
Derivative Pricing under the Possibility
of Long Memory in the supOU Stochastic
Volatility Model

Robert Stelzer and Jovana Zavišin

Abstract Weconsider the supOU stochastic volatilitymodel which is able to exhibit
long-range dependence. For this model, we give conditions for the discounted stock
price to be a martingale, calculate the characteristic function, give a strip where it
is analytic, and discuss the use of Fourier pricing techniques. Finally, we present a
concrete specification with polynomially decaying autocorrelations and calibrate it
to observed market prices of plain vanilla options.
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1 Introduction

The Ornstein–Uhlenbeck (OU)-type stochastic volatility (SV) model introduced in
[3] is one of the most popular stochastic volatility models for prices of financial
assets driven by a Lévy process (see, e.g., [11, 25]). It covers many of the stylized
facts typically encountered in financial data (cf. [10, 14]). Over the years many
variants have been introduced, for instance a variant with two sided jumps in [1] or
a multivariate extension in [21].
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In this paper, we consider a variant of the model which additionally can cover
the stylized fact of long-range dependence (or slower than exponentially decaying
autocorrelations), the supOU stochastic volatility model. In this model, we specify
the volatility as a superposition of Ornstein–Uhlenbeck (thus “supOU”) processes,
which have been introduced in [2]. Various features of this volatility model (in a
multidimensional setting) have been considered in [4, 5, 18, 26].

Typically long-range dependence is obtained by using fractional Brownianmotion
or fractional Lévy processes as the driving noises, see, e.g., [6, 7] for a critical
discussion of such models for financial markets. In such models one cannot have
jumps, as fractional Lévy processes (cf. [16]) have continuous paths, and one is
bound to have long memory. In our supOU model, one has a natural extension of the
OU-type model that exhibits jumps and, depending on the parameters, can exhibit
short or long memory. However, our model shares one disadvantage with fractional
process based models, viz. that it is no longer Markovian. In this context, one should
bear in mind that most Markov processes one employs to model volatilities are
geometrically ergodic and thus cannot exhibit long memory, although there exists
also Markov process with polynomial mixing coefficients and even long memory
(see, e.g., [27]).

The focus of the present paper is on derivative pricing in and calibration of the
univariate supOU SV model similar to the papers [19, 20] in the (multivariate) OU-
type SV model. To this end, we first briefly review the model in Sect. 2. In Sect. 3,
we give conditions on the parameters such that the discounted stock price process
is a martingale which implies that under these conditions the model can be used to
describe the risk neutral dynamics of a financial asset. Thereafter, we start Sect. 4
with a review of Fourier pricing. Then, we give the characteristic function of the log
asset price in the supOU SV model and show conditions for the moment generating
function to be sufficiently regular so that Fourier pricing is applicable. Finally, we
present a concrete specification, the Γ -supOU SV model, in Sect. 5 and discuss its
calibration to market data which we illustrate with a small example using options on
the DAX. Finally, we discuss a subtle issue regarding how to employ the calibrated
model to calculate prices of European options with a general maturity.

2 A Review of the supOU Stochastic Volatility Model

We briefly review the definition and the most important known facts of the supOU
stochastic volatility model introduced in [5]. More background on supOU processes
can be found in [2, 4, 13, 26].

In the following, R− denotes the set of negative real numbers and Bb(R− × R)

denotes the bounded Borel sets of R− × R.

Definition 2.1 A family Λ = {Λ(B) : B ∈ Bb(R− × R)} of real-valued ran-
dom variables is called a real-valued Lévy basis (infinitely divisible independently
scattered random measure) on R− × R if:
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• the distribution of Λ(B) is infinitely divisible for all B ∈ Bb(R− × R),
• for any n ∈ N and pairwise disjoint sets B1, . . . , Bn ∈ Bb(R− × R) the random
variables Λ(B1), . . . , Λ(Bn) are independent,

• for any sequence of pairwise disjoint sets Bn ∈ Bb(R−×R)with n ∈ N satisfying
∪n∈NBn ∈ Bb(R−×R) the series

∑∞
n=1 Λ(Bn) converges a.s. andΛ(∪n∈NBn) =∑∞

n=1 Λ(Bn).

We consider only Lévy bases with characteristic functions of the form

E(exp(iuΛ(B))) = exp(ϕ(u)Π(B))

for all u ∈ R and all B ∈ Bb(R− × R), where Π = π × λ is the product of a
probability measure π on R− and the Lebesgue measure λ on R and

ϕ(u) = iuγ0 +
∫

R+

(

eiux − 1

)

ν(dx)

is the cumulant transform of an infinitely divisible distribution on R+ with Lévy-
Khintchine triplet (γ0, 0, ν), which is also the characteristic triplet of the underlying
Lévy process Lt = Λ(R− × (0, t]) and L−t = Λ(R− × (−t, 0)) for t ∈ R+ (see,
e.g., [24] for the relevant background on infinitely divisible distributions and Lévy
processes). We call the triplet (γ0, ν, π) the generating triplet. Note that this means
that γ0 ≥ 0, ν(R\R+) = 0, and

∫
|x |≤1 |x |ν(dx) < ∞.

If L is a pure jumpLévyprocesswith triplet (0, 0, ν) and jumpmeasure N (ds, dx),
then turning the Poisson point process of jumps inR×R+\{0} to one inR×R+\{0}×
R− bymarking all jumpswith independentmarks distributed according toπ produces
the jump measure of a Lévy basis with triplet (γ0, ν, π).

In the supOU process defined now, this can be understood as assigning every jump
of a Lévy process an individual exponential decay rate. We restrict our attention to
positive supOU processes as this is natural when using them to model a variance
changing over time.

Theorem 2.2 ([2, 4, 13]) Let Λ be an R+-valued Lévy basis on R− × R with
generating triplet (γ0, ν, π). Assume

∫

|x |>1

ln(|x |)ν(dx) < ∞, and −
∫

R−

1

A
π(d A) < ∞.

Then the process Σ = (Σt )t∈R given by

Σt =
∫

R−

t∫

−∞
eA(t−s)Λ(dA, ds)

is well defined as a Lebesgue integral for all t ∈ R and it is stationary.
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Moreover, Σt ≥ 0 for all t ∈ R and the distribution of Σt is infinitely divis-

ible with characteristic function given by E
(
eiuΣt

) = eiuγΣ,0+
∫
R+

(
eiux −1

)
νΣ(dx)

,
for all u ∈ R where

γΣ,0 =
∫

R−

∫ ∞

0
eAsγ0dsπ(dA), νΣ(B) =

∫

R−

∫ ∞

0

∫

R+
1B

(
eAs x

)
ν(dx)dsπ(dA),

for all B ∈ B(R).

As shown in [4, Theorem 3.12] the supOU process is adapted to the filtration gener-
ated by Λ and has locally bounded paths. Provided π has a finite first moment, one
can take a supOU process to have càdlàg paths.

Definition 2.3 Let W be a standard Brownian motion, a = (at )t∈R+ a predictable
real-valued process, Λ an R+-valued Lévy basis on R− ×R independent of W with
generating triplet (γ0, ν, π) and let L be its underlying Lévy process. Let Σ be a
non-negative càdlàg supOU process and ρ ∈ R. Assume that the logarithmic price
process X = (Xt )t∈R+ is given by

Xt = X0 +
t∫

0

asds +
t∫

0

Σ
1
2

s dWs + ρ(Lt − γ0t),

where X0 is independent of Λ. Then we say that X follows a univariate supOU
stochastic volatility model and refer to it by SV supOU (a, ρ, γ0, ν, π).

In the following, we always use as filtration the one generated by W and Λ.
In Definition 2.3 X is supposed to be the log price of some financial asset and

ρ is the typically negative correlation between jumps in the volatility and log asset
prices modeling the leverage effect. To ensure that the absolutely continuous drift is
completely given by at , we subtract the drift γ0 from the Lévy process noting that
this can be done without loss of generality.

In [5], it has been shown that the model is able to exhibit long-range dependence
in the squared log returns. The typical example leading to a polynomial decay of
the autocovariance function of the squared returns and to long-range dependence
for certain choices of the parameter is to take π as a Gamma distribution mirrored
at the origin. [13, 26] discuss in general which properties of π result in long-range
dependence.

3 Martingale Conditions

Now we assume given a market with a deterministic numeraire (or bond) with price
process er t for some r ≥ 0 and a risky asset with price process St .

Wewant tomodel themarket by a supOU stochastic volatilitymodel under the risk
neutral dynamics. Thus, we need to understand when Ŝt = e−r teXt is a martingale
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for the filtration G = (Gt )t∈R+ generated by the Wiener process and the Lévy basis,
i.e., Gt = σ ({Λ(A), Ws : s ∈ [0, t] and A ∈ Bb(R− × (−∞, t])}) for t ∈ R+.
Implicitly, we understand that the filtration is modified such that the usual hypotheses
(see, e.g., [22]) are satisfied.

Theorem 3.1 (Martingale condition) Consider a market as described above. Sup-
pose that ∫

x>1

(
eρx − 1

)
ν(dx) < ∞. (1)

If the process a = (at )t∈R+ satisfies

at = r − 1

2
Σt −

∫

R+

(
eρx − 1

)
ν(dx), (2)

then the discounted price process Ŝ is a martingale.

Proof The arguments are straightforward adaptations of the ones in [19, Proposition
2.10] or [20, Sect. 3].

4 Fourier Pricing in the supOU Stochastic Volatility Model

Our aim now is to use the Fourier pricing approach in the supOU stochastic volatility
model for calculating prices of European derivatives.

4.1 A Review on Fourier Pricing

We start with a brief review on the well-known Fourier pricing techniques introduced
in [9, 23].

Let the price process of a financial asset be modeled as an exponential semi-
martingale S = (St )0≤t≤T , i.e., St = S0eXt , 0 ≤ t ≤ T where X = (Xt )0≤t≤T is a
semimartingale.

Let r be the risk-free interest rate and let us assume that we are directly work-
ing under an equivalent martingale measure, i.e., the discounted price process
Ŝ = (Ŝt )0≤t≤T given by Ŝt = S0eXt −r t is a martingale.

We call the process X the underlying process and without loss of generality we
can assume that X0 = 0. We denote by s minus the logarithm of the initial value of
S, i.e., s = − log(S0).

Let f̂ denote the Fourier transform of the function f , i.e., f̂ (u) = ∫
R

eiux f (x)dx .
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Let now f : R → R+ be a measurable function that we refer to as the payoff
function. Then, the arbitrage-free price of the derivative with payoff f (XT − s)
and maturity T at time zero is the conditional expected discounted payoff under the
chosen equivalent martingale measure, i.e., V f (XT ; s) = e−r t

E ( f (XT − s)|G0) .

The following theorem gives the valuation formula for the price of the derivative
paying f (XT − s) at time T .

Theorem 4.1 ([12] Theorem 2.2, Remark 2.3) Let f : R → R+ be a payoff function
and let gR(x) = e−Rx f (x) for some R ∈ R denote the dampened payoff function.
Define ΦXT |G0(u) := E

(
eu XT |G0

)
, u ∈ C. If

(i) gR ∈ L1(R) ∩ L∞(R), (i i) ΦXT |G0(R) < ∞, (i i i) ΦXT |G0(R + i ·) ∈ L1(R),

then V f (XT ; s) = e−r t−Rs

2π

∫
R

e−iusΦXT |G0(R + iu) f̂ (i R − u)du.

It is well known that for a European Call option with maturity T and strike K > 0
condition (i) is satisfied for R > 1 and that for the payoff function f (x) = max(ex −
K , 0) =: (ex − K )+ the Fourier transform is f̂ (u) = K 1+iu

iu(1+iu)
for u ∈ C with

Im(u) ∈ (1,∞).
In the following, we calculate the characteristic/moment generating function for

the supOUSVmodel and show conditionswhen the above Fourier pricing techniques
are applicable.

4.2 The Characteristic Function

Consider the general supOU SV model with drift of the form at = μ + γ0 + βΣt .
Note that then the discounted stock price is a martingale if and only if β = −1/2
and μ + γ0 = r − ∫

R+ (eρx − 1) ν(dx).
Standard calculations as in [19, Theorem 2.5] or [20] give the following result

which is the univariate special case of a formula reported in [4, Sect. 5.2].

Theorem 4.2 Let X0 ∈ R and let the log-price process X follow a supOU SV model
of the above form. Then, for every t ∈ R+ and for all u ∈ R the characteristic
function of Xt given G0 is given by

ΦXt |G0 (iu) = E

(
eiu Xt |G0

)
(3)

= exp

{

i

(

u(X0 + μt) +
(

uβ + i

2
u2
) ∫

R−

0∫

−∞

1

A

(
eA(t−s) − e−As

)
Λ(dA, ds)

)

+
∫

R−

t∫

0

ϕ

(
eA(t−s)

A

(

uβ + i

2
u2
)

−
(
1

A

(

uβ + i

2
u2
)

− ρu

))

dsπ(dA)

}

.
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Note that in contrast to the case of the OU-type stochastic volatility model, where
(X,Σ) is a strongMarkov process, in the supOU stochastic volatility modelΣ is not
Markovian. Thus, conditioning on X0 and Σ0 is not equivalent to conditioning upon
G0. Therefore,ΦXt |G0(iu) is not simply a function of X0,Σ0. Instead, the whole past
of the Lévy basis enters via the G0-measurable

zt :=
∫

R−

0∫

−∞

1

A

(
eA(t−s) − e−As

)
Λ(dA, ds),

which has a similar role as the initial volatilityΣ0 in the OU-type stochastic volatility
model. Like Σ0 in the OU-type models, zt can be treated as an additional parame-
ter to be determined when calibrating the model to market option prices. We can
immediately see that thus the number of parameters to be estimated increases with
each additional maturity. As it will become clear later, the following observation is
important.

Lemma 4.3 zt1 ≤ zt2 , for all t1, t2 ∈ R+ such that t1 ≤ t2.

Proof For t ∈ R+ and s ≤ t we have 1
A

(
eA(t−s) − e−As

) = e−As

A

(
eAt − 1

)
and

for t1 ≤ t2 one sees eAt2 − 1 ≤ eAt1 − 1 ≤ 0 since A < 0. This implies that for

s ≤ t1 ≤ t2
e−As

A

(
eAt1 − 1

) ≤ e−As

A

(
eAt2 − 1

)
and thus zt1 ≤ zt2 .

4.3 Regularity of the Moment Generating Function

In order to applyFourier pricing,wenowshowwhere themoment generating function
ΦXT |G0 is analytic.

Let θL(u) = γ0u + ∫
R+ (eux − 1) ν(dx) be the cumulant transform of the Lévy

basis (or rather its underlying subordinator). If
∫

x≥1 er xν(dx) < ∞ for all r ∈
R such that r < ε for some ε > 0, then the function θL is analytic in the open set
SL := {z ∈ C : Re(z) < ε}, as can be seen, e.g., from the arguments at the start of
the proof of [19, Lemma 2.7].

Theorem 4.4 Let the measure ν satisfy

∫

x≥1

er xν(dx) < ∞ for all r ∈ R such that r < ε (4)

for some ε > 0. Then the function Θ(u) = ∫
R−

∫ t
0 θL(u fu(A, s))dsπ(dA) is analytic

on the open strip
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S := {u ∈ C, |Re(u)| < δ} with δ := −|β| − |ρ|
t

+ √
Δ, (5)

where Δ :=
(
|β| + |ρ|

t

)2 + 2ε
t .

The rough idea of the proof is similar to [19, Theorem 2.8], but the fact that we
now integrate over the mean reversion parameter adds significant difficulty, as now
bounds independent of the mean reversion parameter need to be obtained and a very
general holomorphicity result for integrals has to be employed.

Proof Define

fu(A, s) = 1[0,t](s)
(

eA(t−s)

A

(
β + u

2

)
−
(
1

A

(
β + u

2

)
− ρ

))

. (6)

We first determine δ > 0 such that for all u ∈ R with |u| < δ it holds that
|u fu(A, s)| < ε. We have

|u fu(A, s)| ≤
∣
∣
∣
∣
∣

eA(t−s) − 1

A

∣
∣
∣
∣
∣

(

|β||u| + u2

2

)

+ |ρ||u| (7)

by the triangle inequality. In order to find the upper bound for the latter term, we first
note that elementary analysis shows

∣
∣
∣
∣
∣

eA(t−s) − 1

A

∣
∣
∣
∣
∣
≤ t (8)

for all A < 0 and s ∈ [0, t]. Thus, we have to find δ > 0 such that |u fu(A, s)| ≤
t
(
|β||u| + u2

2

)
+ |ρ||u| < ε,for all u ∈ R with |u| < δ, i.e., to find the solutions of

the quadratic equation

t

2
u2 + (t |β| + |ρ|) |u| − ε = 0. (9)

Since for u = 0 the sign of (9) is negative, i.e., (9) is equal to−ε, we know that there
exist one positive and one negative solution. The positive one is δ as given in (5).

Now let u ∈ S, i.e., u = v + iw with v, w ∈ R, |v| < δ. Observe that

Re(u fu(A, s)) = v fv(A, s) − w2

2

(
eA(t−s)−1

A

)
and eA(t−s)−1

A ≥ 0 for all s ∈ [0, t]
and A < 0. Hence, Re(u fu(A, s)) ≤ v fv(A, s). This implies that

∫

x≥1

eRe(u fu(A,s))xν(dx) ≤
∫

x≥1

ev fv(A,s)xν(dx) < ∞
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due to |v fv(A, s)| < ε for |v| < δ and condition (4). Hence for u ∈ S the func-
tion θL(u fu(A, s)) = γ0u fu(A, s) + ∫

R+
(
eu fu(A,s)x − 1

)
ν(dx) is well defined.

u fu(A, s) is a polynomial of u and thus it is an analytic function inC, for all s ∈ [0, t]
and A < 0. The function θL is analytic in the set SL = {z ∈ C : |Re(z)| < ε}.

Thus, the function θL(u fu(A, s)) is analytic in S, for all s ∈ [0, t] and A < 0. By
the holomorphicity theorem for parameter dependent integrals (see, e.g., [15]), we
can conclude that

∫ t
0 θL(u fu(A, s))ds is analytic in S, for all A < 0.

Defining ϕ(u, A) := ∫ t
0 θL(u fu(A, s))ds we now apply [17] to prove thatΘ(u) =

∫
R−

∫ t
0 θL(u fu(A, s))dsπ(dA) = ∫

R− ϕ(u, A)π(dA) is analytic in S. Its conditions
A1 and A2 are obviously satisfied. It remains to prove that condition A3 holds, i.e.,
that

∫
R− |ϕ(u, A)| π(dA) is locally bounded. First, observe that

|θL(u fu(A, s))| ≤ |γ0u fu(A, s)| +
∫

x≤1

∣
∣
∣eu fu(A,s)x − 1

∣
∣
∣ ν(dx)

+
∫

x>1

∣
∣
∣eu fu(A,s)x − 1

∣
∣
∣ ν(dx). (10)

Using (8), we can bound the first summand in (10) by:

|γ0u fu(A, s)| ≤ |γ0|
(

t

(

|β||u| + |u|2
2

)

+ |ρ||u|
)

=: B1(u).

For the second summand, using Taylor’s theorem we have that
∣
∣eu fu(A,s)x − 1

∣
∣ ≤

|u fu(A, s)||x |+O(|u fu(A, s)|2|x |2).Since |u fu(A, s)| ≤ t
(
|β||u| + |u|2

2

)
+|ρ||u|,

for the remainder term of Taylor’s formula we have

O(|u fu(A, s)|2|x |2) ≤ O

(∣
∣
∣
∣t

(

|β||u| + |u|2
2

)

+ |ρ||u|
∣
∣
∣
∣

2

|x |2
)

,

where the latter term converges to zero as x → 0. If we define

K (u) := t

(

|β||u| + |u|2
2

)

+ |ρ||u|

we obtain that
∫

x≤1

∣
∣
∣eu fu(A,s)x − 1

∣
∣
∣ ν(dx) ≤ K (u)

∫

x≤1

xν(dx) +
∫

x≤1

O
(

K (u)2|x |2
)

ν(dx) =: B2(u),

which is finite due to the properties of the measure ν.
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Let Sn := {C 
 u = v + iw : |v| ≤ δ − 1/n} ⊆ S.Since the function v fv(A, s)
is continuous on the compact set Vn = {v ∈ R : |v| ≤ δ − 1/n}, it attains its min-
imum and maximum on that set, i.e., there exists v∗ ∈ Vn such that v fv(A, s) ≤
v∗ fv∗(A, s) ≤ |v∗ fv∗(A, s)| =: Kn(u) for all v ∈ Vn . Note that v∗ ∈ Vn implies that
Kn(u) < ε. Since Re(u fu(A, s)) ≤ v fv(A, s) and

∣
∣eu fu(A,s)x

∣
∣ = eRe(u fu(A,s))x ≤

eKn(u)x , it follows that

∫

x>1

∣
∣
∣eu fu(A,s)x − 1

∣
∣
∣ ν(dx) ≤

∫

x>1

eKn(u)xν(dx) +
∫

x>1

ν(dx) =: B3,n(u),

which is finite due to (4) and the properties of the measure ν.
Since B1(u), B2(u), and B3,n(u) do not depend neither on s nor on A, we have

|ϕ(u, A)| ≤ t (B1(u) + B2(u) + B3,n(u)) and

∫

R−
t (B1(u) + B2(u) + B3,n(u))π(dA) = t (B1(u) + B2(u) + B3,n(u)) < ∞,

so the function t (B1(u) + B2(u) + B3,n(u)) is integrable with respect to π . Since
ϕ(u, A) is analytic and thus a continuous function on Sn , for all A < 0, it also holds
that |ϕ(u, A)| is continuous on Sn , for all A < 0. By the dominated convergence
theorem, it follows that

∫
R− |ϕ(u, A)| π(dA) is continuous and thus a locally bounded

function on Sn . Since n ∈ N was arbitrary, it follows that the function is continuous
and locally bounded on S, which completes the proof.

Now, we can easily give conditions ensuring that (ii) in Theorem 4.1 is satisfied.

Corollary 4.5 Let
∫

x≥1 er xν(dx) < ∞ for all r ∈ R such that r < ε for some
ε > 0. Then the moment generating function ΦXT |G0 is analytic on the open strip

S := {u ∈ C : |Re(u)| < δ} with δ := −|β|− |ρ|
T +√

Δ where Δ :=
(
|β| + |ρ|

T

)2+
2ε
T . Furthermore,

ΦXT |G0
(u) = (11)

exp

⎧
⎪⎨

⎪⎩
u(X0 + μT ) +

(

uβ + 1

2
u2
) ∫

R−

0∫

−∞

1

A

(
eA(T −s) − e−As

)
Λ(dA, ds) + Θ(u)

⎫
⎪⎬

⎪⎭

for all u ∈ S.

Proof Follows fromTheorems4.2 and 4.4 noting that an analytic function is uniquely
identified by its values on a line and [19, Lemma A.1].

Very similar to [19, Theorem 6.11], we can now prove that also condition (iii) in
Theorem 4.1 is satisfied for the supOU SV model.

Theorem 4.6 If u ∈ C, u = v + iw and u ∈ S as defined in Theorem 4.4, then the
map
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w → ΦXT |G0(v + iw)

is absolutely integrable.

5 Examples

5.1 Concrete Specifications

If wewant to price a derivative by Fourier inversion, then thismeans in the supOUSV
model thatwehave to calculate the inverseFourier transformbynumerical integration
and inside this the double integral in Θ(u) = ∫

R−
∫ t
0 θL(u fu(A, s))dsπ(dA). If we

want to calibrate our model to market data, the optimizer will repeat this procedure
very often and so it is important to consider specifications where at least some of the
integrals can be calculated analytically.

Actually, it is not hard to see that one can use the standard specifications for ν of
the OU-type stochastic volatility model (see [3, 11, 20, 25]) which are named after
the resulting stationary distribution of the OU-type processes.

As in the case of aΓ -OU process we can choose the underlying Lévy process to be
a compound Poisson process with the characteristic triplet (γ0, 0, abe−bx 1{x>0}dx)

with a, b > 0 where abusing notation we specified the Lévy measure by its density.
Furthermore, we assume that A follows a “negative” Γ -distribution, i.e., that π is
the distribution of B R, where B ∈ R− and R ∼ Γ (α, 1) with α > 1 which is
the specification typically used to obtain long memory/a polynomial decay of the
autocorrelation function. We refer to this specification as the Γ -supOU SV model.

Using (6) we have

Θ(u) = u
∫

R−

t∫

0

γ0 fu(A, s)dsπ(dA) +
∫

R−

t∫

0

∫

R+

(
eu fu(A,s)x − 1

)
ν(dx)dsπ(dA).

For the first summand in Θ(u) we see

u
∫

R−

t∫

0

γ0 fu(A, s)dsπ(dA) = γ0

( ∫

R−

t∫

0

eA(t−s)

A

(

uβ + u2

2

)

dsπ(dA)

︸ ︷︷ ︸
I1

−
∫

R−

t∫

0

1

A

(

uβ + u2

2

)

dsπ(dA)

︸ ︷︷ ︸
I2

+
∫

R−

t∫

0

ρudsπ(dA)

︸ ︷︷ ︸
I3

)

.
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For the three parts, we can now show:

I1 =
(

uβ + u2

2

)
(1 − Bt)2−α − 1

B2(α − 1)(α − 2)
if α �= 2,

I1 = −
(

uβ + u2
2

)

B2 ln(1 − Bt) if α = 2,

I2 =
t
(

uβ + u2
2

)

B(α − 1)
, I3 = ρu

t∫

0

∫

R−

dsπ(dA) = ρut.

Furthermore setting C(A) := 1
A

(
uβ + u2

2

)
− ρu one obtains for the second sum-

mand in Θ

∫

R−

t∫

0

∫

R+

(
eu fu(A,s)x − 1

)
abe−bxdxdsπ(dA)

= a
∫

R−

1

A(b + C(A))

⎛

⎝b ln

⎛

⎝ b − ρu

b − eAt

A

(
uβ + u2

2

)
+ C(A)

⎞

⎠ − AC(A)t

⎞

⎠π(dA).

Unfortunately, we have been unable to obtain amore explicit formula for this integral,
and so it has to be calculated numerically. In our example later on we have used the
standard Matlab command “integral” for this. Note that the well-behavedness of
this numerical integration depends on the choice of π . For our choice, π being a
negative Gamma distribution implies roughly (i.e., up to a power) an exponentially
fast decaying integrand for A → ∞, whereas the behavior at zero appears to be hard
to determine.

We can also choose the underlying Lévy process as in an IG-OU model with
parameters δ and γ , while keeping the choice of the measure π the same. In this

case, we have ν(dx) = 1
2
√
2π

δ
(
x−1 + γ 2

)
x− 1

2 exp
(− 1

2γ
2x
)

1{x>0}dx and the only
difference compared to the previous case is in the calculation of the triple integral
which also can be partially calculated analytically so that only a one-dimensional
numerical integration is necessary.

5.2 Calibration and an Illustrative Example

In this chapter, we calibrate the Γ −supOU SV model to market prices of European
plain vanilla call options written on the DAX.

Let t1, t2, . . . , tM be the set of different times to maturity (in increasing order) for
which we have market option prices. The parameters to be determined by calibration
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Table 1 Calibrated supOU SV model parameters for DAX data of August 19, 2013

ρ a b B α γ0

−10.8797 0.2225 29.4025 −0.0004 4.3632 0.0000

zt1 zt2 zt3 zt4 zt5 zt6 zt7 zt8

0.0012 0.0026 0.0038 0.0054 0.0093 0.0136 0.0225 0.0328

are (ρ, a, b, B, α, γ0, zt1 , . . . , ztM ), where ρ describes the leverage, a and b are para-
meters of the measure ν, B, and α are parameters of the measure π and γ0 is the drift
parameter. Finally, zt1, . . . , ztM are zti = ∫

R−
∫ 0
−∞

1
A

(
eA(ti −s) − e−As

)
Λ(dA, ds),

i = 1, . . . , M.

We calibrate by minimizing the root mean squared error between the Black–
Scholes implied volatilities corresponding tomarket andmodel prices, i.e., RMSE =√
∑M

i=1
∑Ni

j=1

(
blsimpv

(
C M

i j

) − blsimpv
(
Ci j

))2
/
∑M

i=1 Ni , where M is the num-

ber of different times to maturity, Ni is the number of options for each maturity,{
C M

i j

}
is the set of market prices and

{
Ci j

}
is the set of model prices, i = 1, . . . , NM ,

j = 1, . . . , M . Of course, minimizing the difference between Black–Scholes im-
plied volatilities is just one possible choice for the objective function. We note that
this data example is only supposed to be an illustrative proof of concept and that us-
ing other objective functions including in particular weights for the different options
should improve the results.

We use closing prices of 200 DAX options on August 19, 2013. The level of DAX
on that day was 8366.29. The data source was Bloomberg Finance L.P. and all the
options were listed on EUREX.

For the instantaneous risk-free interest rate, we used the 3-month LIBOR rate,
which was 0.15173%. The maturities of the options were 31, 59, 87, 122, 213, 304,
486, and 668days. The calibration procedure was performed in MATLAB. To avoid
being stuck in local minima the calibration was run several times with different initial
values and the overall minimum RMSE was taken.

The implied parameters from the calibration procedure are given in Table1. The fit
is good: The RMSE is 0.0046. We plot market against model Black–Scholes implied
volatilities in Fig. 1. Although the RMSE is very low and in plots of market against
fitted model prices (not shown here) one sees basically no differences, Fig. 1 shows
that our model fits the implied volatilities for medium and long maturities very well,
but the quality of the fit for shorter maturities is lower.

The vector of the parameters {zti }i=1,...,M is indeed increasing with maturity
(cf. Lemma 4.3), although we actually refrained from including this restriction into
our optimization problem. The autocorrelation function of the Γ -supOU model ex-
hibits long memory for α ∈ (1, 2) (cf. [26, Sect. 2.2]). Since the calibration returns
α = 4.3632, our market data are in line with a rather slow polynomial decay of the
autocorrelation function, which is in contrast to the exponential decay of the auto-
correlation function in the OU-type SV model, but the calibrated model does not
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Fig. 1 Calibration of the supOU model to call options on DAX: The Black–Scholes implied
volatilities. The implied volatilities frommarket prices are depicted by a dot, the implied volatilities
from model prices by a solid line
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exhibit long memory. One should be very careful not to overinterpret these findings,
as no confidence intervals/hypothesis tests are available in connection with such a
standard calibration.

The leverage parameter ρ is negative, which implies a negative correlation be-
tween jumps in the volatility and returns. Hence, the typical leverage effect is present.
The drift parameter of the underlying Lévy basis γ0 is estimated to be practically
zero. So our calibration suggests that a driftless pure jump Lévy basis may be quite
adequate to use.

Let us briefly turn to a comparison with the OU-type stochastic volatility model
(cf. [19] or [20]) noting that a detailed comparison with various other models is
certainly called for, but beyond the scope of the present paper. For some β < 0
looking at a sequence of Γ -supOU models with αn = n, Bn = β/n and all others
parameters fixed, shows that the mean reversion probability measures πn converge
weakly to the delta distribution at β. So the OU model is in some sense a limiting
case of the supOU model. However, the limiting model is very different from all
approximating models, as it is Markovian, has the same decay rate for all jumps,
whereas the approximating supOUmodels have all negative real numbers as possible
decay rates for individual jumps. This implies that in connection with real data the
behavior of the OU and the supOU model can well be rather different. Calibrating a
Γ -OUmodel to our DAX data set (so the only parameter now different is π , which is
a Dirac measure) returns actually a globally better fit (the RMSE is 0.0037). Looking
at the plots of market against model implied volatilities they all look quite similar
(Fig. 2 shows only the last four largest maturities) to the ones in Fig. 1, although the
fit for the early maturities is definitely better when looking closely. Yet, there is one
big exception, the last maturity, where the supOU model fits much better. Whereas
the rate of the underlying compound Poisson process is a = 0.2225 in the supOU
model, it is 1.2671 in the OU model. The mean of the decay rates is −0.0017 in the
supOUmodel and the decay rate of the OU case is−1.3906. Noting that the standard
deviation of the decay rates is 0.0008 in the supOUmodel, the two calibrated models
are indeed in many respects rather different.

Remark 5.1 (How to price options with general maturities?) After having calibrated
a model to observed liquid market prices one often wants to use it to price other
(exotic) derivatives. Looking at a European derivative with payoff f (ST ) for some
measurable function f and maturity T > 0, one soon realizes that we can only
obtain its price directly if T ∈ {t1, t2, . . . , tM }, as only then we know zT , thus the
characteristic function ΦXT |G0 and therefore the distribution of the price process
at time T conditional on our current information G0. This is not desirable and the
problem is that we assume that we know G0 in theory, but we have only limited
information in themarket prices whichwe can use to get only parts of the information
in G0.

It seems that to get zt for all t ∈ R+ one needs to really know the whole past
of Λ, i.e., all jumps before time 0 and the associated times and decay rates. This is
clearly not feasible. A detailed analysis on the dependence of zt on t is beyond the
scope of this paper. But we briefly want to comment on possible ad hoc solutions
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Fig. 2 Calibration of the OU model to call options on DAX: The implied volatilities from market
prices are depicted by a dot, the implied volatilities from model prices by a solid line. Last four
maturities only

to “estimate” zT based on {zti }i=1,...,M . The first one is to either interpolate or fit
a parametric curve t → zt to the “observed” {zti }i=1,...,M . If one also ensures the
decreasingness in t in this procedure, one should get a reasonable approximation,
especially when the grid {ti }i=1,...,M is fine and one considers maturities in [t1, tM ].

From the probabilistic point of view, onewants to compute E(zT |{zti }i=1,...,M ) for
T �∈ {t1, t2, . . . , tM }.Whether andhow this conditional expectation canbe calculated,
is again a question for future investigations. But what one can calculate easily is
the best (in the L2 sense) linear predictor of zT given {zti }i=1,...,M . One simply
needs to straightforwardly adapt standard time series techniques (like the innovations
algorithm or linear L2 filtering, see, e.g., [8]) noting that one has

cov(zt , zu) =
∫

R−

∫

R−

e−2As

A2 (eAt −1)(eAu−1)dsπ(dA)

∫

R+
x2ν(dx) ∀ t, u ∈ R+.
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