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Abstract. In this study, we propose a novel scheme for real time dy-
namic magnetic resonance imaging (dMRI) reconstruction. Different from
previous methods, the reconstructions of the second frame to the last
frame are independent in our scheme, which only require the first frame
as the reference. Therefore, this scheme can be naturally implemented in
parallel. After the first frame is reconstructed, all the later frames can
be processed as soon as the k-space data is acquired. As an extension of
the convention total variation, a new online model called dynamic total
variation is used to exploit the sparsity on both spatial and temporal
domains. In addition, we design an accelerated reweighted least squares
algorithm to solve the challenging reconstruction problem. This algo-
rithm is motivated by the special structure of partial Fourier transform
in sparse MRI. The proposed method is compared with 4 state-of-the-art
online and offline methods on in-vivo cardiac dMRI datasets. The results
show that our method significantly outperforms previous online meth-
ods, and is comparable to the offline methods in terms of reconstruction
accuracy.

1 Introduction

Dynamic magnetic resonance imaging (dMRI) is an important medical imag-
ing technique that widely used in hospitals for medical diagnosis and medical
research. In general, there is a trade-off between the spatial resolution and tem-
poral resolution, due to the acquisition speed of MR scanner. The undersampling
often results in aliasing artifacts if the inverse Fourier transform is directly ap-
plied. Fortunately, the MR image sequence often provides redundant information
in both spatial and temporal domains, which makes the use of compressive sens-
ing (CS) theory repeatedly successful in MRI [1-4].

Based on the reconstruction schemes, the dMRI reconstruction methods can
be online or offline. Most of existing methods are offline as they require the
data of all frames to be collected before reconstruction. These methods applies
sophisticated techniques that exploit the redundancies of the whole dataset,
such as motion correction [5-7], dictionary learning [8], group clustering [9] and
low rank approximation [10]. By these offline methods, the MR images can be
reconstructed accurately but the drawbacks are their relatively slow speeds.
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Online reconstruction means that the reconstruction of one frame only relies
on the previous frames but not the later frames. Therefore, it is possible to re-
construct each frame once the corresponding k-space data is acquired. Of course,
online reconstruction is much more difficult due to the lack of entire information
as well as the concerns of reconstruction speed. Previous online methods usually
assume that the difference between two adjacent frames are very small, either
in the image or wavelet domain [11-13]. The difference can be reconstructed
by sparsity regularization and the images are then updated by these changes.
However, due to the lack of entire information, these methods have been shown
to be less accurate than the state-of-the-art offline methods. And they all suf-
fer from error accumulation, which makes them not feasible for relatively long
sequences. Moreover, it is difficult for these methods to achieve real time recon-
struction (i.e. the ideal case of online reconstruction), as they have to wait for
the reconstruction of previous frame.
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Fig. 1. Comparison between the proposed scheme and the existing online scheme

The data acquisition speed can be very fast with some recent developed tech-
niques [14], e.g. 20ms, while real time MRI is still limited by the speed of it-
erative reconstruction methods. To bridge this gap, we propose a new online
reconstruction scheme in this study, where the first frame is used to guide all
the later reconstructions to exploit the temporal redundancy. A comparison with
previous online methods is shown in Fig. 1. In contrast to previous serial sys-
tem, our scheme is parallel and can naturally avoid error accumulation. After
the first frame is reconstructed, all the later frames can be processed as soon
as the data is acquired. In this new scheme, the sparsity assumptions in previ-
ous online methods may not hold any more. To address this issue, we extend
the conventional spatial total variation (TV) to dynamic total variation (dTV),
to exploit the sparsity in both spatial and temporal domains. An accelerated
reweighted least squares algorithm is proposed to solve the dTV reconstruction
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by observing the diagonally dominant prior in CS-MRI. Finally, the proposed
method is validated on in-vivo cardiac MR sequences with comparisons to the
state-of-the-art online and offline methods. Our contributions are from the novel
scheme, the robust modeling to the efficient algorithm, which make real time
dMRI much more feasible than before.

2 Modeling with Dynamic Total Variation

Dynamic MR images are significantly similar in the temporal domain, that the
same organ(s) is contained through the whole image sequence. After the first
frame is obtained, intuition tells that the later frames should be very close to it.
This motivates us to design a new online reconstruction scheme, which has been
presented in Fig. 1. With the prior information in the first frame, it is possible to
guide the later reconstructions with fewer k-space measurements. As we always
use the first frame but not the previous frame as reference, the reconstruction
problem becomes more challenging. The assumptions in previous online method
may not hold any more, e.g. the difference image is sparse [12].

To address this problem, we propose a new sparsity inducing norm called
dynamic total variation (dTV) to utilize both spatial and temporal correlations
in online reconstruction. For an image = with IV pixels, its dTV is defined as:

N
ATV (@,7) = 3/ (Tale = 1)) + (V, (z = 1),)? 1)

where r denotes a reference image (the first frame in this work) that has similar
boundaries as z, V., and V, denote the gradients along the x and y directions.
It means that the sparsity in gradient domain is not fixed but dynamic to a
reference image. When there is no reference image, i.e. r is a zero image, it is
identical to the conventional spatial TV. A similar idea of residual coding has
been successfully applied in image registration [15].

We denote x; as the frame at time ¢ and X = [x1,x2,...,z7]| denotes the
whole T images to be reconstructed. The dMRI reconstruction is therefore to
solve x; from an inverse problem b; = Ry F'z;, where b, is the measurement vector
that may contain noise; R; is a submatrix of the identity matrix that indicates
undersampling, F' denotes the Fourier transform. With the proposed dTV, the
dMRI reconstruction is formulated as:

n;indTV(xt,xl), s.t. [|ReFxy —bylls <efort=2,..,T (2)
t
Same as that in existing online methods [11-13], the first frame should be re-
constructed accurately with more k-space sampling. From this formulation, our
scheme can be clearly observed. The reconstruction of each frame (except the
first frame) only depends on the first one, but not the previous one. Therefore,
it can be implemented in parallel to avoid waiting in the serial scheme.

Here, we only have a mild assumption, that the motions of organs are bounded.

This assumption is quite natural because the cardiac motion is near periodic in
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breath-hold imaging. If we divide the cardiac motion into several phases, the
frame with the closest phase to the first frame should have minimum reconstruc-
tion error, and vice versa. One of the advantages of the proposed dTV is that it
can always sparsify the images even in the worst case.

3 Preconditioning in Fast MRI Reconstruction

The reconstruction speed of offline methods is often not of big concern. However,
fast reconstruction is essential to online methods. In this section, we proposed a
new algorithm to efficiently minimize (2). Let z = ; — 21, and the problem (2)
can be written as the Lagrange relaxed form of TV minimization:

1
min{ [|4z = y[5 + Allzllrv} 3)

where A = R, F, y = by — R¢F'x1 and X is a parameter. There are many methods
to solve (3) in the literature of convex optimization. Some of them have very fast
convergence rate (e.g. [16]), but the computational cost in each iteration is very
high. Some other methods are less computationally expensive in each iteration,
such as that in [17], while they converge relatively slower. We expect to design
an algorithm with both fast convergence and low computational cost.

Our algorithm is based on the reweighted least squares framework [16, 18],
which can converge exponentially fast. Let Dy, Do be two N-by-N two first-
order finite difference matrices in vertical and horizontal directions. The TV
can be re-formulated as ||z||7v = ||[D1z, D2z]||2,1, where the f2; norm is the
summation of the ¢ norm of each row, [z,y] denotes concatenating two vectors
x, y horizontally. With this notations, the problem (3) can be solved by iteratively
updating the weight matrix W and the solution z [16, 18]. W is a diagonal matrix
with the i-th diagonal entry:

WE = 1/3/(Vo2b)? + (V,25)2, fori=1,2,..., N, (4)

where k is the iteration counter. z**! is updated by solving the following linear
equation:

(A*A+AXD;W*D, + AD;W*Dy)z = A*y. (5)

where * denotes the conjugate transpose. This step dominates the computational
cost of the whole algorithm. There is close form solution z¥ = S~tA*y for (5),
where S = A* A+ AD;W¥D; + AD3W* Dy denotes the system matrix. However,
the exact inversion is often not computationally feasible. In [16], this subproblem
is solved by the conventional conjugate gradient method. Besides, a faster version
called preconditioned conjugate gradient (PCG) method [18] can be used here.
It requires a preconditioner P that is close to S and the inverse can be obtained
efficiently. The design of good preconditioner P is problem-dependent and not
easy due to the tradeoff between accuracy and computational cost.
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We observe that the matrix Ry R; is diagonal, and more importantly, A*A =
F*R; R, F is therefore diagonally dominant. Thus, an accurate approximation
could be made by removing the non-diagonal elements. Due to the properties of
the Fourier transform, all the diagonal elements of A* A is equal to the mean of
diagonal elements of R* R, i.e. the sampling ratio s. Motivated by this, we define
a new preconditioner P = sI + AD;W¥*D; + AD3W* D, to accelerate the whole
algorithm, where I is the identity matrix.

The proposed preconditioner P is a symmetric penta-diagonal matrix, which
has no closed form inverse. Fortunately, P is diagonally dominant as the regu-
larization parameter A is often very small in CS-MRI. It is not hard to find the
incomplete LU decomposition of such penta-diagonal matrix P = LU, where L
and U are a lower triangle matrix and an upper triangle matrix, respectively.
The time complexity for the decomposition and inversion is O(N). To our best
knowledge, this is the first study to accelerate MRI reconstruction with such pre-
conditioner. We summarize the whole algorithm to solve (3) in Algorithm 1. All
N-by-N matrices can be efficiently stored using sparse matrices in MATLAB.

Algorithm 1. dTV Reconstruction

Input: A=R.F, z1,y=b; — RiFz1, 2", \, k=1
Output: 2z, 1 = 2z + x1.
while not meet the stopping criterion do
Update W* by (4)
Update S = A*A+ ADiW* Dy + AD;W*D,
Update P = sI + ADW* D, + A\DsW¥*Dy = LU, P"' = U7'L7!
while not meet the PCG stopping criterion do
Update z**! by PCG for Sz = A*y with preconditioner P ~ LU
end while
Update k =k + 1
end while

4 Experiments

We compare our method with two online method modified CS (MCS) [13], the
approach based on difference image (DI) [12] and two state-of-the-art offline
methods k-t SLR [10] and the dictionary learning based method DLTG [8].
The codes are downloaded from each author’s website and we use their default
parameter settings for all experiments. For our method, we set A = 0.001 for all
experiments. In-vivo breath-hold cardiac perfusion and cine datasets are used
here, which contains image sequences of 192 x 192 x 40 and 256 x 256 x 24,
respectively. The proposed reconstruction method can be combined with the
fast acquisition hardware radial FLASH [14] for real time imaging. Therefore, the
radial sampling mask is used to simulate undersampling. The root-mean-square
error (RMSE) is used as the metric for result evaluation. The ground-truth image
is obtained by inverse FFT with full sampling.
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Fig. 2. Reconstruction accuracy comparisons of different methods. (a) On the perfusion
dataset. (b) On the cine dataset. Our method and k-t SLR almost overlap on the second

dataset.

The first frame is often required to be reconstructed very accurately for all
online methods [13, 12]. Therefore, we use 1/2 sampling for the first frame and
1/6 sampling for the rest frames. The reconstruction RMSEs are shown in Fig.
2. From these results, it is obvious that the previous online methods [13, 12] have
larger reconstruction errors than the offline methods [8, 10], while the proposed
real time method is comparable or even better than the k-t SLR [10] on both
datasets. The DLTG is currently designed for real-valued images [8], and it seems
less effective on the complex-valued data here. DI does not perform as good as
that presented in the paper [12]. From the 4th and 5th frame, it starts to fail.
However, in [12], the curve of DI is often between those of k-t SLR and MCS. We
found that it used the full sampling for the first frame, while the reconstruction
error occurs at the first frame here with 1/2 sampling. With the same setting in
[12], we conduct additional experiments for DI. It shows that DI starts to fail
after 20-30 frames. These results demonstrate that DI is very sensitive to error
accumulation.

A frame of the reconstructed perfusion sequence is shown in Fig. 3. Visible
artifacts can be obviously observed on the images reconstructed by MCS and
DI. The image reconstructed by DLTG tends to be blurry. In contrast, the
reconstruction results of k-t SLR and the proposed method are similar to the
ground-truth image, and less noisy.

We vary the sampling ratios of the second frame to the end frame and compare
the average reconstruction errors of all frames. Those results are presented in
Fig. 4, which demonstrates the comparable performance of our method to the
state-of-the-art offline methods. At a low sampling ratio that we are interested,
the proposed method seems to be even better. As the previous online methods
[13, 12] are much less accurate, they are not compared in these experiments. For
the 192 x 192 x 40 perfusion sequence, the average reconstruction speed of our
method is 0.71 seconds for each frame on a desktop with Intel i7-3770 CPU.
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Fig. 3. Results of the third frame of the perfusion sequence at sampling ratio 1/6. (a)
The ground-truth image with full sampling. The rest images are reconstructed by (b)
k-t SLR; (¢) DLTG; (d) MCS; (e) DI; (f) the proposed method.
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Fig. 4. Comparisons with the offline methods k-t SLR and DLTG at different sampling
ratios. (a) On the perfusion dataset. (b) On the cine dataset.

5 Conclusion

In this paper, we have proposed a novel scheme for parallel reconstruction, a
robust model to exploit both spatial and temporal redundancies, and an accel-
erated reweighted least squares algorithm to solve the reconstruction problem.
Experiments on in-vivo cardiac perfusion and cine datasets have validated the
efficiency and effectiveness of our method over the state-of-the-arts. These con-
tributions make real time dMRI much more feasible than before. We will combine
our method in parallel imaging as future work [19].
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