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Abstract. Network based prediction of interaction between drug com-
pounds and target proteins is a core step in the drug discovery process.
The availability of drug–target interaction data has boosted the devel-
opment of machine learning methods for the in silico prediction of drug–
target interactions. In this paper we focus on the crucial issue of data
bias.

We show that four popular datasets contain a bias because of the
way they have been constructed: all drug compounds and target pro-
teins have at least one interaction and some of them have only a single
interaction. We show that this bias can be exploited by prediction meth-
ods to achieve an optimistic generalization performance as estimated by
cross-validation procedures, in particular leave-one-out cross validation.
We discuss possible ways to mitigate the effect of this bias, in particular
by adapting the validation procedure. In general, results indicate that the
data bias should be taken into account when assessing the generalization
performance of machine learning methods for the in silico prediction of
drug–target interactions.

The datasets and source code for this article are available at
http://cs.ru.nl/~tvanlaarhoven/bias2014/

1 Introduction

An important problem in pharmacology is to find interactions between drug com-
pounds and target proteins in order to understand and study their effects. The
in silico prediction of such interactions is crucial for improving the efficiency of
the laborious and costly experimental determination of drug–target interaction,
see e.g. [5].

Drug-target interaction data are publicly available for various classes of phar-
maceutically useful target proteins including enzymes, ion channels, GPCRs
(G Protein-Coupled Receptors) and nuclear receptors [13]. Various databases
have been built and maintained, such as KEGG BRITE [16], DrugBank [29],
GLIDA [23], SuperTarget and Matador [12], BRENDA [26], and ChEMBL [24],
containing drug–target interaction and other related sources of information, like
chemical and genomic data.

The availability of these data stimulated the development of machine learning
methods for the in silico prediction of drug-target interactions [8]. The current
state-of-the-art for the in silico prediction of drug–target interaction involves
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methods that employ similarity measures for drug compounds and for target
proteins in the form of kernel functions, e.g., Bleakley et al. [2], Chen et al.
[4], Gönen [11], vanLaarhoven et al. [21], Mei et al. [22], Wassermann et al.
[28], Yamanishi et al. [30, 31].

One can distinguish between prediction for ‘known’ drug compounds or tar-
gets, for which at least one interaction is present in the training set; and predic-
tion for ‘unseen’ drug compounds or targets, for which no interaction is available
in the training set. This results in four possible settings for predicting drug-
target interaction, depending on whether the drug compounds and/or targets
are known or unseen [30].

In our recent work on predicting drug–target interactions [20] we discovered
that a positive bias was implicity introduced in a published method. This moti-
vated the two main research questions we will address in this paper.

1. How does data bias affect the results of procedures used to estimate the
generalization performance of a method?

2. Can we quantify and avoid such bias?

Cross-validation (CV) [19] is typically used to assess the generalization per-
formance of methods in the above mentioned settings. The dataset is repeatedly
partitioned into two disjoint parts, a training set and a hold-out set. For each
partition, the training set is used to construct the predictor and the hold-out set
is used for testing. Popular variants are 10-fold CV, where the data is partitioned
into ten folds, and each fold is used once as the hold-out set, and leave-one-out
cross-validation (LOOCV), where each example constitutes one hold-out set. In
the context of drug–target interaction various cross-validation settings can be
defined, depending on what is considered an example (e.g. a single drug–target
pair or all interactions with a single drug compound) and on the selected CV
procedure.

We consider the four popular drug–target interaction datasets in humans
involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nu-
clear receptors from Yamanishi et al. [30]. These data have been used as bench-
mark datasets in recent works, e.g. Bleakley et al. [2], Chen et al. [4], Gönen
[11], vanLaarhoven et al. [21, 20], Mei et al. [22], Wassermann et al. [28].

In this paper we show experimentally that these datasets contain a bias which
may lead to optimistic CV generalization results. Furthermore, the extent to
which this bias affects the results can differ for different methods. As a result, it
is unclear whether a method with better CV results on these datasets will also
have better performance in real applications.

Specifically, these datasets have been constructed in such a way that each
drug compound and target protein has at least one interaction. Furthermore,
some drug compound and/or targets have only a single interaction.

We show how this bias can be incorporated into a baseline prediction method
in such a way that it significantly increases the LOOCV generalization per-
formance. We investigate how this bias can be reduced and quantified. We
show experimentally that 5- or 10-fold CV reduces (but does not eliminate)
the bias. Furthermore, the presence of this bias can be quantified by separating
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the performance metrics for drug compounds and targets with just one inter-
action from that for other drug–target interaction pairs. This provides an al-
ternative procedure to assess the generalization performance of a method by
highlighting the effect of the data bias.

In general, our results provide a contribution towards the understanding of CV
procedures in the presence of data bias in the context of drug-target interaction
networks.

1.1 Related Work

Dataset bias has been investigated in different domains, e.g. in ligand based
virtual screening [1], where local clustering and global spread of the considered
benchmark datasets were identified influencing validation results, and in object
recognition [27], where current state of recognition datasets have been compara-
tively analyzed and evaluated based on criteria including relative data bias and
cross-dataset generalization. To the best of our knowledge, this is the first time
that drug–target interaction network data bias is analyzed.

The dangers of CV have been studied by the machine learning community
in various contexts. For instance, in Isaksson et al. [14] CV and bootstrap-
ping in small sample classification are investigated. A fundamental problem is
that the uncertainty in a point estimate obtained with these procedures is un-
known and may be quite large. The authors therefore suggest that the final
classification performance should be reported in the form of a Bayesian confi-
dence interval or using some other method that yields conservative measures of
the uncertainty. Furthermore, in Rao et al. [25] it was empirically shown that
when the number of algorithms is large, LOOCV is not an effective estimate of
generalization performance for the algorithm that has the best cross-validation
performance. The authors showed that this behavior worsens as the sample size
decreases, and as the dimensionality and number of algorithms increase. The
phenomenon of under-estimating cross validation error was also demonstrated
on some benchmark data sets, and was shown to be worse for datasets with
higher dimensionality.

2 Materials

In Yamanishi et al. [30] datasets were introduced for the drug–target predic-
tion problem. These datasets are based on four different domains: enzymes, ion
channels, GPCRs and nuclear receptors. The datasets are constructed in such a
way that only the proteins that have an interacting drug are included, and for
each domain only the drugs that interact with at least one protein are included.
It turns out that this property introduces problems for validation.

In Table 1 we give an overview of the four datasets as they are used in recent
publications. As can be seen in the last column, a large fraction of the drug
compounds and target have just one interaction in the dataset. Or equivalently,
there are many interactions which are the only interaction for a drug–target. We
call such interacting pairs unique.
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The interactions in a dataset can be encoded in a matrix ydt, such that ydt = 1
if drug compound d interacts with target protein t, and ydt = 0 otherwise.
Besides this interaction information, there is also other information available on
the drugs and targets themselves. Usually this is encoded in kernel matrices that
give a similarity score between two drugs or two targets.

Table 1. The number of drug compounds, the number of target proteins, the number
of interactions and the number of unique interaction pairs (interactions which are the
only one for a drug or target) in the drug–target datasets from Yamanishi et al. [30]

Dataset Drugs Targets Interactions Unique

Enzyme 445 664 2926 451 (15%)
Ion Channel 210 204 1476 103 (7%)
GPCR 223 95 635 132 (21%)
Nuclear Receptor 54 26 90 44 (49%)

3 Methods

3.1 Validation Procedures

There are two main ways in which these datasets of interactions can be used by
machine learning methods:

1. To train a model to predict with which targets a previously unseen drug will
interact. We call this the ‘unseen drug’ setting.

2. To find new putative interactions between drugs and targets already in the
dataset. We call this the ‘pairs’ setting.

An overview of the prediction setting and type of CV used in state-of-the-art
methods applied to these datasets are shown in Table 2. In this work we focus
primarily on the ‘pairs’ setting, which is used by most of the methods listed in
the table.

Usually methods are compared by looking at the ranking of interactions they
produce in a cross-validation setting. That is, each drug–target pair is assigned
a score by each method, where only other interacting pairs are shown to the
method. Then the pairs are ranked based on these scores and the quality of the
ranking is compared using AUC, AUPR or other summary statistics. Specifically,
the ROC curve of true positives as a function of false positives is computed, and
the area under the ROC curve (AUC) is considered as quality measure, see for
instance [10]. Furthermore, the precision–recall curve is computed, that is, the
plot of the ratio of true positives among all positive predictions for each given
recall rate. The area under this curve (AUPR) is a more informative quality
measure than the AUC, as it punishes much more the existence of false positive
examples found among the top ranked prediction scores [6].
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Table 2. A list of papers that used the interaction data in Table 1, showing the type
of prediction setting (‘unseen drug’ or ‘pairs’) and type of CV procedure used

Unseen drug Pairs CV procedure

Yamanishi et al. [30] ✓ ✓ 10-fold CV
Bleakley et al. [2] ✓ ✓ LOOCV, 10-fold CV
vanLaarhoven et al. [21] - ✓ LOOCV, 10-fold CV
Chen et al. [4] - ✓ LOOCV
Gönen [11] ✓ - 5-fold CV
Mei et al. [22] - ✓ LOOCV, 10-fold CV
vanLaarhoven et al. [20] ✓ ✓ LOOCV, 5-fold CV

3.2 Biases

Suppose that a method is tested using LOOCV. Then if a unique interaction (d, t)
is left out, the method will see a row (or column) of zeros in the matrix. But we
know that the dataset does not have such rows or columns, since each drug and
target has at least one interaction. We can therefore know with certainty that
this pair interacts. This process is illustrated in Fig. 1.
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Fig. 1. In the LOOCV procedure, the task is to predict a single unknown drug–target
interaction, assuming all other interactions are known. This is indicated by x in the
matrix of drug–target interactions. Because of the construction of the dataset, we can
know with certainty that in the second matrix x = 1, otherwise this drug compound
would not be included in the dataset.

Consider a simple baseline method, that ranks drug–target pairs by the num-
ber of adjacent pairs that are known to interact, where two drug–target pairs are
adjacent if they share a drug or a target. This number of adjacent interacting
pairs for the pair (d, t) is

adt = adrugdt + atargdt , where adrugdt =
∑

d′ �=d

yd′t, atargdt =
∑

t′ �=t

ydt′ .

At first glance we would expect drugs or targets that already have many known
interactions to be more promiscuous, and therefore also more likely to interact
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with other drugs and targets. But as explained in the previous paragraph that
is not the case when LOOCV is used.
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Fig. 2. Probability of a drug–target pair interacting given the number of adjacent
interactions. The first plot shows this probability for LOOCV in the GPCR dataset,
the second plot for 10-fold cross validation. The shaded area indicate a 95% confidence
interval based on a uniform prior.

To test this effect, in Fig. 2 we have plotted the fraction of pairs that interact
against adt. This is an empirical estimate P̂ (ydt|adt) of the probability that d and
t interact given the number of adjacent pairs for (d, t). Overall there is indeed a
trend for larger adt to correspond to a higher probability of interacting. But for
very low adt we see the bias in action: the probability of such pairs interacting
is very high, since many of them are unique interactions.

A method can exploit this knowledge as follows. Consider the biased variant of
the baseline method, which is the same as the baseline, except that it ranks the
pairs with no observed adjacent pairs sharing a drug or with no pairs sharing a
target before all other drug–target pairs. More precisely, instead of ranking pairs
by adt, they are ranked by

aunique�→∞
dt =

{
∞ if adrugdt = 0 or atargdt = 0

adt otherwise.

In Table 3 we compare the LOOCV performance of this biased method to the
unbiased baseline.

To estimate the statistical significance of the AUC results we used the method
described in DeLong et al. [7]. To determine significance of the AUPR results
we used bootstrapping.

The difference between the unbiased and the biased methods is purely due
to the unique interactions. In Table 3 we also show the AUC and AUPR split
up for just the unique and non-unique interactions. With the unbiased baseline
method, the AUC for unique interactions is barely above random chance level,
while the biased baseline method achieves a perfect AUC. The overall AUC is
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Table 3. Performance of the unbiased baseline method and the biased variant when
tested with LOOCV. The best results for each dataset are indicated in bold.

AUC AUPR
Dataset Method overall unique other overall unique other

Enzyme
Baseline 0.880 0.668 0.919 0.101 0.006 0.102
Biased 0.931 1.000 0.919 0.301 1.000 0.102

Ion Channel
Baseline 0.850 0.528 0.874 0.244 0.003 0.254
Biased 0.883 1.000 0.874 0.355 1.000 0.254

GPCR
Baseline 0.796 0.542 0.863 0.157 0.009 0.168
Biased 0.891 1.000 0.863 0.420 1.000 0.168

Nuclear Receptor
Baseline 0.703 0.511 0.887 0.152 0.044 0.143
Biased 0.942 1.000 0.887 0.682 1.000 0.143

a weighted average of the AUCs for unique and non-unique interactions, where
the weight corresponds to the fraction of unique interactions. For example, for
the GPCR dataset, 79% · 0.863 + 21% · 1.000 = 0.891. Such a relation does not
hold for AUPR scores, but the overall picture is similar.

4 Avoiding the Bias

It seems that the biased results stem from the use of LOOCV. And so one would
hope to avoid this problem by using 10 fold CV instead. As the right part of
Fig. 2 shows, this indeed reduces the bias, but it does not completely eliminate
it.

We have repeated the experiment from the previous section with 10-fold CV
instead of LOOCV. This is the setting used by, for instance Yamanishi et al.
[30]. As seen in the Table 4, exploiting the data bias still improves the AUC
and AUPR scores for unique interactions, but this comes at the cost of the
performance for non-unique interactions. In general, with k-fold cross-validation
on a dataset with n drugs/targets, for each unique interacting pair, there are on
the order of n/k non-interacting pairs that will be excluded in the same fold.
These pairs will appear similar to the unique interaction ones. As the dataset
becomes larger, there will be more such pairs.

However, it is still possible to beat the baseline method by making a trade-
off between the increased performance on unique interactions and decreased
performance on other interactions. For example, one can introduce the ‘slight
bias’ method that ranks pairs which appear to be unique as if they have k
adjacent interactions. So it ranks pairs by aunique�→k

dt for some k < ∞. By tuning
this parameter k we can tune the trade-off. In our experiments we chose k with
cross validation. As shown in Table 4, this method achieves best AUC and AUPR
on all but the smallest dataset; and in all cases shows a significant improvement
over the baseline method.
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Table 4. Performance of the unbiased baseline method and the biased variants when
tested with 10 fold CV. The best results for each dataset are indicated in bold, results
in italic do not differ significantly from the best (at α = 0.05).

AUC AUPR
Dataset Method overall unique other overall unique other

Enzyme
Baseline 0.879 0.669 0.917 0.098 0.006 0.099
Slight bias 0.900 0.818 0.915 0.101 0.012 0.097
Biased 0.862 0.982 0.840 0.056 0.135 0.027

Ion Channel
Baseline 0.849 0.530 0.873 0.246 0.003 0.254
Slight bias 0.859 0.695 0.871 0.248 0.005 0.252
Biased 0.836 0.987 0.824 0.123 0.128 0.098

GPCR
Baseline 0.795 0.543 0.859 0.154 0.009 0.163
Slight bias 0.841 0.801 0.853 0.168 0.025 0.155
Biased 0.827 0.975 0.788 0.116 0.180 0.057

Nuclear Receptor
Baseline 0.697 0.533 0.885 0.154 0.047 0.155
Slight bias 0.857 0.884 0.846 0.247 0.177 0.124
Biased 0.878 0.967 0.781 0.351 0.473 0.070

So far we have considered the bias in the pairs setting. Results suggest that
perhaps this validation setting should not be used. An alternative is the unseen
drug setting, where one or more rows are left out in their entirety from the drug–
target interaction matrix. This means that it becomes impossible to see if a pair
is unique for a certain drug. But there are still interactions that are unique for
a target. As shown in Table 5, this bias can still be exploited for improving CV
performance, even when using 5- or 10-fold cross-validation.

Another option is to separate the unique interactions from the non-unique
interactions when doing validation. As shown in our experiments, the non-unique
interactions are not sensitive to the same bias. A good solution would be to
only consider the AUC and AUPR scores for the non-unique interactions when
comparing different methods. This still introduces a bias of a different kind,
however, since some drug compounds and targets will be unnecessarily excluded.

A different way to validate a method is to seek confirmation of the predic-
tions in other datasets. This is done by for instance Yamanishi et al. [31], van-
Laarhoven et al. [21], Gönen [11], where the 10 highest rank predictions are
looked up in the literature, and in newer versions of the KEGG BRITE, Drug-
Bank Chembl, SuperTarget and Matador databases. A problem with such valida-
tion is that it is hard to quantify the performance, because only a few interactions
are verified, and because these databases are extended between the publication
of different papers.

Perhaps the most principled way of avoiding biases in validation is to act on
the data and construct more realistic datasets. For this problem, that means that
the dataset should also include compounds that interact with none of the targets,
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Table 5. Performance of the baseline method and biased variants in the unseen drug
setting, when validated with 5-fold CV. The best results for each dataset are indicated
in bold, results in italic do not differ significantly from the best (at α = 0.05).

AUC AUPR
Dataset Method overall unique other overall unique other

Enzyme
Baseline 0.723 0.320 0.802 0.040 0.003 0.039
Slight bias 0.772 0.637 0.814 0.041 0.003 0.040
Biased 0.747 0.868 0.743 0.023 0.018 0.016

Ion Channel
Baseline 0.699 0.602 0.710 0.079 0.010 0.075
Slight bias 0.701 0.677 0.707 0.080 0.010 0.075
Biased 0.698 0.797 0.694 0.064 0.017 0.059

GPCR
Baseline 0.766 0.562 0.819 0.094 0.012 0.088
Slight bias 0.782 0.664 0.813 0.095 0.013 0.087
Biased 0.750 0.747 0.747 0.062 0.025 0.047

Nuclear Receptor
Baseline 0.616 0.585 0.650 0.140 0.067 0.109
Slight bias 0.647 0.633 0.653 0.144 0.070 0.109
Biased 0.670 0.699 0.626 0.126 0.084 0.059

or targets for which there is no known interacting compound. The question then
becomes which other drug compounds and proteins to include in the dataset.
This possibility remains to be explored.

5 Conclusions

We have shown that popular benchmark data for the drug–target interaction
problem are biased because they include only drug compounds and target pro-
teins with at least one interaction. This bias can be quantified by looking at
the CV performance on these unique interactions separately from non-unique
interactions. The bias is the largest with leave-one-out cross-validation in the
pairs setting. But even with 5- or 10-fold cross-validation and in the unseen
drugs setting there is still a significant bias. Our analysis indicates that results
of CV procedures to assess the predictive performance of methods for drug–
target interaction networks should be interpreted with care because they could
be possibly positively affected by bias contained in the considered datasets.

The baseline method discussed in this paper does not use the similarity in-
formation of drug compounds or target proteins at all. Hence, the performance
is far below the state of the art. However, the effects of the bias carry over to
other methods. For any ranking method rdt we can define a variant runique�→k

dt

that exploits the dataset bias and thereby boosts the performance on unique
interacting pairs.

We have not performed an empirical study of the prevalence of biases in
published methods. Of course none of the methods in Table 2 exploit the bias
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in quite such a blatant way as our ‘biased baseline’ method. Still, there could
be methods that inadvertently take more advantage of the bias than others, for
example in the choice of parameter values or in the way they handle specific
types of drug–target pairs.

In this work we have focused on a single group of datasets, with a specific type
of interaction, drug–target interaction. It remains to be investigated whether
other datasets for the drug–target interaction prediction problem and datasets
for other similar problems have the same bias. It would also be interesting to
consider other interaction datasets, such as the drug–target, enzyme–motabolite
and protein–ligand datasets from [17, 3, 9, 15, 18].
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