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Abstract. In this paper we propose a novel algorithm for jointly
performing data based motion correction and direct parametric recon-
struction of dynamic PET data. We derive a closed form update for
the penalised likelihood maximisation which greatly enhances the algo-
rithm’s computational efficiency for practical use. Our algorithm achieves
sub-voxel motion correction residual with noisy data in the simulation-
based validation and reduces the bias of the direct estimation of the
kinetic parameter of interest. A preliminary evaluation on clinical brain
data using [18F]Choline shows improved contrast for regions of high ac-
tivity. The proposed method is based on a data-driven kinetic modelling
method and is directly applicable to reversible and irreversible PET
tracers, covering a range of clinical applications.

Keywords: Dynamic PET, direct parametric reconstruction, motion
correction, optimisation transfer, kinetic analysis.

1 Introduction

Dynamic Positron Emission Tomography (PET) imaging in conjunction with
appropriate tracer kinetic models allow for the estimation of biological param-
eters that are essential for disease understanding, clinical diagnosis and drug
development. Conventionally, the raw PET data in the form of photon counts
recorded by the detectors are first reconstructed to provide the temporal images
of the spatial distribution of the PET tracer (activity), and a selected kinetic
model is then applied to the time activity curves on a voxel/region basis to de-
rive the biological parameters of interest. However, subject motion and photon
count statistics are two of the fundamental issues in PET imaging and, if not
accounted for, may lead to significant errors in the kinetic quantification for any
clinical decision making. To address the uncertainties in photon emissions, di-
rect parametric reconstruction approaches [1,2] have been developed to derive
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the kinetic parameters directly from the raw PET data, with the incorporation
of kinetic modelling. This improves the reconstruction by utilising the complete
spatio-temporal information rather than inappropriately ignoring the temporal
dependencies within the data. To address the subject motion, a framework is
proposed in [3] to estimate subject motion in PET data with steady activity
from simultaneous PET-MR reconstruction. In [4], the motion correction ap-
proach has been developed for reconstructed dynamic PET images using kinetic
model based registration. To the best of our knowledge, so far there has not been
any work yet to address both the kinetics and motion in a unified framework.

In this work, we propose a joint motion correction and parametric reconstruc-
tion framework for dynamic PET data, in which the subject motion and tracer
kinetics are estimated directly from the raw photon counts, by maximising a
penalised log-likelihood with respect to the motion parameters and the kinetic
parameters. The problem of head movements in brain imaging is addressed here,
thus a rigid transformation model is used and the motion parameters are updated
by a trust region algorithm [5]. For modelling tracer kinetics, the data-driven
basis function based approach is applied for generality, and we derive here a
closed form update for the kinetic parameters in the penalised log-likelihood,
by applying the optimisation transfer technique to decouple the dependencies
between the voxels and also to separate each kinetic parameter for every voxel.
This greatly improves the algorithm’s convergence speed and also leads to a
parallelisable solution of this problem. The simulation-based validation shows
that the proposed method achieves a sub-voxel size motion correction residual
in noisy data, and that the parametric reconstruction is improved with reduced
bias. We also apply the proposed algorithm to real clinical [18F]Choline data,
and the results show that it enhances the detection of a [18F]Choline hot spot
in the brain which is otherwise difficult to identify due to motion and noise.

2 Method

Discretising the continuous 3-D+t PET activity f(x, t), x ∈ R
3, t ∈ R

+, on a
regular spatial grid x = [x1, . . . , xnv ] ∈ R

nv×3, and discrete temporal time t ∈
R

nt obtains f = f(x, t) ∈ R
nv×nt , where nv and nt are the numbers of voxels and

time frames respectively. Denote the PET system detected photon counts by g ∈
R

nd×nt where nd is the number of detector pairs. Given the activity distribution
f , g is a Poisson random vector with parameter ḡ(f) = Pf + r where P ∈
R

nd×nv is the system matrix i.e. [P ]i,j = pi,j is the probability that an event
occurring in voxel j is detected by the detector pair i, and r ∈ R

nd×nt is the
expected scattered and random events. The dynamic activity f = [f1, . . . ,fnt

],
f l ∈ R

nv being the activity at frame l, can be described by the tracer kinetic
model F parameterised by ϑ = ϑ(x), ϑ ∈ R

nv×nk where nk is the number
of kinetic parameters in the model, so that f = F(ϑ) = [F1(ϑ), . . . ,Fnt(ϑ)],
Fl(ϑ) ∈ R

nv for all l. The kinetic model is assumed to be applied at each voxel
independently i.e. [Fl(ϑ)]j = Fl(ϑj), ϑj ∈ R

nk being the kinetic parameter
vector at voxel j. When the subject motion is present, the activity f is warped.
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The motion can be modelled as a warping operator W parameterised by α =
[α1, . . . ,αnt ] ∈ R

nw×nt where nw is the number of transformation parameters.
Thus the activity at frame l is redefined as f l = Wαl

Fl(ϑ). The warping operator
Wαl

is determined by the interpolation and its motion function ϕαl
: R3 → R

3,
so that f l = Wαl

Fl(ϑ) = Fl ◦ ϑ(ϕαl
(x)). For kinetic model F and warping

operator W , the expected photon counts can be written as

ḡ(ϑ,α) = [PWα1
F1(ϑ), . . . ,PWαnt

Fnt(ϑ)] + r. (1)

Omitting the constant terms, the log-likelihood of the detected events g is

L(g|ϑ,α) =
∑nt

l=1

∑nd

i=1
(gi,l log ḡi,l(ϑ,αl)− ḡi,l(ϑ,αl)),

where ḡi,l(ϑ,αl) =
∑nv

j=1 pi,j[Wαl
Fl(ϑ)]j + ri,l. Since the penalties ϑ and α are

independent, the penalised log-likelihood (PL) function is Φ(ϑ,α) = L(g|ϑ,α)−
βU(ϑ) − γV (α), where U(ϑ) and V (α) are penalty functions, β and γ are hy-

perparameters. ϑ and α can then be estimated as (α̂, ϑ̂) ∈ argmaxϑ,α Φ(ϑ,α).
Here we find a maximum by updating ϑ and α in alternation.

Given the measured photon counts g and current estimation of kinetic param-
eters ϑ, α is updated by maximising E(α) = L(g|ϑ,α)−γV (α). The gradient of
log-likelihood part, ∇αL can be derived by applying the chain rule, as ∂L

∂αq,l
=

∑nd

i=1(
gi,l
ḡi,l

− 1)
∂ḡi,l
∂αq,l

, with
∂ḡi,l
∂αq,l

=
∑nv

j=1 pi,j〈∇ϕαl
(xj)Fl ◦ ϑ(ϕαl

(xj)),
∂ϕαl

(xj)

∂αq,l
〉

where 〈·, ·〉 is the inner product in R
3. Furthermore, an approximated second

order Taylor expansion gives

L(α+Δα) ≈ L(ḡ(ϑ,α)) +∇ḡL
�Jα(ḡ)Δα+

1

2
Δα�J�

α(ḡ)[∇2
ḡL]Jα(ḡ)Δα (2)

where Jα(ḡ) ∈ R
(nd×nt)×(nw×nt) is the Jacobian of ḡ w.r.t. α and Δα is a small

perturbation on α (reshaped into a vector). Therefore the Hessian matrix can be
approximated by Hα(L) ≈ J�

α(ḡ)[∇2
ḡL]Jα(ḡ). Adding the gradient and Hessian

of V allows to maximise Φ with respect to α using a trust region algorithm [5].
Here the rigid brain motion is addressed, and no prior V is considered on α.

With the estimated α, the direct parametric reconstruction with motion com-
pensation is performed to update ϑ as the maximiser of the penalised log likeli-
hood G(ϑ) = L(g|ϑ,α)− βU(ϑ). Each warping operator Wαl

is replaced by its
discrete versionWαl

∈ R
nv×nv . The composition PWαl

in (1) becomes a matrix
product PWαl

= P l which represents the motion-compensated system matrix
at frame l. We considered a quadratic prior U(ϑ) = 1

8

∑
l,j

∑
m∈Nj

ωj,m(Fl(ϑj)−
Fl(ϑm))2, where Nj denotes the 26 voxels neighbourhood of voxel j and ωj,m is
the weighting factor equal to the inverse distance between voxels j and m.

To separate the voxels in G(ϑ), the optimisation transfer technique used in [1]

was first applied on L(g|ϑ,α) and U(ϑ) to derive surrogate functions QL(ϑ|ϑ[k])

andQU (ϑ|ϑ[k]), where ϑ[k] is the estimation at iteration k. For the log-likelihood,

the surrogate function is QL(ϑ|ϑ[k]) =
∑

l

∑
j p

l
j(f

em,[k]
j,l log(Fl(ϑj)) − Fl(ϑj)),

where f
em,[k]
j,l =

Fl(ϑ
[k]
j )

pl
j

∑
i p

l
i,j

gi,l
ḡi,l(ϑ[k])

, pli,j = [P l]i,j and plj =
∑

i p
l
i,j . For
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the quadratic penalty, QU (ϑ|ϑ[k]) = 1
2

∑
l,j ωj(f

reg,[k]
j,l − Fl(ϑj))

2, where ωj =
∑

m∈Nj
ωj,m, and f

reg,[k]
j,l = 1

2ωj

∑
m∈Nj

ωj,m(Fl(ϑ
[k]
j ) +Fl(ϑ

[k]
m )). The resulting

surrogate separates the voxels so that each ϑj can be obtained independently

by maximising qj(ϑj |ϑ[k]) = qLj (ϑj |ϑ[k]) − βqUj (ϑj |ϑ[k]), where qLj (ϑj |ϑ[k]) =
∑

l p
l
j(f

em,[k]
j,l log(Fl(ϑj))−Fl(ϑj)) and qUj (ϑj |ϑ[k]) =

∑
l
1
2ωj(f

reg,[k]
j,l −Fl(ϑj))

2.

Generally, maximising qj(ϑj |ϑ[k]) can be solved by a non-linear optimisation
algorithm at each voxel j. Note that the activity depends on the form of the
kinetic model F , and both linear and non-linear models can be used. In this

work, a closed-form solution to update ϑ
[k]
j was derived with linear kinetic models

F(ϑ) = ϑB, where B ∈ R
nk×nt is the temporal basis matrix.

With Fl(ϑj) =
∑

q ϑj,qbq,l, bq,l = [B]q,l, the optimisation transfer can be

applied again on the log part qLj (ϑj |ϑ[k]) and the quadratic part qUj (ϑj |ϑ[k]) to

separate each of the nk parameters ϑj,q ∈ R
+. A separable surrogate function

for qj(ϑj |ϑ[k]) at sub-iteration r is

q̃j(ϑj |ϑ[k,r]
j ) =

nk∑

q=1

b̃j,q(ϑ
em,[k,r]
j,q log(ϑj,q)− ϑj,q)− β

1

2
ωjaq

(
ϑj,q − ϑ

reg,[k,r]
j,q

)2

=

nk∑

q=1

�
[k,r]
j,q (ϑj,q), (3)

ϑ
em,[k,r]
j,q = b̃−1

j,qϑ
[k,r]
j,q

∑
l

pl
jbq,lf

em,[k]
j,l

Fl(ϑ
[k,r]
j )

and ϑ
reg,[k,r]
j,q = ϑ

[k,r]
j,q −

∑
l bq,l(Fl(ϑ

[k,r]
j )−f

reg,[k]
j,l )

aq

are the intermediate parametric values at voxel j, b̃j,q =
∑

l p
l
jbq,l, and aq =

∑
l bq,l

∑
q′ bq′,l. The quadratic surrogate was obtained using De Pierro’s tech-

nique [6]. Note that ϑ
em,[k,r]
j,q corresponds to the nested EM update from [7]

whereas ϑ
reg,[k,r]
j,q is a quasi-Newton update of ϑ

[k,r]
j,q to minimise

∑
l(Fl(ϑ

[k,r]
j )−

f
reg,[k]
j,l )2. Each 	

[k,r]
j,q in (3) has a unique maximiser which corresponds to the r+1

inner-update of the optimisation w.r.t. ϑ with the current f
em,[k]
j,l and f

reg,[k]
j,l :

ϑ
[k,r+1]
j,q =

1

2βωjaq

(
βωjaqϑ

reg,[k,r]
j,q − b̃j,q +

√
Δj,q(ϑ

em,[k,r]
j,q , ϑ

reg,[k,r]
j,q )

)
, (4)

where Δj,q(ϑ
em,[k,r]
j,q , ϑ

reg,[k,r]
j,q ) = (βωjaqϑ

reg,[k,r]
j,q − b̃j,q)

2+4βωjaq b̃j,qϑ
em,[k,r]
j,q . For

given α, the penalised likelihood function is concave and a monotonic conver-
gence is guaranteed for ϑ [1]. The overall scheme is summarised in Algorithm 1.

To relate the linear coefficients ϑ directly with the transport rate constants
in the compartmental model to represent the tracer kinetics, the temporal ba-
sis B is defined as in spectral analysis [8], which is able to describe differing

tracer behaviour across all voxels in the image, as bq,l =
∫ tl,e
tl,s

e−φqτ 
 Cp(τ)dτ ,

where 
 is the convolution, tl,s, tl,e are the starting and ending times of frame l,
φ = [φ1, . . . , φq, . . . , φnk

] are the pre-chosen kinetic rate constants from a phys-
iologically plausible range, and Cp(t) is the plasma input function. Note that if
needed, the blood component can be added to the temporal basis to account for
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the blood volume in the measured PET data as b0,l =
∫ tl,e
tl,s

CB(τ)dτ where CB(t)

is the activity in blood. To ensure the sufficient representation of the kinetics,
usually the temporal basis B is over-complete. The under-determined problem
is constrained by the non-negativity of ϑ, which represents the transport rate
constants so intrinsically ϑ ≥ 0.

Algorithm 1. Joint 4-D parametric reconstruction and motion correction
Input: PET projection data g, the basis function B, regularisation parameter β
Output: Motion-corrected parametric images ϑ and the motion estimate α.
Initialisation α = 0, ϑ = 0.01 ;
while not converged do

ϑ[0] = ϑ ;
for k=1,. . . ,K do

Compute f
em,[k]
j,l and f

reg,[k]
j,l from ϑ[k−1] for all j, l ;

ϑ[k,0] = ϑ[k−1] ;
for r=1,. . . ,R do

Compute ϑ
em,[k,r]
j,q , ϑ

reg,[k,r]
j,q from ϑ

[k,r−1]
j for all j, q ;

Update ϑ[k,r] by (4) ;

end

ϑ[k] = ϑ[k,R] ;

end

ϑ = ϑ[K] ;
Optimise α using the trust region algorithm with the gradient and Hessian derived
from (2) and the current estimate of ϑ ;

end

3 Results

3.1 Simulation-Based Validation

The proposed algorithm was firstly validated using simulated [11C]Raclopride
data. 60-min dynamic PET scans were generated based on the Zubal brain phan-
tom, with various kinetics defined on background, grey matter, white matter,
cerebellum, putamen and caudate nucleus. The time activity curves were gener-
ated based on the two-tissue compartment model using kinetic parameters de-
rived from clinical studies in conjunction with a population input function. Rigid
head movements were introduced by transforming the activity images at various
time points (Fig. 1), in accordance with the expected amplitude and frequency
of head motion that happens within a brain scan. In practice, detection of such
motion events can be performed by applying the PCA technique proposed in [9]
with a moving time window for dynamic PET data. The activity images were
defined on a grid of 128× 128× 80 voxels and then used to generate PET pro-
jections (5 mm FWHM resolution). Poisson noise was added to the projections
and reconstruction was then performed with ideal pre-reconstruction correction
for randoms, scatter and attenuation (e.g. derived from the simultaneous CT or
MRI [10]). For comparison, the direct parametric reconstruction without motion
correction (direct) [1] and the indirect parametric reconstruction with motion
correction (indirect+MC ) [4] were also performed in addition to the proposed
algorithm (direct+MC ). In all the methods we used spectral analysis [8] for ki-
netic modelling with the same temporal basis functions B for which nk = 16,
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Fig. 1. Simulated random rigid head movements

and φq is spaced logarithmically in the range of [0.0001s−1, 1s−1]. Different β
values were applied to each reconstruction. For the indirect+MC method, the
quadratic penalty with β was applied to reconstructing the activity images by
MLEM [6]. Motion correction accuracy was quantified by the target registration
error (TRE) [11] averaged over time, shown in Fig. 2. For the parametric recon-
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Fig. 2. Left: Motion correction performance quantified by time-averaged target regis-
tration error (TRE). The proposed direct+MC achieves sub-voxel size(< 2.2 mm) MC
accuracy with noisy data, the β range has little impact on the motion correction per-
formance due to the low smoothing level; Right: Bias versus variance trade-off of the
volume of distribution (VT ) images of [11C]Raclopride reconstructed by indirect+MC
and direct+MC (new). Data points from left to right correspond to β values of 1, 0.1,
0.005, 0.001 and 0.0005. The proposed direct+MC algorithm achieves lower bias.

struction, the outcome measures of interest, which is the volume of distribution
VT for [11C]Raclopride was calculated using ϑ, by VT =

∑
q

ϑq

φq
[12]. The cor-

responding bias and variance plots of the parametric reconstruction of VT are
shown in Fig. 2, and Fig. 3 shows the ground truth and reconstructed VT images
by all these methods from one simulated scan.

3.2 Clinical Data

The proposed algorithm was also applied to reconstruct clinical [18F]Choline
data from a patient scanned for 44 mins using a Siemens Biograph mMR scan-
ner. The reconstruction was performed by the proposed algorithm integrated
with STIR [13]. The attenuation correction was conducted during the iterations
using the attenuation map repositioned by the current motion estimate to ac-
count for the mismatch caused by motion. The kinetic parameter of interest
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truth direct indirect+MC direct+MC(new)

Fig. 3. Selected slice (z : 45/80) of the reconstructed VT images of [11C]Raclopride
when the penalty weight β = 0.005. The direct reconstruction with no motion correc-
tion (direct) results in severely blurred images. The indirect reconstruction with post
MC in the image space (indirect+MC ) loses the spatial contrast due to inadequate MC.
The proposed joint direct reconstruction with motion correction (direct+MC ) better
preserves the ROIs (e.g. putamen).
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Fig. 4. Left: Two [18F]Choline time frames reconstructed by MLEM to illustrate the
data. Right: The KI images reconstructed by the direct method without motion correc-
tion, and by the proposed direct+MC algorithm. The identification of the [18F]Choline
hot spot is greatly enhanced by the proposed method.

KI was calculated for [18F]Choline, which is the irreversible uptake rate con-
stant from plasma defined by KI = ϑnk

(corresponds to φnk
= 0) [12]. For

the temporal basis functions B, nk = 16 and φq is logarithmically in the range
of [0.000001s−1, 0.01s−1]. Fig. 4 shows the reconstruction of KI by the direct
method without motion correction and by the proposed direct+MC algorithm.
The result demonstrates that, by applying the proposed method, the recon-
structed KI image shows the [18F]Choline hot spot which is otherwise difficult
to identify due to motion or noise.

4 Discussion and Conclusion

This work proposed a novel algorithm for joint motion correction and parametric
reconstruction of dynamic PET data, which addresses two of the fundamental
issues in PET imaging in a unified framework. In particular, a parallelisable
closed form solution of a sub-problem derived here has greatly enhanced the
computational efficiency for practical use. Initial evaluation on clinical data has
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shown improved identification of the kinetic activity in the regions of interest.
The proposed method can adapt to different PET tracers without the need of
reimplementation, and future evaluation over a range of clinical applications will
determine the full utility of the method.
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