
Scheduling Data Flow Program in XKaapi:

A New Affinity Based Algorithm
for Heterogeneous Architectures

Raphaël Bleuse1, Thierry Gautier2, João V.F. Lima4,
Grégory Mounié1, and Denis Trystram1,3

1 Univ. Grenoble Alpes, France
{raphael.bleuse,gregory.mounie,denis.trystram}@imag.fr

2 Inria Rhône-Alpes, France
thierry.gautier@inrialpes.fr
3 Institut universitaire de France

4 Universidade Federal de Santa Maria (UFSM), Brazil
jvlima@inf.ufsm.br

Abstract. Efficient implementations of parallel applications on hetero-
geneous hybrid architectures require a careful balance between compu-
tations and communications with accelerator devices. Even if most of
the communication time can be overlapped by computations, it is es-
sential to reduce the total volume of communicated data. The litera-
ture therefore abounds with ad hoc methods to reach that balance, but
these are architecture and application dependent. We propose here a
generic mechanism to automatically optimize the scheduling between
CPUs and GPUs, and compare two strategies within this mechanism:
the classical Heterogeneous Earliest Finish Time (HEFT) algorithm and
our new, parametrized, Distributed Affinity Dual Approximation algo-
rithm (DADA), which consists in grouping the tasks by affinity before
running a fast dual approximation. We ran experiments on a heteroge-
neous parallel machine with twelve CPU cores and eight NVIDIA Fermi
GPUs. Three standard dense linear algebra kernels from the PLASMA
library have been ported on top of the XKaapi runtime system. We re-
port their performances. It results that HEFT and DADA perform well
for various experimental conditions, but that DADA performs better for
larger systems and number of GPUs, and, in most cases, generates much
lower data transfers than HEFT to achieve the same performance.

Keywords: Heterogeneous architectures, scheduling, cost models, dual
approximation scheme, programming tools, affinity.

1 Introduction

With the recent evolution of processor design, the future generations of proces-
sors will contain hundreds of cores. To increase the performance per watt ratio,
the cores will be non-symmetric with few highly powerful cores (CPU) and nu-
merous, but simpler, cores (GPU). The success of such machines will rely on the
ability to schedule the workload at runtime, even for small problem instances.

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 560–571, 2014.
c© Springer International Publishing Switzerland 2014

Scheduling Data Flow Program in XKaapi 561

One of the main challenges is to define a scheduling strategy that may be able
to exploit all potential parallelisms on a heterogeneous architecture composed of
multiple CPUs and multiple GPUs. Previous works demonstrate the efficiency
of strategies such as static distribution [14, 15], centralized list scheduling with
data locality [6], cost models [1–4] based on Heterogeneous-Earliest-Finish-Time
scheduling (HEFT) [16], and dynamic for some specific application domains
[5,10]. Locality-aware work stealing [9], with a careful implementation to overlap
communication by computation [13], improves significantly the performance of
compute-bound linear algebra problems such as matrix product and Cholesky
factorization.

Nevertheless, none of the above cited works considers scheduling strategies
from the viewpoint of a compromise between performance and locality. In this
paper, we propose a scheduling algorithm based on dual approximation [12] that
uses a performance model to predict the execution time of tasks during schedul-
ing decision. This algorithm, called Distributed Affinity Dual Approximation
(DADA), is able to find a compromise between transfers and performance. This
trade-off is tuned thanks to a parameter α. The main advantage of dual ap-
proximation algorithms is their theoretical performance guarantee as they have
a constant approximation ratio. On the contrary, the worst case of HEFT can
be arbitrarily bad [12].

We compare these two different scheduling strategies for data-flow task pro-
gramming. These strategies are implemented on top of the XKaapi scheduling
framework with performance models for task execution time and transfer pre-
diction. The contributions of this paper are first the design and implementation
of dual approximation scheduling algorithms (with and without affinity) and
second their evaluation in comparison to the well-known HEFT algorithm on
three dense linear algebra algorithms in double precision floating-point opera-
tions from PLASMA [7]: namely Cholesky, LU, and QR. To our knowledge, this
paper is the first report of experimental evaluations studying the impact of data
transfer model and contention on a machine with up to 8 GPUs.

The main lesson of this work is that scheduling algorithms need extra informa-
tion in order to take the right decisions. Such extra information could be obtained
in a precise communication model to predict processing time of each task or in a
more flexible information such as the affinity in DADA. Even if HEFT remains a
good candidate for scheduling such linear algebra kernels, DADA is highly com-
petitive against it for multi-GPU systems: the experimental results demonstrate
that it achieves the same range of performances while reducing significantly the
communication volume.

The remainder of this paper is organized as follows. Section 2 provides an
overview of XKaapi runtime system, describes the XKaapi scheduling framework
and the cost model applied for performance prediction. Section 3 details the two
studied scheduling strategies. Section 4 presents our experimental results on a
heterogeneous architecture composed of 12 CPUs and 8 GPUs. In Section 5
we briefly survey related works on runtime systems, scheduling strategies and

562 R. Bleuse et al.

performance prediction. Finally, Section 6 concludes the paper and suggests
future directions.

2 Scheduling Framework in XKaapi

The XKaapi1 data-flow model [8] – as in Cilk, Intel TBB, OpenMP-3.0, or
OmpSs [6] – enables non-blocking task creation: the caller creates the task and
proceeds with the program execution. Parallelism is explicit while the detec-
tion of synchronizations is implicit [8]: dependencies between tasks and memory
transfers are automatically managed by the runtime system.

XKaapi runtime system is structured around the notion of worker : it is the
internal representation of kernel threads. It executes the code of the tasks and
takes local scheduling decisions. Each worker owns a local queue of ready tasks.
Our interface is mainly inspired by work stealing scheduler and is composed
of three operations that act on workers’ queues of tasks: pop, push and steal.
In our previous work, we demonstrated the efficiency of XKaapi locality-aware
work stealing as well as the corresponding multi-GPU runtime support [9] using
specialized implementation of these operations. A new operation, called activate,
has been defined to push ready tasks to a worker’s queue.

2.1 Execution Flow

The sketch of the execution mechanism is the following: at each step, either the
own queue of worker is not empty and the worker uses it; or the worker emits
a steal request to a randomly selected worker in order to get a task to execute.
According to the dependencies between tasks, once a worker finishes a task, it
calls the activate operations in order to activate the successors of the task which
become ready for execution.

The XKaapi runtime system gets information from each internal events (such
as start-end of task execution, or start-end of communication toward GPU)
to calibrate the performance model and corrects erroneous predictions due to
unpredictable or unknown behavior (e.g. operating system state or I/O distur-
bance). StarPU [4] uses similar runtime measurements in order to correct the
performance predictions in its HEFT implementation.

All of our scheduling strategies follow this sketch. Every worker terminates
its execution when all the tasks of the application have been executed.

2.2 Pop, Push, Steal and Activate Operations

A framework interface for scheduling strategies is not a new concept in hetero-
geneous systems. Bueno et al. [6] and Augonnet et al. [4] described a minimal
interface to design scheduling strategies with selection at runtime. However, there
is little information available on the comparison of different strategies. Most of

1 http://kaapi.gforge.inria.fr

Scheduling Data Flow Program in XKaapi 563

them reported performance on centralized list scheduling and performance mod-
els. Our framework is composed of three classical operations in the work stealing
context, plus an action to activate tasks when their predecessors have completed.

– The push operation inserts a task into a queue. A worker can push a task
into any other workers’ queue.

– A pop removes a task from the local queue owned by the caller worker.
– A steal removes a task from the queue of a remote worker. It is called by

an idle thread – the thief – in order to pick tasks from a randomly selected
worker – the victim.

– The activate operation is called after the completion of a task. The role of
this operation is to allocate the tasks that are ready to be executed. Hence,
most of the scheduling decision are done during this operation.

2.3 Performance Model

Cost models depend on a certain knowledge of both application algorithm and
the underlying architecture to predict performance at runtime. In order to pre-
dict performance, we designed a StarPU [3] like performance model for task
execution time and communication. Our task prediction relies on an history-
based model, and transfer time estimation is based on asymptotic bandwidth.
They are associated with scheduling strategies that are based on task completion
time such as HEFT and DADA with and without affinity.

In order to balance efficiently the load, for each processor XKaapi maintains
a shared time-stamp of the predicted time when it has completed its tasks. The
completion date of the last executed task is also kept. The update and incremen-
tation of the time-stamps are efficiently implemented with atomic operators.

3 Scheduling Strategies

This section introduces the scheduling strategies designed on top of the XKaapi
scheduling framework. We consider a multi-core parallel architecture with m ho-
mogeneous CPUs and k homogeneous GPUs. First, we describe our implemen-
tation of HEFT [16]. Then, we recall the principle of the dual approximation
scheme [11]. We propose a new algorithm – Distributed Affinity Dual Approxi-
mation (DADA) – based on this paradigm which takes into account the affinity
between tasks.

In the following, the number of tasks is denoted by n. We denote by pCPU
i

the processing time of task Ti on a CPU and pGPU
i on a GPU. We define the

speedup Si of task Ti as the ratio Si = pCPU
i / pGPU

i .

3.1 HEFT within XKaapi

The Heterogeneous Earliest-Finish-Time algorithm (HEFT), proposed by [16],
is a scheduling algorithm for a bounded number of heterogeneous processors. Its

564 R. Bleuse et al.

Algorithm 1. HEFT – activate operation

Input : A list of ready tasks Ti LR
Output: Tasks Ti pushed to the worker’s queues

1 foreach Ti ∈ LR do
2 Si ← pCPU

i / pGPU
i

3 end
4 Sort all ready tasks Ti by decreasing speedup Si

5 foreach Ti ∈ LR do
6 Schedule Ti on the worker wj achieving the earliest finish time
7 push Ti into queue of worker wj

8 Update processor load time-stamps on worker wj

9 end

time complexity is in O(n2 · (m+ k)). It has two major phases: task prioritizing
and worker selection. Our XKaapi version of HEFT implements both phases
during the activate operation. The task prioritizing phase computes for all ready
tasks Ti its speedup Si relative to an execution on GPU. Next, it sorts the list of
ready tasks by decreasing speedups. Whereas the original HEFT rule sorts the
tasks by decreasing upward rank (average path length to the end), our rule gives
priority on minimizing the sum of the execution times. In the worker selection
phase, the algorithm selects tasks in the order of their speedup Si and schedules
each task on the worker which minimizes the completion time. Algorithm 1
describes the basic steps of HEFT over XKaapi.

3.2 Dual Approximation and Affinity

Dual Approximation. Let us first recall that a ρ-dual approximation schedul-
ing algorithm considers a guess λ (which is an estimation of the optimal
makespan) and either delivers a schedule of makespan at most ρλ or answers
correctly that there exists no schedule of length at most λ [11]. The process is
repeated by a classical binary search on λ up to a precision of ε. We target ρ = 2.
The dual approximation part of Algorithm 2 consists in the following steps:

– Choice of the initial guess λ (lines 2 and 4);

– Extract the tasks which fit only into GPUs (pCPU
i > λ), and symmetrically

those which are dedicated to CPUs (line 9);

– Keep this schedule if the tasks fit into λ (line 12). Otherwise, reject it if there
is a task larger than λ on both CPUs and GPUs (line 15);

– Add to the tasks allocated to the GPU those which have the largest speedup
Si up to overreaching the threshold λ (line 19) which guarantees the ratio
ρ = 2;

– Put all the remaining tasks in the m CPUs and execute them using an
earliest-finish-time scheduling policy (line 19).

Scheduling Data Flow Program in XKaapi 565

Algorithm 2. DADA – activate operation

Input : A list of ready tasks Ti LR
Output: Tasks Ti pushed to the worker’s queues

1 lower ← 0

2 upper ← ∑
i max(pCPU

i , pGPU
i)

3 while (upper− lower) > ε do
4 λ ← (upper+ lower)/ 2
5 begin local affinity phase
6 Schedule tasks of LR per affinity score on its affinity processor, loading

each processor up to overreaching αλ
7 end
8 begin global balance phase
9 Schedule LR to minimize finish time using λ as hint

10 if tasks do fit into (ρ+ α)λ then
11 upper ← λ
12 Keep current schedule

13 else
14 lower ← λ
15 Reject current schedule

16 end

17 end

18 end
19 Push each task Ti of LR on queue of worker wj based on the last fitting

schedule and update processor load time-stamps

Affinity. DADA builds a compromise taking into account both raw performance
and transfers. The principle consists in two successive phases: a first local phase
targeting the reduction of the communications through the abstraction described
below and a second phase which counter-balances the induced serialization aim-
ing at a global balance. Any algorithm optimizing the makespan could be used
for the second phase. We use a basic dual-approximation. In order to gain a finer
control, the length of the first phase is controlled by a parameter (denoted by α,
0 ≤ α ≤ 1). A value of 0 for α means that the affinity is not taken into account:
DADA is then a basic dual-approximation. While at the opposite a value close
to 1 allows a length up to λ for the first phase, thus giving a greater weight
to affinity.

Each pair (task, computation resource) is given an affinity score. Maximizing
the score over the whole schedule enables to consider local impacts. The affinity
scores are computed using extra information automatically gathered by the run-
time system. In our implementation, they were computed using the amount of
data updated by each task. For instance, a task that writes or modifies a data
stored on a resource R has a high score and is prone to be scheduled on R.

566 R. Bleuse et al.

4 Experiments

4.1 Experimental Setup: Platform and Benchmarks

Platform. All experiments have been conducted on a heterogeneous, multi-
GPU system. It is composed of two hexa-core Intel Xeon X5650 CPUs running
at 2.66 GHz with 72 GB of memory. It is enhanced with eight NVIDIA Tesla
C2050 GPUs (Fermi architecture) of 448 GPU cores (scalar processors) running
at 1.15 GHz each (2688 GPU cores total) with 3 GB GDDR5 per GPU (18 GB
total). The machine has 4 PCIe switches to support up to 8 GPUs. When 2 GPUs
share a switch, their aggregated PCIe bandwidth is bounded by the one of a single
PCIe 16x. Experiments using up to 4 GPUs avoid this bandwidth constraint by
using at most 1 GPU per PCIe switch.

Benchmarks. All benchmarks ran on top of a GNU/Linux Debian 6.0.2 squeeze
with kernel 2.6.32-5-amd64. We compiled with GCC 4.4 and linked against
CUDA 5.0 and the library ATLAS 3.9.39 (BLAS and LAPACK). All experiments
use the tile algorithms of PLASMA [7] for Cholesky (DPOTRF), LU (DGETRF), and
QR (DGEQRF). The QUARK API [17] has been implemented and extended in
XKaapi to support task multi-specialization: the XKaapi runtime system main-
tains the CPU and GPU versions for each PLASMA task. At the task execution,
our QUARK version runs the appropriate task implementation in accordance
with the worker architecture. The GPU kernels of QR and LU are based on pre-
vious works from [1,2] and adapted from PLASMA CPU algorithm and MAGMA
from [15]. Each running GPU monopolizes a CPU core to manage its worker.
The remaining CPU cores are involved in the application computations.

Methodology. Each experiment has been executed at least 30 times for each
set of parameters and we report on all the figures (Fig. 1, 2, 3 and 4) the mean
and the 95% confidence interval. The factorizations have been done in double
precision floating-point operations with a PLASMA internal block (IB) of size
128 and tiles of size 512. For each of them, we plot the highest performance
obtained on various matrix sizes with the discussed scheduling strategies.

In the following, DADA(α) represents DADA parametrized by α. We denote
by DADA(α)+CP the algorithm using Communication Prediction as supple-
mentary information. HEFT strategy always computes the earliest finish time of
a task taking into account the time to transfer data before executing the task.

4.2 Impact of the Affinity Control Parameter α

This section highlights the impact of the affinity control parameter α on the
compromise between performance and data transfers. The measures have been
done with the Cholesky decomposition on matrices of size 8192 × 8192 and
16384 × 16384. However, we present only results for the smallest size as we
observe similar behaviors for both matrix sizes.

Scheduling Data Flow Program in XKaapi 567

 0

 100

 200

 300

 400

 500

 600

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

=0.95
=0.25
=0.1

=0.05
=0

(a) Performance of DADA(α).

 0

 100

 200

 300

 400

 500

 600

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

=0.95
=0.25
=0.1

=0.05
=0

(b) Performance of DADA(α)+CP.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

=0.95
=0.25
=0.1

=0.05
=0

(c) Memory transfer of DADA(α).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

 =0.95
=0.25
=0.1

=0.05
=0

(d) Memory transfer of DADA(α)+CP.

Fig. 1. Impact of parameter α on Cholesky (DPOTRF) with matrix of size 8192 × 8192

Fig. 1 shows both performance (Fig. 1(a) and 1(b)) and total memory transfers
(Fig. 1(c) and 1(d)) for several values of α with respect to the number of GPUs.
Both metrics are shown without (Fig. 1(a) and 1(c)) and with (Fig. 1(b) and
1(d)) communication prediction taken into account. Once affinity is considered
(i.e. α �= 0), the higher the value of α, the better the policy scales. Using as
little information as possible (i.e. DADA(0) and no communication prediction),
the policy performance does not scale with more than two GPUs due to a too
huge amount of transfers.

4.3 Comparison of Scheduling Strategies

We present in this section the results for the three kernels with matrix size
8192× 8192. Other tested sizes have the same behavior. The idea is to evaluate
the behavior of each strategy with different work loads. Both performance and
data transfers of the policies introduced above: HEFT, DADA(0), DADA(α) and
DADA(α)+CP are studied.

Experimental Evaluation. Fig. 2 reports the behavior of the Cholesky de-
composition (DPOTRF) with respect to the number of GPUs used. It studies
both performance results (Fig. 2(a)) and total memory transfers (Fig. 2(b)). All
scheduling algorithms have similar performances. DADA(α)+CP scales slightly
better with the number of GPU. As expected DADA(α)+CP and DADA(α)

568 R. Bleuse et al.

 0

 100

 200

 300

 400

 500

 600

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
DADA(=0.95)+CP

(a) Performance (8192 × 8192).

 0

 0.5

 1

 1.5

 2

 2.5

 3

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
DADA(=0.95)+CP

(b) Memory Transfer (8192× 8192).

Fig. 2. Benchmarks of Cholesky (DPOTRF)

are the policies with the lowest bandwidth footprint up to 6 GPU. Yet, as the
number of GPU grows, the use of communication prediction allows to reduce
the communication volume with sustained high performances.

Fig. 3 reports the behavior of the LU factorization (DGETRF). It studies both
performance results (Fig. 3(a)) and total memory transfers (Fig. 3(b)). Apart
from the performance of DADA+CP for six CPUs and six GPUs (with a large
confidence interval), all scheduling policies sustain the same performance. Data
transfers seem to have a little impact on performance. However, DADA(α)+CP
generates less memory movements than other strategies. DADA(0) is the most
costly policy while DADA(α) and HEFT have similar impacts. The total memory
transfers of the LU and the Cholesky factorizations behave in a similar way. Still,
the gap between the curves is widening: DADA(α)+CP is 3.5 less demanding
in bandwidth than HEFT for only a slowdown of about 1.13 in performance for
8 GPU.

Finally, Fig. 4 reports the behavior of the QR factorization (DGEQRF) with re-
spect to the number of GPUs used. Both performance results (Fig. 4(a)) and total
memory transfers (Fig. 4(b)) are studied. All dual approximations (DADA(0),
DADA(α), DADA(α)+CP) behave the same and are outperformed by HEFT.
Even the low transfer footprint of both DADA(α) is not able to sustain perfor-
mance. It seems that the dependencies between tasks for QR factorization have
a strong impact on the schedule computed by all dual approximation algorithms.
We are still investigating this particular point.

Discussion

Communication Prediction Affinity is a viable alternative to communication
modeling. Indeed, DADA without communication prediction is comparable to
HEFT in terms of performance. Moreover, affinity based policy combined with
communication prediction allows to reduce further more memory transfers (up
to a factor 3.5 when compared to HEFT).

Comparison with Work Stealing Scheduling Algorithm For the sake of complete-
ness, we also tested the work stealing algorithm. However we did not plot the

Scheduling Data Flow Program in XKaapi 569

 0

 20

 40

 60

 80

 100

 120

 140

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
DADA(=0.95)+CP

(a) Performance (8192 × 8192).

 0

 1

 2

 3

 4

 5

 6

 7

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
 DADA(=0.95)+CP

(b) Memory Transfer (8192× 8192).

Fig. 3. Benchmarks of LU (DGETRF)

 0

 20

 40

 60

 80

 100

 120

 140

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
DADA(=0.95)+CP

(a) Performance (8192 × 8192).

 0

 1

 2

 3

 4

 5

 6

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

HEFT
DADA(=0)

DADA(=0.95)
DADA(=0.95)+CP

(b) Memory Transfer (8192× 8192).

Fig. 4. Benchmarks of QR (DGEQRF)

results in previous figures for the sake of readability. We briefly discuss them now.
The naive work stealing algorithm is cache unfriendly, especially with small ma-
trices as its random choices are heavily penalizing [9]. On the contrary, the affin-
ity policies proposed here are suitable for this case. When scheduling for medium
and large matrix sizes, the impact of modeling inaccuracies grows. Model oblivi-
ous algorithms such as work-stealing behave well by efficiently overlapping com-
munications and computations while HEFT is induced in error by the imprecise
communication prediction. Hence, our approach is much more robust than work
stealing and HEFT since it does not need a too precise communication model
and adapts well to various matrix sizes.

5 Related Works

StarPU [4], OmpSs [6] and QUARK [17] are programming environments or li-
braries that enables to automatically schedule tasks with data flow dependen-
cies. OmpSs is based on OpenMP-like pragmas while StarPU and QUARK are
C libraries. QUARK does not schedule tasks on multi-GPU architecture and im-
plements a centralized greedy list scheduling algorithm. OmpSs locality-aware
scheduling, similar to our data-aware heuristic from [9], computes an affinity

570 R. Bleuse et al.

score based on both data location and size. Then, the task is placed on the high-
est affinity resource or in a global list, otherwise. The StarPU scheduler uses
the HEFT [16] algorithm to schedule all ready tasks in accordance with the cost
models for data transfer and task execution time [3]. Our data transfer model
is based on the StarPU model with minor extension. In the context of dense
linear algebra algorithms, PLASMA [7] provides fine-grained parallel linear al-
gebra routines with dynamic scheduling through QUARK, which was conceived
specially for numerical algorithms on multi-CPU architecture. MAGMA [15]
implements static scheduling for linear algebra algorithms on heterogeneous sys-
tems composed of GPUs. Recently it has included some methods with dynamic
scheduling in multi-CPU and multi-GPU sytems on top of StarPU, in addition
to the static multi-GPU version. In [14] the authors based their Cholesky fac-
torization on 2D block cyclic distribution with an owner compute rule to map
tasks to resources. DAGuE [5] is a parallel framework focused on multi-core clus-
ters and supports single-GPU nodes. Other papers reported performance results
of task-based algorithms with HEFT cost model scheduling on heterogeneous
architectures for the Cholesky [4], LU [1], and QR [2] factorizations. All the re-
sults report evaluation of single floating point arithmetics with up to 3 GPUs.
Due to the small number of GPUs, such studies cannot observe contention and
scalability.

6 Conclusion

We presented in this paper a new scheduling algorithm on top of the XKaapi
runtime system. It is based on a dual approximation scheme with affinity and has
been compared to the classical HEFT algorithm for three tile algorithms from
PLASMA on an heterogeneous architecture composed of 8 GPUs and 12 CPUs.
Both algorithms attained significant speed up on the three dense linear algebra
kernel. Moreover, if HEFT achieves the best absolute performance with respect
to DADA on QR, while DADA has similar or better performances than HEFT
on Cholesky and LU for large numbers of GPU. Nevertheless, DADA allows
to significantly reduce the data transfers with respect to HEFT. More interest-
ing, thanks to its affinity criteria DADA can introduce communication in the
scheduling without too precise communication cost model which are required in
HEFT to predict the completion time of tasks.

We would like to extend the experimental evaluations on robustness of schedul-
ing with respect to uncertainties in cost models, especially on the communication
cost which is very sensitive to contentions that may appear at runtime. Another
interesting issue would be to study other affinity functions.

Acknowledgments. This work has been partially supported by the French
Ministry of Defense – DGA, the ANR 09-COSI-011-05 Project Repdyn and
CAPES/Brazil.

Scheduling Data Flow Program in XKaapi 571

References

1. Agullo, E., Augonnet, C., Dongarra, J., Faverge, M., Langou, J., Ltaief, H., Tomov,
S.: Lu factorization for accelerator-based systems. In: IEEE/ACS, AICCSA 2011,
pp. 217–224. IEEE Computer Society, Washington, DC (2011)

2. Agullo, E., Augonnet, C., Dongarra, J., Faverge, M., Ltaief, H., Thibault, S., To-
mov, S.: QR Factorization on a Multicore Node Enhanced with Multiple GPU
Accelerators. In: IEEE IPDPS. EUA (2011)

3. Augonnet, C., Thibault, S., Namyst, R.: Automatic calibration of performance
models on heterogeneous multicore architectures. In: Lin, H.-X., Alexander, M.,
Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009
Workshops. LNCS, vol. 6043, pp. 56–65. Springer, Heidelberg (2010)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23(2), 187–198 (2011)

5. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.: DAGuE: A generic distributed DAG engine for High Performance Computing.
Parallel Computing 38(1–2), 37–51 (2012)

6. Bueno, J., Planas, J., Duran, A., Badia, R.M., Martorell, X., Ayguadé, E., Labarta,
J.: Productive Programming of GPU Clusters with OmpSs. In: IEEE IPDPS (2012)

7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing 35(1), 38–53
(2009)

8. Gautier, T., Besseron, X., Pigeon, L.: KAAPI: A thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: PASCO 2007. ACM,
London (2007)

9. Gautier, T., Lima, J.V., Maillard, N., Raffin, B.: XKaapi: A Runtime System for
Data-Flow Task Programming on Heterogeneous Architectures. In: IEEE IPDPS,
pp. 1299–1308 (2013)

10. Hermann, E., Raffin, B., Faure, F., Gautier, T., Allard, J.: Multi-GPU and Multi-
CPU Parallelization for Interactive Physics Simulations. In: D’Ambra, P., Guarra-
cino, M., Talia, D. (eds.) Euro-Par 2010, Part II. LNCS, vol. 6272, pp. 235–246.
Springer, Heidelberg (2010)

11. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)

12. Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling independent
tasks on multi-cores with GPU accelerators. In: an Mey, D., et al. (eds.) Euro-Par
2013. LNCS, vol. 8374, pp. 228–237. Springer, Heidelberg (2014)

13. Lima, J.V.F., Gautier, T., Maillard, N., Danjean, V.: Exploiting Concurrent GPU
Operations for Efficient Work Stealing on Multi-GPUs. In: 24th SBAC-PAD,
pp. 75–82. IEEE, New York (2012)

14. Song, F., Dongarra, J.: A scalable framework for heterogeneous GPU-based clus-
ters. In: ACM SPAA, pp. 91–100. ACM, New York (2012)

15. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Computing 36(5-6), 232–240 (2010)

16. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE TPDC 13(3), 260–274 (2002)

17. YarKhan, A., Kurzak, J., Dongarra, J.: Quark users’ guide: Queueing and runtime
for kernels. Tech. Rep. ICL-UT-11-02, University of Tennessee (2011)

	Scheduling Data Flow Program in XKaapi:A New Affinity Based Algorithm for Heterogeneous Architectures
	1 Introduction
	2 Scheduling Framework in XKaapi
	2.1 Execution Flow
	2.2 Pop, Push, Steal and Activate Operations
	2.3 Performance Model

	3 Scheduling Strategies
	3.1 HEFT within XKaapi
	3.2 Dual Approximation and Affinity

	4 Experiments
	4.1 Experimental Setup: Platform and Benchmarks
	4.2 Impact of the Affinity Control Parameter α
	4.3 Comparison of Scheduling Strategies

	5 Related Works
	6 Conclusion
	References

