Time-Domain BEM for the Wave Equation:
Optimization and Hybrid Parallelization

Berenger Bramas!, Olivier Coulaud!, and Guillaume Sylvand?

! Inria Bordeaux, Sud-Ouest, 33405 Talence, France
2 Airbus Group Innovations, Applied Mathematics and Simulation, Toulouse, France
{Berenger .Bramas,0livier.Coulaud}@inria.fr, Guillaume.Sylvand@eads.net

Abstract. The problem of time-domain BEM for the wave equation
in acoustics and electromagnetism can be expressed as a sparse linear
system composed of multiple interaction/convolution matrices. It can
be solved using sparse matrix-vector products which are inefficient to
achieve high Flop-rate. In this paper we present a novel approach based
on the re-ordering of the interaction matrices in slices. We end up with
a custom multi-vectors/vector product operation and compute it using
SIMD intrinsic functions. We take advantage of the new order of the
computation to parallelize in shared and distributed memory. We demon-
strate the performance of our system by studying the sequential Flop-rate
and the parallel scalability, and provide results based on an industrial
test-case with up to 32 nodes.

Keywords: Boundary element method (BEM), time domain, sparse
matrix-vector product (SpMV), shared/distributed memory paralleliza-
tion, SIMD.

1 Introduction

Airbus Group Innovations is an entity of Airbus Group devoted to research and
development for the usage of Airbus Group divisions (Airbus Civil Aircraft,
Airbus Defence & Space, Airbus Helicopters). The numerical analysis team has
been working for more than 20 years on integral equations and boundary element
methods for wave propagation simulations. The resulting software solutions are
used on a daily basis in acoustics for installation effects computation, aeroacous-
tic simulations (in a coupled scheme with other tools), and in electromagnetism
for antenna siting, electromagnetic compatibility or stealth. Since 2000, these
frequency-domain Boundary Element Method (BEM) tools have been extended
with a multipole algorithm (called Fast Multipole Method) that allows to solve
very large problems, with tens of millions of unknowns, in reasonable time on
parallel machines. More recently, H-matrix techniques have enabled the design of
fast direct solvers, able to solve with a very high accuracy problems with millions
of unknowns without the usual drawback associated with the iterative solvers
(no control on the number of iterations, difficulty to find a good preconditioner,
etc.). At the same time, we are working on the design and optimization of time

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 511-523, 2014.
© Springer International Publishing Switzerland 2014

512 B. Bramas, O. Coulaud, and G. Sylvand

domain BEM (TD-BEM) that allows to obtain with only one calculation the
equivalent results of many frequency-domain computations. In this paper, we do
not focus on the mathematical formulation of this TD-BEM (based on [2]), but
rather on the parallel implementation of the algorithm.

In [3], the authors have implemented a TD-BEM application and their formu-
lation is similar to the one we use. They show results up to 48 CPU and rely on
sparse matrix-vector product without giving details on the performance. In [4],
the author uses either multi-GPU or multi-CPU parallelization and accelerates
the TD-BEM by splitting near field and far field. In [6], they give an overview of
an accelerated TD-BEM using Fast Multipole Method. The paper does not con-
tain any information on the sequential performance or even the parallelization
which makes it difficult to compare to our work.

The optimization of the Sparse Matrix-Vector product (SpMV) operator has
been widely studied because this is an essential operation in many scientific
applications. Our work is not an optimization or an improvement for the general
SpMV because we use a custom operator that matches our needs. Nevertheless,
the optimizations of our implementation have been inspired by the historical
work on SpMV which are the reordering of rows/columns, the management of
the memory accesses, the blocking of the contiguous data or the data reuse, see
[7],8],[10],[9],[11],[12]. The performance is limited by the memory access pattern,
the memory bandwidth and the instruction pipelining. It achieves 20% of the
peak performance on common X86 architecture.

This paper addresses two major problems of the TD-BEM solver. First, we
by-pass the low performance of SpMV by reordering the computation and by
using a custom multi-vectors/vector product. Second, based on this new ordering
we propose novel parallelization strategies for shared and distributed memory
platforms.

The rest of the paper is organized as follows. Section 2 provides background
and mathematical formulation of the problem. Section 3 describes the new or-
ganization of computations and the multi-vectors SIMD operator. Section 4 de-
tails the parallelization strategies inherited from the new computational order.
Finally, in Section 5 we provide an experimental performance evaluation of our
multi-vectors/vector operator and of the different parallelization strategies.

2 Formulation

Our formulation has been originally defined in [2] but in order to keep this
paper self-explanatory, we introduce the relevant aspects of the TD-BEM. An
incident wave w with a velocity ¢ and a wavelength A is emitted on a boundary
2. This surface {2 is discretized by N unknowns. The problem is also discretized
in time with a step At and a finite number of iterations driven by the frequency
study. In fact, increasing the number of time steps improves the results towards
the bottom of the frequency range considered. At iteration time ¢, = nAt, the
vector {" contains the illumination of w over the unknowns from one or several
emitters. The wave illuminates the location where the unknowns are defined

Time-Domain BEM for the Wave Equation 513

and is reflected by these ones over the mesh. It takes a certain amount of time
for the waves from the emitter or an unknown to illuminate some others. This
relation is characterized by the interaction/convolution matrices M*. A matrix
MP* contains the interactions between unknowns that are separated by a distance
around k.c.At and contains zero for unknowns that are closer or further than
this. These N x N matrices, where N is the number of unknowns, are positive
definite and sparse in realistic configuration. They have the following properties:

— The number of non-zero values for a given matrix M* depends on the struc-
ture of the mesh (the distance between the unknowns) and the physical
properties of the system ¢, A and At.

— For k > Kpaz = 2 + lmaz/(cAt), with lpae = maz; yycoxo(lz —y|) the
maximum distance between two unknowns, the matrices M* are null.

The construction of these matrices is illustrated in Figure 1. The matrices are

filled with values depending on the delay taken by a wave emitted by an unknown
to pass over another one.

ABB . C A B |C A B | C A B G
A A A A A A A A A A A A
A B C A B C A B C A B ¢
ABC ABC ABC ABC
B 8 8 8
&y ¢ O ¢ 0 e O
(a) M° (b) M* (c) M* (d) M?

Fig. 1. Example of M* matrices for three unknowns A,B,C in 1D. A wave emit-
ted from each unknown is represented at each time step. When a wave is around an
unknown, a value is added in the matrix which is symbolized by a gray square. All
matrices M* with k > 3 are zero since the longest distance between elements is lower
than 3.c. At.

Conwolution system. Using the convolution matrices M*, and the incident wave
["™ emitted by a source on the mesh, the objective is to compute the state of the
unknowns a™ at time n for a given number of time iterations. The problem to
solve at time step n is defined in Equation (1)

Kmaw

> MEanE=1m, (1)

k>0

Equation (1) can be rewritten as in Equation (2) where the left hand side is the
state to compute and the right-hand side is known from the previous time steps
and the test case definition

Kmae
a" = (M)~ (zn— 3 Mk~a"_k> . 2)
k=1

514 B. Bramas, O. Coulaud, and G. Sylvand

Solution algorithm. The solution is computed in two steps. In the first step, the
past is taken into account using the previous values of a? with p < n and the
interaction matrices as shown in Equation (3). The result s™ is subtracted from
the illumination vector, see Equation (4)

Kmaz

st = ZM]Vanfk, (3)
k=1

st=1"—s". (4)

In the second step, the state of the system at time step n is obtained by solving
the following linear system where s™ is the right-hand side

M°" =3". (5)

The first step is the most expensive part, from a computational standpoint. The
solution of Equation (5) is extremely fast, since the matrix M° is symmetric,
positive definite, sparse and almost diagonal. One can solve it using a sparse
direct solver for example.

Contezt of the application. Our application is a layer of an industrial compu-
tational work-flow. We concentrate our work on the solution algorithm and we
delegate to some black-boxes the generation of the interaction matrices and the
direct solver. Moreover, in our simulations the meshes are static and all the
interaction matrices and the pre-computation needed by the direct solver are
performed once at the beginning. The most costly part of our algorithm is the
computation of the right-hand side s™. Our resulting implementation will re-
place a legacy version developed by Airbus Group Innovation which performs
the solution algorithm using SpMV.

3 Summation Algorithm

3.1 Summation Ordering

We refer to the process of computing s™ as the summation stage. The summation
uses the interaction matrices M* and the past values of the unknowns ™ *. A
natural implementation of this computation is to perform K,,,, independent
SpMV. That is implemented with four nested loops. The first loop is over the
time step denoted by index n. The second loop is over the interaction matrices
and is controlled by index k in our formulation and goes from 1 to K,,q;. Finally,
the two remaining loops are over the rows and the columns of the matrices and
are indexed by ¢ and j respectively. The indices ¢ and j cover the unknowns
and go from 1 to N. The complete equation is written in Equation (6) where all
indexes n, k, ¢ and j are visible.

kEmaz N

L<i<Ns™(i) =) > M"ij) xa" *()) (6)

k=1 j=1

Time-Domain BEM for the Wave Equation 515

In term of implementation, there is no need to keep the outer loop on index k and
two other orders of summation are possible using i or j. The three possibilities
are represented in Figure 2 where all interaction matrices M* are shown one
behind the other and represented as a 3D block. This figure illustrates the three
different ways to access the interaction matrices according to the outer loop
index. The natural approach using k is called by front and usually relies on
SpMV. We propose to use a different approach called by slice using j as outer
loop index. One can see the data access pattern of the interaction matrices in
slice which is illustrated by Figure 2c.

N
| .-
AR B B BB BB B BN

NIN
NENTN\
N
| .- N

w

| anrd

(a) Front (k) (b) Top (i) (c) Slice (j)

Fig. 2. Three ways to reorder the computation of s” with current time step n = 6,
number of unknowns N = 8 and K, = 6. For front the outer loop is on the different
MP* matrices. For top the outer loop is over the row index of M* and s*. For slice the
outer loop is over the column index of M*.

3.2 Slice Structure

We use the word slice to name the data that are used when the outer loop index
of the summation is j. A Slice? is composed of the concatenation of each column
j of the interaction matrices [M! (%, j) M2(x,7) ... MKma=(x,)]. Therefore, a slice
is a sparse matrix of dimension (N X (K,,q —1)). It has a non-zero value at line
¢ and column k if d(i, j) =~ k- ¢- At, where d(i, j) is the distance between the un-
knowns i and j. This definition is induced by the relation M* (i, j) = Slice’ (i, k).
From the formulation, an interaction matrix represents the interaction between
the unknowns for a given time/distance k. Whereas a Slice’ represents the in-
teraction that one unknown j has with others over the time. This provides an
important property to the sparse structure of a slice: the non-zero values are
contiguous on each line. In fact, it takes several iterations for a wave to cross
over an unknown. In other words, for a given row ¢ and column j all the interac-
tion matrices M* that have a non zero value at this position are consecutive in
index k. In the slice format, it means that each slice has one vector per line but
each of this vector may start at a different column k. If it takes p time steps for

516 B. Bramas, O. Coulaud, and G. Sylvand

the wave from j to cross over i, then Slice’ (i, k) = M*(i,j) # 0, ks < k < ks +p
where ks = d(i,j)/(cAt).

3.3 Slice Computation

The Figure 3a shows a slice and how the values are contiguous on each line.
It is natural to use level 1 BLAS dot-product instead of SpMV in order to
take advantage of this particular structure. Therefore, for the entire summation
defined in Equation (6), there are N x N dot-products to compute s™ (N dot-
products per slice and N slices). However, the level 1 BLAS functions are memory
bound and cannot achieve a high Flop-rate. In fact, for a vector of length v, we
need to load 2.v+ 1 floating point values to perform 2.v floating point operations
(Flop). In order to increase the ratio of Flop against loaded data, we propose
to compute several summation vectors together, see Figure 3b. By computing a
group of ny vectors s*, we can use the matrix-vector product which is a level 2
BLAS operation. However, to compute the summation vector s at time n we
need the past results from a”~! to a®~5""". When we group, we also work on
the future summation s”t! which requires a™ to " K"*"*1. But " has not
been computed yet since it needs s™ which is involved in the current process.
That is why we need to replace the values of a™ by zero in the past values matrix.
A similar strategy is requested for the other vectors of the group, and the vector
s"*tms~1 has its part of the past matrix starting with n, — 1 zeros. Therefore,
the past values matrix has a triangle of zero under the diagonal of the first rows.
At time n, the algorithm computes N x N matrix-vector products and obtains
ng summation vectors where only the first one is complete. Like in the original
algorithm, a direct solver gives a™ from 5" (Equations (4) and (5)). Because the

V77777 Jpast(t1:t-4)
LV)0Pastit-1:t-3)]

Pasti(t-1:t-4) l:l[00 Past/(t-1:t-2)] [000Past(t1:t-4)]
ErEEE :[ooopasm) —

7

L

77

]
L
.

\
NN

/
I I I D D D D
\¢ ’»ﬁ‘ ,5(b* W x{\ ,5(\ u*‘ W9 x{\ ’ht u*‘
SEE SFES SEFES

@ (®) ©

Fig. 3. Three ways of computing a slice product: (a) using dot-products, (b) by group-
ing with ny = 4 and using matrix-vector product and (c) by grouping ny = 4 and using
custom multi-vectors/vector product

Time-Domain BEM for the Wave Equation 517

values of a™ were replaced by zeros in the summation the algorithm needs to
update the incomplete summation vectors. The algorithm computes the action of
the current values of a™ (at time step n) on the partial summation vectors from
s"t1 to s"tme~1 (corresponding to future time steps n + 1 to n + ng — 1) using
SpMV and the ny first interaction matrices. This operation is called radiation
and it has to be repeated ny times at each iteration.

The past matrix which is used in the slice computation using matrix-vector
product has a particular structure. Each column is a copy of the previous column
shifted by one and padded with zero (as illustrated on Figure 3b). Thus, instead
of storing these data in a matrix of size ny x K™*, it is possible to use a special
vector of size ng + K™ — 1 with the values of a"~! to a" K" at its end
and with ny — 1 zeros at its beginning as shown in Figure 3c. By grouping ng
vectors and using the special vector, we improve the ratio of Flop against loaded
data: for a slice vector of length v, we need to load 2-v + 2 -ny — 1 floating
point values and we can perform 2-v-ny Flops. In such configuration we should
be able to call an external matrix-vector product with a leading dimension of
one for the past matrix. However, most of the BLAS libraries check the validity
of the leading dimension and one is not a correct value. Moreover, a general
matrix-vector product cannot take completely advantage of the pattern of the
special past vector.

That is why we propose an implementation of an optimized operator to per-
form this operation and we refer to it as the multi-vectors/vector product. In our
implementation, we reduce the memory access by re-using the past values, see

Algorithm 1 that computes just one row in the set of output vectors s”, s"*1,
; SnJrngfl .

Algorithm 1. Multi vectors/vector product

Data: ng the number of result vectors to compute simultaneously (should be > 2)
function MultiVectorsVector (vec[SIZE VEC], past[SIZE VEC + ngz — 11) : reslng]
register res[ng] = 0;
// We store the first past values (to load them once)
register buffer[ng-1];
for idxBuffer = 0 — ny-2 do
buffer[idxBuffer] = load(past[idxBuffer]);
end
// For all values in the vec
for idxVec = 0 — SIZE VEC-1 do
// Copy the current vec value
register value = load(vec[idxVec]);
for idxRes = 0 — mn,-3 do
res[idxRes] += value * buffer[idxRes];
// Shift the buffer value for the next idxVec loop
buffer[idxRes| = buffer[idxRes+1];
end
res[ng-2] += value * buffer[ny-2];
// Load a new value from the past vector
buffer[ny-2] = load(past[idxVec+ng]);
res[ng-1] += value * buffer[ng-2];
end
return res ;

518 B. Bramas, O. Coulaud, and G. Sylvand

4 Parallelization Strategies

4.1 Distributed Memory Parallelization

The parallelization over distributed memory is realized using Message Passing
Interface (MPI) [16] and we name a MPI process a process. A slice interval
is assigned to each process. This interval from jstqrt t0 jeng can be obtained
in different ways: for example by dividing the number of IV slices equally or by
taking into account the amount of work in each slice. Each process needs to have
the past values of the unknowns which match its slice interval. In a first stage,
each process computes a part of the summation vectors without communicating
with others. Then, all processes synchronize and call a sparse direct method
to solve (5) and obtain the current solution a”. With a number of threads per
process equal to one, this algorithm is detailed in Algorithm 2.

At every iteration, the result is saved to disk for later work and it also has to
be distributed to let each process have the current result for its interval jsqrt to

jend-

4.2 Shared Memory Parallelization

The straightforward parallelization in shared memory is implemented by split-
ting the slices computation and the radiation between threads. This is done using
OpenMP for pragma [17] and it is detailed in Algorithm 2. If the number of
threads per process is 1 and the parallelism relies on MPI only, we refer to the
algorithm 2 as the Full-MPI implementation. If the number of threads is larger
than 1, we refer to it as the Hybrid-MPI/OpenMP implementation.

5 Numerical and Performance Studies

5.1 Experimental Setup

Hardware configuration. We use up to 32 nodes and each node has the following
configuration: 2 Quad-core Nehalem Intel Xeon X5550 at 2.66GHz and 24GB
(DDR3) of shared memory.

Compiler and libraries. We use the Gee 4.7.2 compiler and Open-MPI 1.6.5. The
compilation flags are -m64 -march=native -O3 -funroll-loops -freorder-blocks-
and-partition -ftree-vectorize -msse -msse2 -msse3 -mfpmath=sse. The direct
solver is a state of the art solver Mumps 4.10.0 [15] which relies on Parmetis
3.2.0 and Scotch 5.1.12b. The calculation is performed in 64 bit arithmetic.

Test case. The test case is an airplane composed of 23962 unknowns shown
in Figure 4. The simulation should perform 10823 time iterations. There are
341 interaction matrices. The total number of non-zero values in the interaction
matrices, except M?, is 5.5 x 10°. For one iteration the total amount of Flops to
compute the summation s” is around 11 GFlops. If we consider that the direct

Time-Domain BEM for the Wave Equation 519

Algorithm 2. Complete simulation with Hybrid-MPI/OpenMP paral-

lelization
Data: Slices[N] the interaction matrices in slice/vectors shape. Each process is working on
an interval [j start; j end] that cover the entire slices.
Result: PastValues[j end — j start + 1][NB STEPS + ng — 1] the state of the unknowns
for all time step
begin
// Direct Solver initialization (factorize/inverse MO)
invM° handle = direct solver(M[0]);
// For all time step with progression by ng4
for n = 0 - NB STEPS-1 by ny do
S[ng][N] = 0;
// Compute ng vectors with each slices in my interval
#pragma omp parallel reduce(+4:S);
for j = j start — j end do
foreach Vec v in Slices[j].blocks do
S[:][v.row] += MultiVectorsVector(v.values, PastValues|j][v.col - ngy + 1
:v.col + v.length]) ;
end
end
// Finalization
for idx = 0 — ny-1do
distributed reduce(S[ny - idx -1][:]);
a™ = solve(inuvM° handle, L[n+idx][:] - S[ng - idx - 1][]);
master saves a” to disk;
// Copy result in Pastvalues format
PastValues|j start:j end][NB STEPS - n - 1] = a"[j start:j end];
// Radiation
#pragma omp parallel;
for past = idx + 1 — ngy-1 do
S[ng - past]:] += SpMV(MP** =92 [j start:j end],a™[j start:j end];
end
end
end
end

solver has the cost of a matrix-vector product, the total amount of Flop for the
entire simulation is 130651 GF'lop. Storing all the data of the simulation takes
more than 70 GB. Our application can execute out-of-core simulations, but we
concentrate our study on in-core executions. We need at least 4 nodes to have
the entire test case fitting in memory.

Fig. 4. Illustration of the Airplane test case

520 B. Bramas, O. Coulaud, and G. Sylvand

Parallel Efficiency. Usual parallel efficiency is defined by e,, = T3 /(T * p) where
T is the sequential elpased time to execute the simulation and 7}, the elapsed
time using p cores. In our case, we use a modified version of the definition because
we use at least 4 nodes (to remain in-core) and never execute the simulation
sequentially. Using 1 core as a reference would artificially improve efficiency,
since we would compare sequential out-of-core computations with parallel in-
core computations. Hence, we replace the sequential time 77 by T, the time
taken by the lowest number of cores which gives the new efficiency formula
€, = (r*T,)/(T, * p) where r is the number of cores for the time reference.

5.2 Multi-vectors/Vector Product

We compare three implementations of the multi-vectors/vector product. We
choose to have ny = 8 as it is enough to by-pass the memory bandwidth lim-
itation without paying too much extra cost in the radiation stage. The first
implementation comes out of the Equation (6) and is implemented in C. Some
important compilation flags are used in order to enable loop unrolling and the use
of SSE instructions by the compiler. This is referred to as the Compiler Version
implementation. The second version is written in C and comes out of the Algo-
rithm 1. It is written with intrinsic SSE functions proposed by the compiler and
SSE data types (m128d). We refer to it as the SSE-Intrinsic implementation.
We have analyzed the assembly code the compiler has generated and we have
considered that it is not optimal for both implementations. Thus, we have de-
veloped a third implementation in asm64 assembly to maximize the data re-use.
With n, = 8 it is possible to use all 16 SSE registers in order to read each value
only once from the main memory. We refer to it as the SSE-Asm implementation.
Figure 5 shows the Flop-rate for all three operators for different lengths of vector
v. The two SSE based implementations are close but the SSE-Asm can achieve
a slightly higher Flop-rate for large vectors. Both implementations suffer from
small cache effects for N, = 1000 and v = 100 (Figure 5a) and for N,. = 20000,
v =25 and v = 80 (Figure 5b). However, the length of the vectors of the slices
in real test cases depends on At the time step, and the size of the elements on
the mesh. In the airplane test case, each vector has a length between 1 and 15
and the average length is 9.5. In this configuration, the SSE-Asm implementa-
tion achieves 3.9 GFlop/s per core (Compiler Version achieves 1.7 GFlop/s) for
a peak performance of 10.64 GFlop/s.

5.3 Scalability

We compare the Full-MPI and the Hybrid-MPI/OpenMP implementations to
compute the airplane test case. We use 4 to 32 nodes and 8 cores per node.
In Figure 6 we give the total execution time and the parallel efficiency. The
efficiency is worthy for both implementations but in terms of execution time,
the Full-MPI is better. Even if the number of processes involved in the global
communications becomes larger because there are 8 MPI processes on each node,
there is no advantage to reduce this number by having one process per node

Time-Domain BEM for the Wave Equation 521

10 — 10

=
= — SSE-Asm
% 8 | | 8 B | —e— SSE-Intrinsic
E 6 [— 6 [—| | —+— Compiler Version
S gyl 1oyl |
ks 2| 12 R
o% oY | | N | |
@ 0 200 400 0 200 400

Length of vectors (v) Length of vectors (v)

(a) Number of rows in slices N, = (b) Number of rows in slices N, = 20000

1000

Fig. 5. Performance evaluation in GFlop/s for the multi-vectors/vector slice compu-
tation code for three implementation methods with ny = 8. The test cases are slices of

dimension N, X v.

and intra-node parallelism using threads. Figure 7 gives the percentages of time
taken by the different operations. The time spent for the summation decreases
as the number of nodes increases for both implementations. However, we can
see that the Hybrid-MPI/OpenMP implementation exhibits more idle time than
the Full-MPI when the number of nodes increases. In the Hybrid-MPI/OpenMP
implementation some parts of the code are sequential, the threads share data,
they parallelize small operations like the radiation for instance and the work is
balanced statically between threads. In consequence, there are less MPI-processes
in the Hybrid-MPI/OpenMP implementation but the threads are less balanced
and they have to wait longer in the synchronization/reduction points.

’ —@— Full-MPI —F— Hybrid-MPI/OpenMP

= T -
[}
£ 1,500 § 1 =
H =
g 1,000 (- - E 05| |
£ 500 4 M
5]
% 0 0
M 4 10 20 30 4 10 20 30
Number of nodes Number of nodes
(a) Execution time (b) Parallel efficiency e,

Fig. 6. Execution time and parallel efficiency of the airplane simulation for the Full-
MPI and the Hybrid-MPI/OpenMP implementations using 4 to 32 nodes, 8 CPU per
node and ng = 8

The previous application used by Airbus Group takes 13 500 seconds to com-
pute the airplane simulation on 6 nodes. The new version presented in this paper
takes only 1200 seconds, which is around 10 times faster.

522 B. Bramas, O. Coulaud, and G. Sylvand

~ 100 T T T 100 W [Summation
= 80 |- -1 80| \”\/\/\/\/\/—\,_\/_ 1 Idle
%0 60 |- | 60 |- | |[[] Direct solver
(| Radiation
g 40 n 40 | | I 1rput/Output
5 20 120 3
A~ 0 ! ! ! 0 | ! !
4 10 20 30 4 10 20 30
Number of nodes Number of nodes
(a) Full-MPI (b) Hybrid-MPI/OpenMP

Fig. 7. Percentage of the time taken for the different operations to compute the airplane
simulation for the Full-MPI and the Hybrid-MPI/OpenMP implementations using 4
to 32 nodes, 8 CPU per node and nyz = 8

6 Conclusion

We have presented a new parallelization and efficient implementation of a TD-
BEM solver. We showed that the method scales efficiently and how the reordering
of the computation leads to a good Flop-rate despite the sparse structure of the
data. Moreover, our current application has a speedup of 10 against the previous
implementation. In future work, we intend to compute larger simulations and in
the longer term to use accelerators. We intend to investigate how a Slice product
can be performed efficiently on accelerators using the abundant research that has
been developed for the SpMV.

Acknowledgement. Experiments presented in this paper were carried out us-
ing the PLAFRIM experimental test bed. This work is supported by the Airbus
Group Innovations, Inria and Conseil Régional d’Aquitaine initiative.

References

1. Liu, Y.J., Mukherjee, S., Nishimura, N., Schanz, M., Ye, W., Sutradhar, A., Pan, E.,
Dumont, N.A.) Frangi, A., Saez, A.: Recent advances and emerging applications
of the boundary element method. ASME Applied Mechanics Review 64(5), 138
(2011)

2. 1. Terrasse, Résolution mathématique et numérique des équations de Maxwell in-
stationnaires par une méthode de potentiels retardés, PhD dissertation, Ecole Poly-
technique Palaiseau France (1993)

3. Abboud, T., Pallud, M., Teissedre, C.: SONATE: A Parallel Code for Acous-
tics Nonlinear oscillations and boundary-value problems for Hamiltonian systems,
Technical report (1982),
http://imacs.xtec.polytechnique.fr/Reports/sonate-parallel.pdf

4. Hu, F.Q.: An efficient solution of time domain boundary integral equations for
acoustic scattering and its acceleration by Graphics Processing Units. In: 19th
ATAA/CEAS Aeroacoustics Conference, ch. (2013), doi:10.2514/6.2013-2018

http://imacs.xtec.polytechnique.fr/Reports/sonate-parallel.pdf

10.

11.

12.

13.

14.

15.

16.
17.

Time-Domain BEM for the Wave Equation 523

Langer, S., Schanz, M.: Time Domain Boundary Element Method. In: Marburg,
S., Nolte (eds.) Computational Acoustics of Noise Propagation in Fluids - Finite
and Boundary Element Methods, pp. 495-516. Springer, Heidelberg (2008)
Takahashi, T.: A Time-domain BIEM for Wave Equation accelerated by Fast Mul-
tipole Method using Interpolation, pp. 191-192 (2013), doi:10.1115/1.400549
Karakasis, V., Goumas, G., Koziris, N.: Perfomance Models for Blocked Sparse
Matrix-Vector Multiplication Kernels. In: International Conference on Parallel Pro-
cessing 2009, pp. 356-364 (2009), doi:10.1109/ICPP.2009.21

Nishtala, R., Vuduc, R.W.: When Cache Blocking of Sparse Matrix Vector Multiply
Works and Why. In: Proceedings of the PARA 2004 Workshop on the State-of-the-
art in Scientific Computing (2004)

Toledo, S.: Improving the memory-system performance of sparse-matrix vector
multiplication. IBM Journal of Research and Development 41(6), 711-725 (1997)
Pinar, A., Heath, M.T.: Improving performance of sparse matrix-vector multipli-
cation. In: Proceedings of the 1999 ACM/IEEE Conference on Supercomputing.
ACM (1999)

Yzelman, A.N., Bisseling, R.H.: Cache-Oblivious Sparse MatrixVector Multiplica-
tion by Using Sparse Matrix Partitioning Methods. SIAM Journal on Scientific
Computing 31(4), 3128-3154 (2009), doi:10.1137,/080733243

Vuduc, R.W., Moon, H.-J.: Fast sparse matrix-vector multiplication by exploiting
variable block structure. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J.
(eds.) HPCC 2005. LNCS, vol. 3726, pp. 807-816. Springer, Heidelberg (2005)
Goto, K., Advanced, T.: High-Performance Implementation of the Level-3 BLAS,
117 (2006)

Morton, G.M.: A Computer Oriented Geodetic Data Base and a New Technique
in File Sequencing. International Business Machines Company (1966)

Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: MUMPS MUltifrontal Massively Par-
allel Solver Version 2.0 (1998)

Snir, M., Otto, S., et al.: The MPI core, 2nd edn (1998)

OpenMP specifications, Version 3.1 (2011), http://www.openmp.org

http://www.openmp.org

	Time-Domain BEM for the Wave Equation:Optimization and Hybrid Parallelization

	1 Introduction
	2 Formulation
	3 Summation Algorithm
	3.1 Summation Ordering
	3.2 Slice Structure
	3.3 Slice Computation

	4 Parallelization Strategies
	4.1 Distributed Memory Parallelization
	4.2 Shared Memory Parallelization

	5 Numerical and Performance Studies
	5.1 Experimental Setup
	5.2 Multi-vectors/Vector Product
	5.3 Scalability

	6 Conclusion
	References

