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Abstract The objective of this paper is twofold: After recalling the one-to-one
correspondence between two-dimensional copulas and Markov kernels having the
Lebesgue measure λ on [0, 1] as fixed point, we first give a quick survey over some
consequences of this interrelation. In particular, we sketch how Markov kernels can
be used for the construction of strongmetrics that strictly distinguish extreme kinds of
statistical dependence, and show how the translation of various well-known copula-
related concepts to the Markov kernel setting opens the door to some surprising
mathematical aspects of copulas. Secondly, we concentrate on the fact that iterates
of the star product of a copula A with itself are Cesáro convergent to an idempotent
copula Â with respect to any of the strong metrics mentioned before and prove that
Â must have a very simple form if the Markov operator TA associated with A is
quasi-constrictive in the sense of Lasota.
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1 Introduction

In 1996, Olsen et al. (see [23]) proved the existence of an isomorphism between
the family C of two-dimensional copulas (endowed with the so-called star prod-
uct) and the family M of all Markov operators (with the standard composition
as binary operation). Using disintegration (see [29]) allows to express the afore-
mentioned Markov operators in terms of Markov kernels, resulting in a one-to-one
correspondence of C with the familyK of all Markov kernels having the Lebesgue
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measure λ on [0, 1] as fixed point. Identifying every copula with its Markov kernel
allows to define newmetrics D1, D2, D∞ which, contrary to the uniform one, strictly
separate independence from complete dependence (full predictability). Additionally,
the ‘translation’ of various copula-related concepts from C toM andK has proved
useful in so far that it allowed both, for alternative simple proofs of already known
properties as well as for new and interesting results. Section3 of this paper is a quick
incomplete survey over some useful consequences of this translation. In particular,
we mention the fact that for each copula A ∈ C , the iterates of the star product of
A with itself are Cesáro converge to an idempotent copula Â w.r.t. each of the three
metrics mentioned before, i.e., we have

lim
n→∞ D1(s∗n(A), Â) = 0

whereby s∗n(A) = 1
n

∑n
i=1 A∗i for every n ∈ N. Section4 contains some new

unpublished results and proves that the idempotent limit copula Â must have a very
simple (ordinal-sum-like) form if the Markov operator TA corresponding to A is
quasi-constrictive in the sense of Lasota ([1, 15, 18]).

2 Notation and Preliminaries

As already mentioned before, C will denote the family of all (two-dimensional)
copulas, d∞ will denote the uniformmetric onC . For properties of copulas, we refer
to [8, 22, 26]. For every A ∈ C , μA will denote the corresponding doubly stochastic
measure, PC , the class of all these doubly stochastic measures. Since copulas are
the restriction of two-dimensional distribution functions with U (0, 1)-marginals
to [0, 1]2, the Lebesgue decomposition of every element in PC has no discrete
component. The Lebesgue measure on [0, 1] and [0, 1]2 will be denoted by λ and λ2,
respectively. For every metric space (Ω, d), the Borel σ -field on Ω will be denoted
byB(Ω). A Markov kernel from R toB(R) is a mapping K : R×B(R) → [0, 1]
such that x �→ K (x, B) is measurable for every fixed B ∈ B(R) and B �→ K (x, B)

is a probability measure for every fixed x ∈ R. Suppose that X, Y are real-valued
random variables on a probability space (Ω,A ,P), then a Markov kernel K :
R × B(R) → [0, 1] is called regular conditional distribution of Y given X if for
every B ∈ B(R)

K (X (ω), B) = E(1B ◦ Y |X)(ω) (1)

holdsP-a.s. It iswell known that for eachpair (X, Y )of real-valued randomvariables
a regular conditional distribution K (·, ·) of Y given X exists, that K (·, ·) is unique
PX -a.s. (i.e., unique for PX -almost all x ∈ R) and that K (·, ·) only depends on
PX⊗Y . Hence, given A ∈ C we will denote (a version of) the regular conditional
distribution of Y given X by K A(·, ·) and refer to K A(·, ·) simply as regular condi-
tional distribution of A or as the Markov kernel of A. Note that for every A ∈ C ,
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its conditional regular distribution K A(·, ·), and every Borel set G ∈ B([0, 1]2) we
have ∫

[0,1]
K A(x, Gx ) dλ(x) = μA(G), (2)

whereby Gx := {y ∈ [0, 1] : (x, y) ∈ G} for every x ∈ [0, 1]. Hence, as special
case, ∫

[0,1]
K A(x, F) dλ(x) = λ(F) (3)

for every F ∈ B([0, 1]). On the other hand, every Markov kernel K : [0, 1] ×
B([0, 1]) → [0, 1] fulfilling (3) induces a unique element μ ∈ PC ([0, 1]2) via
(2). For more details and properties of conditional expectation, regular conditional
distributions, and disintegration see [13, 14].

T will denote the family of all λ-preserving transformations h : [0, 1] → [0, 1]
(see [34]), Tp the subset of all bijective h ∈ T . A copula A ∈ C will be called
completely dependent if and only if there exists h ∈ T such that K (x, E) := 1E (hx)

is a regular conditional distribution of A (see [17, 29] for equivalent definitions and
main properties). For every h ∈ T , the corresponding completely dependent copula
will be denoted by Ch , the class of all completely dependent copulas by Cd .
A linear operator T on L1([0, 1]) := L1([0, 1],B([0, 1]), λ) is called Markov oper-
ator ([3, 23] if it fulfills the following three properties:

1. T is positive, i.e., T ( f ) ≥ 0 whenever f ≥ 0
2. T (1[0,1]) = 1[0,1]
3.

∫
[0,1](T f )(x)dλ(x) = ∫

[0,1] f (x)dλ(x)

As mentioned in the introduction M will denote the class of all Markov operators
on L1([0, 1]). It is straightforward to see that the operator norm of T is one, i.e.,
‖T ‖ := sup{‖T f ‖1 : ‖ f ‖1 ≤ 1} = 1 holds. According to [23] there is a one-to-
one correspondence between C and M—in fact, the mappings Φ : C → M and
Ψ : M → C , defined by

Φ(A)( f )(x) : = (TA f )(x) := d

dx

∫

[0,1]
A,2(x, t) f (t)dλ(t),

(4)

Ψ (T )(x, y) : = AT (x, y) :=
∫

[0,x]
(T 1[0,y])(t)dλ(t)

for every f ∈ L1([0, 1]) and (x, y) ∈ [0, 1]2 (A,2 denoting the partial derivative of
A w.r.t. y), fulfill Ψ ◦ Φ = idC and Φ ◦ Ψ = idM . Note that in case of f := 1[0,y]
we have (TA1[0,y])(x) = A,1(x, y) λ-a.s. According to [29] the first equality in (4)
can be simplified to
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(TA f )(x) = E( f ◦ Y |X = x) =
∫

[0,1]
f (y)K A(x, dy) λ-a.s. (5)

It is not difficult to show that the uniform metric d∞ is a metrization of the weak
operator topology on M (see [23]).

3 Some Consequences of the Markov Kernel Approach

In this section, we give a quick survey showing the usefulness of the Markov kernel
perspective of two-dimensional copulas.

3.1 Strong Metrics on C

Expressing copulas in terms of their corresponding Markov kernels, the metrics
D1, D2, D∞ on C can be defined as follows:

D1(A, B) :=
∫

[0,1]

∫

[0,1]

∣
∣K A(x, [0, y]) − K B(x, [0, y])∣∣dλ(x) dλ(y) (6)

D2
2(A, B) :=

∫

[0,1]

∫

[0,1]

∣
∣K A(x, [0, y]) − K B(x, [0, y])∣∣2dλ(x) dλ(y) (7)

D∞(A, B) := sup
y∈[0,1]

∫

[0,1]

∣
∣K A(x, [0, y]) − K B(x, [0, y])∣∣2dλ(x) (8)

The following two theorems state themost important properties of themetrics D1, D2
and D∞.

Theorem 1 ([29]) Suppose that A, A1, A2, . . . are copulas and let T, T1, T2, . . .
denote the corresponding Markov operators. Then the following four conditions are
equivalent:

(a) limn→∞ D1(An, A) = 0
(b) limn→∞ D∞(An, A) = 0
(c) limn→∞ ‖Tn f − T f ‖1 = 0 for every f ∈ L1([0, 1])
(d) limn→∞ D2(An, A) = 0

As a consequence, each of the three metrics D1, D2 and D∞ is a metrization of the
strong operator topology on M .
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Theorem 2 ([29]) The metric space (C , D1) is complete and separable. The same
holds for (C , D2) and (C , D∞). The topology induced on C by D1 is strictly finer
than the one induced by d∞.

Remark 3 The idea of constructing metrics via conditioning to the first coordinate
can be easily extended to the family C m of all m-dimensional copulas for arbitrary
m ≥ 3. For instance, the multivariate version of D1 on C m can be defined by

D1(A, B) =
∫

[0,1]m−1

∫

[0,1]
|K A(x, [0, y]) − K B(x, [0, y])|dλ(x)dλm−1(y),

whereby [0, y] = ×m−1
i=1 [0, yi ] and K A(K B) denotes the Markov kernel (regular

conditional distribution) of Y given X for (X, Y) ∼ A(B). As shown in [11],
the resulting metric spaces (C m, D1), (C m, D2), (C m, D∞) are again complete and
separable.

3.2 Induced Dependence Measures

The main motivation for the consideration of conditioning-based metrics like D1
was the need for a metric that, contrary to d∞, is capable of distinguishing extreme
types of statistical dependence, i.e., independence and complete dependence. For
the uniform metric d∞, it is straightforward to construct sequences (Chn )n∈N of
completely dependent copulas (in fact, even sequences of shuffles of M , see [9, 22])
fulfilling limn→∞ d∞(Chn ,Π) = 0—for D1, however, the following result holds:

Theorem 4 ([29]) For every A ∈ C we have D1(A,Π) ≤ 1/3. Furthermore,
equality D1(A,Π) = 1/3 holds if and only if A ∈ Cd .

As a straightforward consequence, we may define τ1 : C → [0, 1] by

τ1(A) := 3D1(A,Π). (9)

This dependence measure τ1 exhibits the seemingly natural properties that (i) exactly
members of the familyCd (describing complete dependence) are assigned maximum
dependence (equal to one) and (ii) Π is the only copula with minimum dependence
(equal to zero). Note that (i) means that τ1(A) is maximal if and only if A describes
the situation of full predictability, i.e., asset Y is a deterministic function of asset X .
In particular, all shuffles of M have maximum dependence. Dependence measures
based on the metric D2 may be constructed analogously.

Example 5 For the Farlie-Gumbel-Morgenstern family (Gθ ) ∈ [−1, 1] of copulas
(see [22]), given by

Gθ (x, y) = xy + θxy(1 − x)(1 − y), (10)
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it is straightforward to show that τ1(Gθ ) = |θ |
4 holds for every θ ∈ [−1, 1] (for

details see [29]).

Example 6 For the Marshall-Olkin family (Mα,β)(α,β)∈[0,1]2 of copulas (see [22]),
given by

Mα,β(x, y) =
{

x1−α y if xα ≥ yβ

xy1−β if xα ≤ yβ.
(11)

it can be shown that

ζ1(Mα,β) = 3α (1 − α)z + 6

β

1 − (1 − α)z

z
− 6

β

1 − (1 − α)z+1

z + 1
(12)

holds, whereby z = 1
α

+ 2
β

− 1 (for details again see [29]).

Remark 7 The dependencemeasure τ1 is nonmutual, i.e., we do not necessarily have
τ1(A) = τ1(At ), whereby At denotes the transpose of A (i.e., At (x, y) = A(y, x)).
This reflects the fact that the dependence structure of random variables might be
strongly asymmetric, see [29] for examples as well as [27] for a measure of mutual
dependence.

Remark 8 Since most properties of D1 in dimension two also hold in the general
m-dimensional setting itmight seemnatural to simply consider τ1(A) := aD1(A,Π)

as dependence measure on C m (a being a normalizing constant). It is, however,
straightforward to see that this yields no reasonable notion of a dependence quan-
tification in so far that we would also have τ1(A) > 0 for copulas A describing
independence of X and Y = (Y1, . . . , Ym−1). For a possible way to overcome this
problem and assign copulas describing the situation in which each component of a
portfolio (Y1, . . . , Ym−1) is a deterministic function of another asset X maximum
dependence we refer to [11].

Remark 9 It is straightforward to verify that for samples (X1, Y1), . . . , (Xn, Yn)

from A ∈ C the empirical copula Ên (see [22, 28]) cannot converge to A w.r.t. D1
unless we have A ∈ Cd . Using Bernstein or checkerboard aggregations (smoothing
the empirical copula) might make it possible to construct D1-consistent estimators
of τ1(A). Convergence rates of these aggregations and other related questions are
future work.

3.3 The IFS Construction of (Very) Singular Copulas

Using Iterated Function Systems, one can construct copulas exhibiting surprisingly
irregular analytic behavior. The aim of this section is to sketch the construction and
then state two main results. For general background on Iterated Function Systems
with Probabilities (IFSP, for short), we refer to [16]. The IFSP construction of two-
dimensional copulas with fractal support goes back to [12] (also see [2]), for the
generalization to the multivariate setting we refer to [30].
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Definition 10 ([12]) A n × m-matrix τ = (ti j )i=1,...,n, j=1,...,m is called transfor-
mation matrix if it fulfills the following four conditions: (i) max(n, m) ≥ 2, (ii) all
entries are non-negative, (iii)

∑
i, j ti j = 1, and (iv) no rowor columnhas all entries 0.

T will denote the family of all transformations matrices.

Given τ ∈ T define the vectors (a j )
m
j=0, (bi )

n
i=0 of cumulative column and row

sums by a0 = b0 = 0 and

a j =
∑

j0≤ j

n∑

i=1

ti j0 j ∈ {1, . . . , m}, bi =
∑

i0≤i

m∑

j=1

ti0 j i ∈ {1, . . . , n}. (13)

Since τ is a transformationmatrix both (a j )
m
j=0 and (bi )

n
i=0 are strictly increasing and

R ji := [a j−1, a j ] × [bi−1, bi ] is a compact rectangle with nonempty interior for all
j ∈ {1, . . . , m} and i ∈ {1, . . . , n}. Set Ĩ := {(i, j) : ti j > 0} and consider the IFSP
{[0, 1]2, ( f j i )(i, j)∈ Ĩ , (ti j )(i, j)∈ Ĩ }, whereby the affine contraction f j i : [0, 1]2 → R ji

is given by

f j i (x, y) = (
a j−1 + x(a j − a j−1) , bi−1 + y(bi − bi−1)

)
. (14)

Z
τ ∈ K ([0, 1]2) will denote the attractor of the IFSP (see [16]). The induced

operator Vτ onP([0, 1]2) is defined by

Vτ (μ) :=
m∑

j=1

n∑

i=1

ti j μ f j i =
∑

(i, j)∈ Ĩ

ti j μ f j i . (15)

It is straightforward to see that Vτ maps PC into itself so we may view Vτ also
as operator on C . According to [12] there is exactly one copula A

τ ∈ C , to which
we will refer to as invariant copula, such that Vτ (μA

τ
) = μA

τ
holds. The IFSP

construction also converges w.r.t. D1—the following result holds:

Theorem 11 ([29]) Let τ ∈ T be a transformation matrix. Then Vτ is a contraction
on the metric space (C , D1) and there exists a unique copula A

τ such that Vτ A
τ =

A
τ and for every B ∈ C we have limn→∞ D1(V n

τ B, A
τ ) = 0.

Example 12 Figure1 depicts the density of V n
τ (Π) for n ∈ {1, 2, 3, 5}, whereby τ

is given by

τ =
⎛

⎝

1
6 0 1

6
0 1

3 0
1
6 0 1

6

⎞

⎠ .

Moreover (again see [12]) the support Supp(μA
τ
) of μA

τ
fulfills λ2(Supp(μA

τ
)) =

0 if τ contains at least one zero. Hence, in this case,μA
τ
is singularw.r.t. the Lebesgue

measure λ2, we write μA
τ

⊥ λ2. On the other hand, if τ contains no zeros we may
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Fig. 1 Image plot of the density of V n
τ (Π) for n ∈ {1, 2, 3, 5} and τ according to Example12

still haveμA
τ

⊥ λ2 although in this caseμA
τ
has full support [0, 1]2. In fact, an even

stronger and quite surprising singularity result holds—letting T̂ denote the family of
all transformation matrices τ (i) containing no zeros, (ii) fulfilling that the row sums
and column sums through every ti j are identical, and (iii) μA

τ
�= λ2 we have the

following striking result:

Theorem 13 ([33]) Suppose that τ ∈ T̂. Then the corresponding invariant copula
A

τ is singular w.r.t. λ2 and has full support [0, 1]2. Moreover, for λ-almost every

x ∈ [0, 1] the conditional distribution function y �→ F
A

τ
x (y) = K A

τ
(x, [0, y]) is

continuous, strictly increasing and has derivative zero λ-almost everywhere.

3.4 The Star Product of Copulas

Given A, B ∈ C the star product A ∗ B ∈ C is defined by (see [3, 23] )

(A ∗ B)(x, y) :=
∫

[0,1]
A,2(x, t)B,1(t, y)dλ(t) (16)
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and fulfills TA∗B = ΦA∗B = Φ(A) ◦ Φ(B) = TA ◦ TB , so the mapping Φ in
equation (4) actually is an isomorphism. A copula A ∈ C is called idempotent if
A ∗ A = A holds, the family of all idempotent copulas will be denoted by C i p. For
a complete characterization of idempotent copulas we refer to [4] (also see [26]).
The star product can easily be translated to theMarkov kernel setting—the following
result holds:

Lemma 14 ([30]) Suppose that A, B ∈ C and let K A, K B denote Markov kernels
of A and B. Then the Markov kernel K A ◦ K B, defined by

(K A ◦ K B)(x, F) :=
∫

[0,1]
K B(y, F)K A(x, dy), (17)

is a Markov kernel of A ∗ B. Furthermore C i p is closed in (C , D1).

Remark 15 Let A ∈ C be arbitrary. If (Xn)n∈N is a stationary Markov process
on [0, 1] with (stationary) transition probability K A(·, ·) and X1 ∼ U (0, 1) then
(Xn, Xn+1) ∼ A for every n ∈ N and Lemma14 implies that (X1, Xn+1) ∼ A ∗ A ∗
· · · ∗ A =: A∗n , i.e., the n-step transition probability of the process is given by the
Markov kernel of A∗n .

Remark 16 In case the copulas A, B are absolutely continuous with densities kA

and kB it is straightforward to verify that A ∗ B is absolutely continuous with density
kA∗B given by

kA∗B(x, y) =
∫

[0,1]
kA(x, z)kB(z, y)dλ(z). (18)

Since the star product of copulas is a natural generalization of the multiplication
of doubly stochastic matrices and doubly stochastic idempotent matrices are fully
characterizable (see [10, 25]) the following result underlines how much more com-
plex the family of idempotent copulas is (also see [12] for the original result without
idempotence).

Theorem 17 ([30]) For every s ∈ (1, 2) there exists a transformation matrix τs ∈ T
such that:

1. The invariant copula A
τs

is idempotent.
2. The Hausdorff dimension of the support of A

τs
is s.

Example 18 For the transformation matrix τ from Example12 the invariant copula
A

τ is idempotent and its support has Hausdorff dimension ln 5/ ln 3. Hence, set-
ting A := A

τ and considering the Markov process outlined in Remark15 we have

(Xi , Xi+n) ∼ A for all i, n ∈ N. The same holds if we take A := V
j

τ (Π) for
arbitrary j ∈ N since this A is idempotent too.



402 W. Trutschnig and J. Fernández Sánchez

We conclude this section with a general result that will be used later on and which,
essentially, follows from Von Neumanns mean ergodic theorem for Hilbert spaces
(see [24]) since Markov operators have operator norm one. For every copula A ∈ C
and every n ∈ N as in the Introduction we set

s∗n(A) = 1

n

n∑

i=1

A∗i . (19)

Theorem 19 ([32]) For every copula A there exists a copula Â such that

lim
n→∞ D1

(
s∗n(A), Â

) = 0. (20)

This copula Â is idempotent, symmetric, and fulfills Â ∗ A = A ∗ Â = Â.

As nice by-product, Theorem19 also offers a very simple proof of the fact that
idempotent copulas are necessarily symmetric (originally proved in [4]).

4 Copulas Whose Corresponding Markov Operator Is
Quasi-constrictive

Studying asymptotic properties of Markov operators quasi-constrictiveness is a very
important concept. To the best of the authors’ knowledge, there is no natural/simple
characterization of copulas whose Markov operator is quasi-constrictive. The objec-
tive of this section, however, is to show that the D1-limit Â of s∗n(A) has a very simple
form if TA is quasi-constrictive. We start with a definition of quasi-constrictiveness
in the general setting. In general, T is a Markov operator on L1(Ω,A , μ) if the
conditions (M1)-(M3) from Sect. 2 with [0, 1] replaced by Ω ,B([0, 1]) replaced by
A , and λ replaced by μ hold.

Definition 20 ([1, 15, 18]) Suppose that (Ω,A , μ) is a finite measure space and let
D(Ω,A , μ) denote the family of all probability densities w.r.t. μ. Then a Markov
operator T : L1(Ω,A , μ) → L1(Ω,A , μ) is called quasi-constrictive if there exist
constants δ > 0 and κ < 1 such that for every probability density f ∈ D(Ω,A , μ)

the following inequality is fulfilled:

lim sup
n→∞

∫

E

T n f (x)dμ(x) ≤ κ for every E ∈ A with μ(E) ≤ δ (21)

Komornik and Lasota (see [15]) have shown in 1987 that quasi-constrictivity is
equivalent to asymptotic periodicity—in particular they proved the following spec-
tral decomposition theorem: For every quasi-constrictive Markov operator T there
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exist an integer r ≥ 1, densities g1, . . . , gr ∈ D(Ω,A , μ) with pairwise disjoint
support, essentially bounded non-negative functions h1, . . . , hr ∈ L∞(Ω,A , μ)

and a permutation σ of {1, . . . , r} such that for every f ∈ L1(Ω,A , μ)

T n f (x) =
r∑

i=1

( ∫

Ω

f hi dμ
)

gσ n(i)(x) + Rn f (x) with lim
n→∞ ‖Rn f ‖1 = 0 (22)

holds. Furthermore (see again [1, 15, 18]), in case of μ(Ω) = 1 there exists a
measurable partition (Ei )

r
i=1 of Ω in sets with positive measure such that g j and σ

in (22) fulfill

g j = 1

μ(E j )
1E j and μ(E j ) = μ(Eσ n( j)) (23)

for every j ∈ {1, . . . , r} and every n ∈ N.

Example 21 For every absolutely continuous copula A with density kA fulfilling
kA ≤ M the corresponding Markov operator is quasi-constrictive. This directly
follows from the fact that

TA f (x) =
∫

[0,1]
f (y)K A(x, dy) =

∫

[0,1]
f (y)kA(x, y)dy ≤ M

holds for every f ∈ D([0, 1]) := D([0, 1],B([0, 1]), λ).

Example 22 There are absolutely continuous copulas A whose corresponding
Markov operator is not quasi-constrictive—one example is the idempotent ordinal-
sum-like copula O with unbounded density kO defined by

kO(x, y) :=
∞∑

n=1

2n1[1−21−n ,1−2−n)(x, y)

for all x, y ∈ [0, 1] (straightforward to verify).
Before returning to the copula setting we prove a first proposition to the spec-
tral decomposition that holds for general Markov operators on L1(Ω,A , μ) with
(Ω,A , μ) being a probability space.

Lemma 23 Suppose that (Ω,A , μ) is a probability space and that T : L1(Ω,A , μ)

→ L1(Ω,A , μ) is a quasi-constrictive Markov operator. Then there exists r ≥ 1,
a measurable partition (Ei )

r
i=1 of Ω in sets with positive measure, densities

h′
1, . . . , h′

r ∈ L∞(Ω,A , μ)∩D(Ω,A , μ) and a permutation σ of {1, . . . , r} such
that we have

∑r
i=1 μ(Ei )h′

i = 1 as well as

T n f (x) =
r∑

i=1

( ∫

Ω

f h′
i dμ

)
1Eσn (i) (x) + Rn f (x) with lim

n→∞ ‖Rn f ‖1 = 0 (24)
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for every f ∈ L1(Ω,A , μ) and every n ∈ N.

Proof Using (22) and (23) it follows that

Rn1Ω(x) = 1 − T n1Ω(x) =
r∑

i=1

1Eσn (i) (x) −
r∑

i=1

‖hi‖1
μ(Ei )

1Eσn (i) (x)

=
r∑

i=1

(
1 − ‖hi‖1

μ(Ei )

)
1Eσn (i) (x)

for every x ∈ Ω , which implies

0 = lim
n→∞ ‖Rn1Ω‖1 = lim

n→∞

r∑

i=1

∣
∣
∣
∣1 − ‖hi‖1

μ(Ei )

∣
∣
∣
∣μ(Eσ n(i)) =

r∑

i=1

∣
∣
∣
∣1 − ‖hi‖1

μ(Ei )

∣
∣
∣
∣μ(Ei ).

Since μ(Ei ) > 0 for every i ∈ {1, . . . , r} this shows that h′
i := hi

μ(Ei )
∈

L∞(Ω,A , μ) ∩ D(Ω,A , μ) for every i ∈ {1, . . . , r}. Furthermore we have
limn→∞ ‖Rnh′

i‖1 = 0 for every fixed i , from which

1 =
∫

Ω

T nh′
i (x)dμ(x) = lim

n→∞

∫

Ω

r∑

j=1

( ∫

Ω

h′
i (z)h

′
j (z)dμ(z)

)
1Eσn ( j) (x)dμ(x)

=
r∑

j=1

( ∫

Ω

h′
i (z)h

′
j (z)dμ(z)

)
μ(E j )

follows. Multiplying both sides with μ(Ei ), summing over i ∈ {1, . . . , r} yields

1 =
∫

Ω

r∑

i=1

h′
i (z)μ(Ei )

r∑

j=1

h′
j (z)μ(E j )

︸ ︷︷ ︸
:=g(z)

dμ(z)

so g ∈ D(Ω,A , μ) and at the same time g2 ∈ D(Ω,A , μ). UsingCauchy Schwarz
inequality it follows that g(x) = 1 for μ-almost every x ∈ Ω . ��
Lemma 24 Suppose that A is a copula whose corresponding Markov operator TA

is quasi-constrictive. Then there exists r ≥ 1, a measurable partition (Ei )
r
i=1 of

[0, 1] in sets with positive measure, and pairwise different densities h1, . . . , hr ∈
L∞([0, 1]) ∩ D([0, 1]) such that the limit copula Â of s∗n(A) is absolutely contin-
uous with density kÂ, defined by

kÂ(x, y) =
r∑

i=1

hi (y)1Ei (x) (25)
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for all x, y ∈ [0, 1].
Proof Fix an arbitrary f ∈ L1([0, 1]). Then, using Lemma23, we have

1

n

n∑

j=1

T j
A f (x) = 1

n

n∑

j=1

r∑

i=1

∫

[0,1]
f h′

σ− j (i)dλ1Ei (x) + 1

n

n∑

j=1

R j f (x)

=
r∑

i=1

1Ei (x)

∫

[0,1]
f (z)

1

n

n∑

j=1

h′
σ− j (i)(z)

︸ ︷︷ ︸
:=gi

n(z)

dλ(z) + 1

n

n∑

j=1

R j f (x)

for every x ∈ [0, 1] and every n ∈ N. Since σ is a permutation j → h′
σ− j (i)

(z) is
periodic for every z and every i , so, for every i ∈ {1, . . . , r}, there exists a function
hi such that

lim
n→∞

1

n

n∑

j=1

h′
σ− j (i)(z) = hi (z)

for every z ∈ [0, 1] and every i ∈ {1, . . . , r}. Obviously hi ∈ L∞([0, 1]) and, using
Lebesgue’s theorem on dominated convergence, hi is also a density, so we have
h1, . . . , hr ∈ L∞([0, 1]) ∩ D([0, 1]). Finally, using Theorem19 and the fact that
limn→∞ ‖Rn f ‖1 = 0 for every f ∈ L1([0, 1]), it follows immediately that

TÂ f (x) =
∫

[0,1]
f (y)

r∑

i=1

hi (y)1Ei (x)dλ(y).

This completes the proof since mutually different densities can easily be achieved
by building unions from elements in the partition (Ei )

r
i=1 if necessary. ��

Using the fact that Â is idempotent we get the following stronger result:

Lemma 25 The density kÂ of Â in Lemma24 has the form

kÂ(x, y) =
r∑

i, j=1

mi, j 1Ei ×E j (x, y),

i.e., it is constant on all rectangles Ei × E j .

Proof According to Theorem19 the copula Â is idempotent so Â is symmetric.
Consequently the set

Δ := {(x, y) ∈ [0, 1]2 : kÂ(x, y) = kÂ(y, x)} ∈ B([0, 1]2)
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has full measure λ2(Δ) = 1. Using Lemma24 we have

r∑

i=1

hi (y)1Ei (x) =
r∑

i=1

hi (x)1Ei (y)

for every (x, y) ∈ Δ. Fix arbitrary i, j ∈ {1, . . . , r}. Then we can find x ∈ Ei such
that λ(Δx ) = 1 holds, whereby Δx = {y ∈ [0, 1] : (x, y) ∈ Δ}. For such x we have
hi (y) = h j (x) for λ-almost every y ∈ E j , which firstly implies that h j is, up to a set
of measure zero, constant on E j and, secondly, that kÂ is constant on Ei × E j outside
a set of λ2-measure zero. Since we may modify the density on a set of λ2-measure
zero we can assume that kÂ is of the desired form

kÂ(x, y) =
r∑

i, j=1

mi, j 1Ei ×E j (x, y),

with M = (mi, j )
r
i, j=1 being a non-negative, symmetric matrix fulfilling

(a)
∑r

i, j=1 mi, jλ(Ei )λ(E j ) = 1
(b)

∑r
j=1 mi, jλ(E j ) = 1 for every i ∈ {1, . . . , r}

(c)
∑r

i=1 mi, jλ(Ei ) = 1 for every j ∈ {1, . . . , r}
(d)

∑r
i=1 |mi, j − mi,l | > 0 whenever j �= l. ��

Before proceeding with the final result it is convenient to take a look at the matrix
H = (Hi, j )

r
i, j=1 defined by

Hi, j := mi, jλ(E j ) =
∫

E j

hi (z)dλ(z) (26)

for all i, j ∈ {1, . . . , r}. According to (a) in the proof of Lemma25 H is stochastic.
Furthermore, idempotence of Â and Remark16 imply kÂ ∗ kÂ = kÂ, hence

r∑

i=1

hi (y)1Ei (x) = kÂ(x, y) = kÂ ∗ kÂ(x, y)

=
∫

[0,1]

r∑

i=1

hi (z)1Ei (x)

r∑

j=1

h j (y)1E j (z) dλ(z)

=
r∑

i, j=1

1Ei (x)h j (y)

∫

E j

hi (z)dλ(z) =
r∑

i, j=1

1Ei (x)h j (y)Hi, j .

From this is follows immediately that hi (y) = ∑r
j=1 Hi, j h j (y) is fulfilled for every

y ∈ [0, 1] and i ∈ {1, . . . , r}, so, integrating both sides over El , we have Hi,l =
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∑r
j=1 Hi, j H j,l , which shows that H is idempotent. Having this, the proof of the

following main result of this section will be straightforward.

Theorem 26 Suppose that A is a copula whose corresponding Markov operator TA

is quasi-constrictive. Then there exist r ≥ 1 and a measurable partition (Ei )
r
i=1

of [0, 1] in sets with positive measure, such that the limit copula Â of s∗n(A) is
absolutely continuous with density kÂ given by

kÂ(x, y) =
r∑

i=1

1

λ(Ei )
1Ei ×Ei (x, y) (27)

for all x, y ∈ [0, 1]. In other words, the limit copula Â has an ordinal-sum-of-Π -like
structure.

Proof Since H is an idempotent stochastic matrix and since H can not have any
column consisting purely of zeros, up to a permutation, H must have the form (see
[5, 21]). ⎛

⎜
⎜
⎜
⎝

Q1 0 . . . 0
0 Q2 . . . 0
...

...
. . .

...

0 0 . . . Qs

⎞

⎟
⎟
⎟
⎠

, (28)

whereby each Qi is a strictly positive ri × ri -matrix with identical rows and s is
the range of H . We will show that ri = 1 for every i ∈ {1, . . . , s}. Suppose, on the
contrary, that rl ≥ 2 for some l. Then there would be indices Il := {i1, . . . , irl } ⊆
{1, . . . , r} and a1, . . . , arl ∈ (0, 1)rl with

∑rl
i=1 ai = 1 such that Ql would have the

form

Ql =

⎛

⎜
⎜
⎜
⎝

a1 a2 . . . arl

a1 a2 . . . arl
...

...
. . .

...

a1 a2 . . . arl

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Hi1,i1 Hi1,i2 . . . Hi1,irl

Hi2,i1 Hi2,i2 . . . Hi2,irl
...

...
. . .

...

Hirl ,i1
Hirl ,i2

. . . Hirl ,irl

⎞

⎟
⎟
⎟
⎠

. (29)

It follows immediately that

Hi1,iv = mi1,i1λ(Eiv ) = Hi2,iv = mi2,ivλ(Eiv ) = · · · = Hirl ,iv
= mirl ,iv

λ(Eiv ),

so mi j ,iv = mi1,iv for every j ∈ {1, . . . , rl} and arbitrary v ∈ {1, . . . , rl}. Having
this symmetry of M implies that all entries of Ql are identical, which contradicts the
fact that the conditional densities are not identical, i.e., the fact that

∑

j∈Il

|m j,i1 − m j,i2 | =
r∑

j=1

|m j,i1 − m j,i2 | > 0
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whenever i1 �= i2. Consequently ri = 1 for every i ∈ {1, . . . , s} and kÂ has the
desired form. ��
Remark 27 Consider again the transformation matrix τ from Example12. Then
V 1

τ (Π),V 2
τ (Π), . . . are examples of the ordinal-sum-of-Π -like copulas mentioned

in the last theorem.
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