisition of 2D navigator and
data slices and retrospective sorting [3], as illustrated in Fig. 1. Per data slice,
a whole 3D image was created by stacking data slices, which are enclosed by a
similar navigator pair as the current one. Similarity was measured by the dif-
ference in displacements to a reference navigator slice [3] or by the difference in
intensities of the navigators after manifold embedding [4]. To improve SNR of
the reconstruction, the mean of the T' most similar data slices was employed.
2D navigator-free 4D-MRI reconstruction methods have been proposed, relying
for example on external breathing signals [5] or the consistency between neigh-
bouring data slices after manifold embedding [6]. However, we focus here on the
2D navigator-based 4D-MRI liver reconstructions, as the additional information
from continuously observing the liver motion at the same position has the poten-
tial to provide superior reconstructions and allows for quantitative evaluation.

Currently 4D-MRI reconstructions are based on selecting the most similar
images. For unusual motion states, like large inhalations, this leads to blurry
images and motion artifacts between slices since the most similar images are quite
different. The problem is emphasised for reconstructions from shorter sequences,
as fewer motion states are available. In this work, we propose to actively create
more similar images by learning the relationship between navigator and data-
slice motion, predict for a given navigator motion the data-slice motion and
then use this predicted motion to warp the data slice to a more similar position.
Additionally, this was compared to using navigator intensities instead of motion.

Mean images have previously been sharpened by image registration in the field
of superresolution [7, 8] and atlas creation e.g. [9-11]. In the former application,
SNR and image resolution is generally improved for an existing image by regis-
tering images of additional observations to it. This task is much simpler than our
problem due to the existence of a reference image. Early works in atlas creation
by registration also used one of the subjects as representative image to which all
others were registered. Nowadays the benefit of avoiding this bias is known and
atlases are generated for an interpolated state from a group of images. Important
concepts for realistic interpolation between images from spatial transformations
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are geodesic rather than linear averaging for large deformations and ensuring
that transformations are diffeomorphic [12]. Unfortunately enforcing the latter
will introduce errors when registering whole abdominal images due to discon-
tinuities at sliding boundaries. Furthermore our problem requires extrapolation
and generation of unusual images, which is much harder than interpolation. We
will employ dimensionality reduction and linear functions for regularization to
avoid over-fitting and hence badly predictive models.

2 Material

MR images of the abdomen during free-breathing were acquired for 10 healthy
volunteers according to the method proposed by von Siebenthal et al. [3]. These
consisted of a sequence of interleaved 2D sagittal navigator and data slices, where
the navigator slice is positioned in the center of the right liver lobe and the
sagittal data slices cover the whole abdomen. The 2D images were acquired on
a Philips Achieva 1.5T whole body MR system with a balanced turbo field echo
sequence, a flip angle of 70°, a TR=2.3ms, an in-plane resolution of 1.3x1.3mm?,
a slice thickness of 5mm and a temporal resolution of 163-226ms. To cover the
abdomen, 53-65 data slices with a size of 224 x 224-240 x 240 pixels were required.
To simulate short 4D-MRISs, only the first K=30 observations per data slice were
processed, which would require a total acquisition time of 9-12min.

3 Method

The inter-leaved MR sequences, used for reconstructing the 4D-MRIs, consist of
alternating acquisitions of a navigator slice IV at the same liver position and a
data slice D® at changing positions a = 1, ..., A to cover the whole abdomen, see
Fig. 1. The problem of 4D reconstruction is to find for a given data slice D* the
remaining data slices D*#® which show the same liver motion state.

Selection Methods. So far, this problem has been approached by selecting
data slices which are enclosed by most similar navigator images [3, 4]. The se-
lection criteria has been based on the similarity of either the liver motion [3] or
the image intensities [4] of the navigators.

In the former approach [3], the 2D navigator images were registered to a
reference navigator image within the liver region using a B-Spline based regis-
tration method [13]. Then for each navigator image (N;), the 2D displacement
vectors at the C' control points which lie within the liver (ul; = [u1,ci u2,c,q]
for ¢ = 1,2...C) are extracted. Finally for data slice D¢, with enclosing navi-
gator images (N;, Nit1), Dé’» (with enclosing navigators (N;j, Nji1)) is selected
for slice position b if it minimizes the overall dissimilarity measure dj';, i.e.
argmin; dj! ; = é Zle |Tc,; —Ue,j|2, where Q. ;=(uc; +Uc,i+1)/2. We also tested
the selection performance after dimensionality reduction of the K x 2C' dimen-
sional dissimilarity matrix M™? which is given by M;‘Z = U1, — U1,0,; and
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M;Léurc = Ui — U2, for ¢ = 1,2...C" and j = 1,2,..K. Using Principle
Component Analysis (PCA), Laplacian Eigenmaps or Neighbourhood Preserv-
ing Embedding (NPE), dissimilarity matrix M"* was transformed to a K x L
dimensional matrix M®** and the optimal Dé’» determined by argmin; dj; =
I ZZL:I |M;,Vlz|2~

In the intensity-based approach [4], each navigator image was first normalized
to have an intensity distribution with zero mean and unit standard deviation.
The K x R dissimilarity matrix M"* was then defined by MN ‘ = N, ;— N, ; for
r=1,2,..Rand j =1,2,..K, where N, ; is the normalized 1nten51ty of naviga-
tor Ni at pixel r. Laplacian Eigenmaps were used for dimensionality reduction of
MY to a L=3 dimensional manifold. The data slice with the smallest Euclidean
distance in this 3D space (argmin; dN =] Zlel \M;VZZ 2) was then selected.

Prediction Methods. We propose to actively predict data slices instead of
only selecting from the pool of available data slices. The aim is to predict the
motion required to warp an existing data slice (D;?) to a similar liver position as
the observed data slice (D¢) from the dissimilarity of the associated navigators
(M®?¢ or M™% denoted as M?). Our approach consists of the following steps:

— Pre-processing
e (S1) Determine dissimilarity M? for all navigator images
e (S2) Determine data-slice displacement fields (V7) by registering all K
data slices from the same position to each other
e (S3) Dimensionality reduction of M and V7
— For each data slice D¢, with enclosing navigator images (N;, N;+1), and for
all slice positions b = 1...B ~ ~
e (S4) Select most similar data slices D} based on minimizing d'; (or d;;)
e (S5) Determine linear function parameters Q from M’ and V7
e (S6) Predict D? motion from zero dissimilarity (M’ =0V ¢) and Q

For step S1, the dissimilarity between navigators (M%? or M"+%) was determined
in the same way as for the selection method.

For registering the data slices (step S2) we used the deeds registration method
[14, 15], as we want to register the whole images and it is currently one of the most
accurate methods for registering images with sliding boundaries. Furthermore
it is fast (=0.5s per slice) and publically available. It was configured to provide
displacement vectors at every 4th pixel in the image. We denote the displacement
field from registering Db to Db by v}wk—[vm,j ko UVLPjk V214 - U2,Pjk)s

with P=R/16. Includlng zero displacements for v ; and collecting all results for

3y
Db in VI = [v;1...v; k]" provides a K x 2P matrix.

Dimensionality reduction methods were applied in step S3 to M (or M%)
and V7 to avoid underdetermined systems in step S5. The low-dimensional pro-
jections are denoted as M? and V7, with dimensions 2C (or R) and 2P being
reduced to Ly, and L respectively. We used Lp,=L,=3 and employed PCA or
NPE as these allow, in contrast to Laplacian Eigenmaps, construction of the full

displacement field in step S6.
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During the reconstruction, we first selected in step S4 the most similar data
slice D;? by one of the previously described selection methods.

In step S5, the system of linear equations Vi = [1\7[Z 1]Q was then solved in
the least squares sense for the (Ly, + 1) X L, parameter matrix Q.

In the final step (S6), we want to determine motion v, ; such that the resulting
transformed image (D;’) should have the liver in a similar motion state as data

slice D. So far we have learned how the dissimilarity in navigators (1\~/IZ) relate to
motion between data slices (V7). This learned function is now used to predict the
required data slice motion for the given navigator pair, i.e. for a zero dissimilarity.
In details, motion ¥;; was predicted by ¥, = [2" 1]Q, where Z is the L,
dimensional zero vector mapped to the low-dimensional space. The predicted
motion V;, was then mapped back to the high-dimensional (2P) space and
applied to data slice D;? to get D?.

To improve SNR, steps S4 to S6 were performed for the T=5 most similar
data slices and the resulting transformed images were averaged to DP. Finally
the 3D image, associated with data slice D{, was formed by stacking the mean
images D® for b= 1, ..., B.

4 Results

Quantitative evaluation was performed by leaving out a data slice (which serves
as ground truth (GT)), predicting it from the other available data slices and
measuring the mean residual motion within the liver between the predicted and
the GT data slice by image registration (deeds method [14, 15]). In this way the
impact of the reconstruction errors on extracting the liver motion from 4D-MRIs
can be measured. We evaluated the mean residual motion per subject for 25 liver
slices and 30 temporal samples, and summarized this distribution by its mean
and 95th percentile. We also assess the performance at the end-inhalation state
and for the most unusual data slices. The latter were selected based on the GT
data slice having navigators with a mean displacement difference (d;“‘ j) of 3mm
or more to all other navigators for this slice.

Fig. 2 shows an example where the GT image is very dissimilar to the available
dataslices according to the corresponding navigator motion (Fig. 2b, d}’ j =4.2mm).
Selecting the 5 most similar data slices leads not only to a blurry reconstruction
but also to a misaligned liver (Fig. 2c). The prediction method is able to estimate
most of this unseen motion (Fig. 2d).

Table 1 shows that higher accuracies were achieved when using the displace-
ment information of the navigators rather than their intensities. PCA performed
well against the other tested dimensionality reduction methods. Highest accu-
racies were achieved with predictions from navigator displacements and PCA,
which provided a substantial mean improvement over the best selection method
for end-inhalation states (23%) and for unusual positions (40%).

A coronal slice from a reconstruction example is shown in Fig. 3. An improved
consistency across slices can be observed at the diaphragm, and for lung and liver
vessels for the prediction method (Fig. 3b).
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Fig.2. (a) Ground-truth (GT) image (right: liver region) to predict, (b) 2D dissimi-
larity of available data slices (red crosses) to GT (green circle) based on difference in
navigator displacements, (c,d) reconstructed slice (right: its difference to GT within
liver) based on (c) selecting the 5 closest observations (meanError: 8.1mm), or (d)
predicting the motion of 5 data slices from the navigator displacements after dimen-
sionality reduction by PCA (meanError: 2.4mm). All yellow contours are from GT.

Fig. 3. Example of 3D reconstruction from 30 observations for (a) baseline selection
method [3] and (b) proposed prediction method (navigator displacements, PCA)
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Table 1. Mean performance results for 10 volunteers (in mm) for (a) all, (b) end-
inhalation (10.8%) and (c) most unusual (d;'; > 3mm, 16.4%) data slices when (Sel)
selecting or (Pred) predicting the closest T=>5 data slices from navigator (right) dis-
placements or (left) intensities. Rows show results for dimensionality reduction meth-
ods. Best results are marked in bold. The baseline approach [3] is underlined.

Mean Error
(a) All slices (b) End-inhalation (¢) Most unusual
Displacement Intensity Displacement Intensity Displacement Intensity
DimRed Sel Pred Sel Pred Sel Pred Sel Pred Sel Pred Sel Pred
None 0.93 0.87 1.17 1.28 1.15 1.56 2.16 1.79 243
PCA 094 0.80 1.19 143 1.28 0.98 1.55 1.87 2.17 1.30 2.43 2.52
Laplacian 1.54 n/a 2.53 n/a 224 n/a 3.32 n/a 292 n/a 4.11 n/a
NPE 111 1.91 243 253 1.54 2.15 3.17 341 236 283 3.96 4.32
95% Error
(a) All slices (b) End-inhalation (b) Most unusual
Displacement Intensity Displacement Intensity Displacement Intensity
DimRed Sel Pred Sel Pred Sel Pred Sel Pred Sel Pred Sel Pred
None 1.94 179 271 3.26  2.76 3.70 4.61 4.08 4.84
PCA 1.96 1.57 2.71 3.02 3.26 2.02 3.65 4.13 4.60 2.99 4.70 5.17
Laplacian 4.33 n/a 585 n/a 6.34 n/a 7.19 n/a 696 n/a 7.72 n/a
NPE 271 3.82 538 560 4.16 4.74 6.75 7.35 4.92 6.07 7.50 8.07

5 Discussion and Conclusion

We proposed a method for improving 4D-MRI reconstruction of rare motion
states, by actively predicting the unseen motion rather than only selecting from
the available data. The method is based on learning the relationship between
the motion of the navigator images and the motion of the data slices by linear
regression after dimensionality reduction. It is most powerful for unusual motion
states where a 40% improvement in mean accuracy can be achieved. Where
enough similar samples are available it is less needed, but also does no harm as
it is well constrained.

Using navigator intensities rather than displacements was clearly inferior. Ini-
tial test with extrapolations showed that non-linear functions or high-dimensional
spaces leading to high errors due to the limited number of samples.

Currently every data slice prediction is optimized independently, without con-
sidering the gathered information across slices or over time. Such a combined
framework would certainly benefit to make the predictions more robust, as cur-
rently improvements for extreme motion states can be of different quality and
hence reduce the data slice consistency despite being more accurate on average.

We envision that the proposed prediction method is used for the unusual but
very important motion states, while the selection method, which is faster, is
sufficient for the common states.
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